Recoding in Bacteriophages

  • Roger W. Hendrix
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


There are two classes of translational recoding, both frameshifts, known in the dsDNA tailed phages. The first is an inefficient frameshift between two overlapping tail genes, and both the shifted and unshifted products have essential roles as chaperones of tail assembly. This class is remarkable for the widespread conservation of a frameshift mechanism in the absence of conservation of the direction or magnitude of the shift. The second class of frameshifts adds an Ig-like domain to the C-terminus of one of the major structural proteins of the virion. In addition to the cases using a frameshift, some major structural proteins have a C-terminal Ig-like domain encoded directly in their gene, and some are missing such a domain. Among the non-tailed phages, some of the ssRNA phages have an essential termination codon readthrough event at the end of their coat protein gene.


Phage Genome Major Capsid Protein Lysis Gene Replicase Gene Structural Protein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adhin MR, van Duin J (1990) Scanning model for translational reinitiation in eubacteria. J Mol Biol 213:811–818PubMedCrossRefGoogle Scholar
  2. Agirrezabala X, Velazquez-Muriel JA, Gomez-Puertas P, Scheres SH, Carazo JM, Carrascosa JL (2007) Quasi-atomic model of bacteriophage T7 procapsid shell: insights into the structure and evolution of a basic fold. Structure 15:461–472PubMedCrossRefGoogle Scholar
  3. Atkins JF, Gesteland RF, Reid BR, Anderson CW (1979) Normal tRNAs promote ribosomal frameshifting. Cell 18:1119–1131PubMedCrossRefGoogle Scholar
  4. Berkhout B, Schmidt BF, van Strien A, van Boom J, van Westrenen J, van Duin J (1987) Lysis gene of bacteriophage MS2 is activated by translation termination at the overlapping coat gene. J Mol Biol 195:517–524PubMedCrossRefGoogle Scholar
  5. Christie GE, Temple LM, Bartlett BA, Goodwin TS (2002) Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 184:6522–6531PubMedCrossRefGoogle Scholar
  6. Condreay JP, Wright SE, Molineux IJ (1989) Nucleotide sequence and complementation studies of the gene 10 region of bacteriophage T3. J Mol Biol 207:555–561PubMedCrossRefGoogle Scholar
  7. Condron BG, Atkins JF, Gesteland RF (1991) Frameshifting in gene 10 of bacteriophage T7. J Bacteriol 173:6998–7003PubMedGoogle Scholar
  8. de Smit MH, van Duin J., van Knippenberg PH, van Eijk HG (1994) CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli. Gene 143:43–47PubMedCrossRefGoogle Scholar
  9. Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535PubMedCrossRefGoogle Scholar
  10. Fortier LC, Bransi A, Moineau S (2006) Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis. J Bacteriol 188:6101–6114PubMedCrossRefGoogle Scholar
  11. Fraser JS, Maxwell KL, Davidson AR (2007) Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr Opin Microbiol 10:382–387PubMedCrossRefGoogle Scholar
  12. Fraser JS, Yu Z, Maxwell KL, Davidson AR (2006) Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J Mol Biol 359:496–507PubMedCrossRefGoogle Scholar
  13. Garcia P, Rodriguez I, Suarez JE (2004) A -1 ribosomal frameshift in the transcript that encodes the major head protein of bacteriophage A2 mediates biosynthesis of a second essential component of the capsid. J Bacteriol 186:1714–1719PubMedCrossRefGoogle Scholar
  14. Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511PubMedCrossRefGoogle Scholar
  15. Hendrix RW (2004) Hot new virus, deep connections. Proc Natl Acad Sci USA 101:7495–7496PubMedCrossRefGoogle Scholar
  16. Hofstetter H, Monstein HJ, Weissmann, C (1974) The readthrough protein A1 is essential for the formation of viable Q beta particles. Biochim Biophys Acta 374:238–251PubMedCrossRefGoogle Scholar
  17. Juhala RJ, Ford ME, Duda RL, Youlton A., Hatfull GF, Hendrix RW (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51PubMedCrossRefGoogle Scholar
  18. Kastelein RA, Remaut E, Fiers W, van Duin J (1982) Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene. Nature 295:35–41PubMedCrossRefGoogle Scholar
  19. Levin ME, Hendrix RW, Casjens SR (1993) A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J Mol Biol 234:124–139PubMedCrossRefGoogle Scholar
  20. Nishihara T, Morisawa H, Ohta N, Atkins JF, Nishimura, Y (2004) A cryptic lysis gene near the start of the Qbeta replicase gene in the +1 frame. Genes Cells 9:877–889PubMedCrossRefGoogle Scholar
  21. Rodriguez I, Garcia P, Suarez JE (2005) A second case of -1 ribosomal frameshifting affecting a major virion protein of the Lactobacillus bacteriophage A2. J Bacteriol 187:8201–8204PubMedCrossRefGoogle Scholar
  22. Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388:48–70PubMedCrossRefGoogle Scholar
  23. van Duin J, Tsareva N (2006) Single-stranded RNA phages. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 175–196Google Scholar
  24. Weiner AM, Weber K (1971) Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat New Biol 234:206–209PubMedGoogle Scholar
  25. Wilhelm SW, Brigden SM, Suttle CA (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb Ecol 43:168–173PubMedCrossRefGoogle Scholar
  26. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114PubMedCrossRefGoogle Scholar
  27. Xu J (2001) A conserved frameshift strategy in dsDNA long tailed bacteriophages. PhD Thesis: University of PittsburghGoogle Scholar
  28. Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21PubMedCrossRefGoogle Scholar
  29. Zimmer M, Sattelberger E, Inman RB, Calendar R, Loessner MJ (2003) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol 50:303–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Pittsburgh Bacteriophage Institute and Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations