The Introduction of Antimicrobial Agents in Resource-Constrained Countries: Impact on the Emergence of Resistance

  • Carlos Franco-Paredes
  • Jose Ignacio Santos-Preciado


A potential undesirable effect of the introduction of a new class or type of antimicrobial drug is the selection and spread of resistant strains of microbial agents. As a result of this biological adaptation, antimicrobial agents become ineffective, leading to poor clinical outcomes at the individual level. At the community level, the spread of these resistant strains may lead to significant morbidity and mortality with potentially devastating economic and social consequences. In this chapter, we describe two case studies that demonstrate the occurrence of antimicrobial resistance after the introduction of antimicrobial drugs into developing settings. The first case describes the emergence of antiretroviral resistance after their recent introduction to control HIV/AIDS in resource-poor settings, particularly in Sub-Saharan Africa. The second case illustrates the negative consequences of the overuse of fluoroquinolones to treat enteric gram-negative bacteria in Southeast Asia. These events have rendered many of these bacterial pathogens resistant to this class of drugs and have caused a significant setback to control programs for diseases such as dysentery, typhoid fever, and gastroenteritis. We therefore suggest that after the introduction of a new antimicrobial agent into developing-country settings, the emergence and subsequent spread of antimicrobial resistance can be ameliorated by the concomitant implementation of programs targeting prudent use of these drugs. This could be achieved through the development of clinical guidelines and prospective surveillance activities to detect the early occurrence of resistance that may provide the opportunity to implement preventive strategies to impede further the spread of resistant microbial strains at the community and hospital levels.


Antimicrobial Resistance Typhoid Fever Antimicrobial Drug Infection Control Practice Subsequent Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akileswaran, C., Lurie, M. N., Flanigan, T. P., and Mayer, K. H. 2005. Lessons learned from use of highly active antiretroviral therapy in Africa. Clin. Infect. Dis. 41:376–385.CrossRefPubMedGoogle Scholar
  2. Bagchi, S., Kempf, M. C., Westfall, A. O., Maherya, A., Willig, J., and Saag, M. S. 2007. Can routine clinical markers be used longitudinally to monitor antiretroviral therapy success in resource-limited settings? Clin. Infect. Dis. 44:135–138.CrossRefGoogle Scholar
  3. Barnes, K. I., and White, N. J. 2005. Population biology and antimalarial resistance: The transmission of malaria drug resistance in Plasmodium falciparum. Acta Trop. 94:230–240.PubMedGoogle Scholar
  4. Byarugaba, D. K. 2004. A view on antimicrobial resistance in developing countries and responsible risk factors. Int. J. Antimicrob. Agents 24:105–110.CrossRefPubMedGoogle Scholar
  5. Byarugaba, D. K. 2005. Antimicrobial resistance and its containment in developing countries. In Antibiotic policies: Theory and practice, ed. I. M. Gould, and J. W. M. van der Meer, pp. 617–647. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  6. Corea, E., de Silva, T., and Perera, J. 2003. Methicillin-resistant Staphylococcus aureus: Prevalence, incidence and risk factors associated with colonization in Sri Lanka. J. Hosp. Infect. 55:145–148.CrossRefPubMedGoogle Scholar
  7. Duse, A. G. 1998. Antibiotic resistance in developing countries. In Infection control practices, ed. A. Emerson, and M. Arrowsmith, pp. 38–44. Borken, Germany: 3 M Medical Markets Laboratory.Google Scholar
  8. Dromigny, J. A., and Perrier-Gros-Claude, J. D. 2003. Antimicrobial resistance of Salmonella enterica serotype Typhi in Dakar, Senegal. Clin. Infect. Dis. 37:465–466.CrossRefPubMedGoogle Scholar
  9. Dye, C., Williams, B. G., Espinal, M. A., and Raviglione, M. C. 2002. Erasing the world’s slow stain: Strategies to beat multidrug-resistant tuberculosis. Science 295:2042–2046.CrossRefPubMedGoogle Scholar
  10. Franco-Paredes, C., Jones, D., Rodriguez-Morales, A. J., and Santos-Preciado, J. I. 2007. Improving the health of neglected populations in Latin America. BMC Public Health 7:11. DOI: 10.1186/1471-2458-7-11.CrossRefPubMedGoogle Scholar
  11. Gallant, J. E. 2007. Drug resistance after failure of initial antiretroviral therapy in resource-limited countries. Clin. Infect. Dis. 44:453–455.CrossRefPubMedGoogle Scholar
  12. Hadi, U., Kolopaking, E. P., Gardjito, W., Gyssens, I. C., and van den Broek, P. J. 2006. Antimicrobial resistance and antibiotic use in low-income and developing countries. Folia Medica Indonesiana, 42:183–195.Google Scholar
  13. Hart, C. A., and Kariuki, S. 1998. Antimicrobial resistance in developing countries. Br. Med. J. 317:647–650.Google Scholar
  14. Huebner, R. E., Wasas, A. D., and Klugman, K. P. 2000. Trends in antimicrobial resistance and serotype distribution of blood and cerebrospinal fluid isolates of Streptococcus pneumoniae in South Africa, 1991–1998. Int. J. Infect. Dis. 4:214–218.CrossRefGoogle Scholar
  15. Iseman, M. D. 2007. Extensive drug-resistant Mycobacterium tuberculosis: Charles Darwin would understand. Clin. Infect. Dis. 45:1415–1416.CrossRefPubMedGoogle Scholar
  16. Jabeen, K., Khan, E., and Hasan, R. 2006. Emergence of quinolone-resistant Neisseria gonorrhoeae in Pakistan. Int. J. STD AIDS. 17(1): 30–33.CrossRefPubMedGoogle Scholar
  17. Jorgensen, J. H., Crawford, S. A., and Fiebelkorn, K. R. 2005. Susceptibility of Neisseria meningitidis to 16 antimicrobial agents and characterization of resistance mechanisms affecting some agents. J. Clin. Microbiol. 43:3162–3171.CrossRefPubMedGoogle Scholar
  18. Kauser, J., Khan, E., and Hasan, R. 2006.Emergence of quinolone-resistant Neisseria gonorrhoeae in Pakistan. Int. J. STD AIDS 17: 30–34.CrossRefGoogle Scholar
  19. Kurle, S. N., Gangakhedkar, R. R., Sen, S., Hayatnagarkar, S. S., Tripathy, S. P., and Paranjape, R. S. 2007. Emergence of NNRT drug resistance mutations after single-dose nevirapine exposure in HIV type 1 subtype C-infected infants in India. AIDS Res. Hum. Retroviruses 23:682–685.CrossRefPubMedGoogle Scholar
  20. Lazzari, S., de Felici, A., Sobel, H., and Bertagnolio, S. 2004. HIV drug resistance surveillance: Summary of an April 2003 WHO Consultation. AIDS 18 (suppl 3):S49–S53.CrossRefPubMedGoogle Scholar
  21. Laxminarayan, R., and Weitzman, M. L. 2002. On the implications of endogenous resistance to medications. J. Health Econ. 21:709–718.CrossRefPubMedGoogle Scholar
  22. Laxminarayan, R., and Weitzman M. L. 2003. Value of treatment heterogeneity for infectious diseases. In Battling resistance to antibiotics and pesticides: An economic approach. ed. R. Laxminarayan, pp 63–75. Washington, DC: Resources for the Future.Google Scholar
  23. Livermore, D. M. 2007. Introduction: The challenge of multiresistance. Int. J. Antimicrob. Agents 29 (suppl 3):S1–S7.CrossRefPubMedGoogle Scholar
  24. Lon, C. T., Tsuyuoka, R., Phanouvong, S., Nivanna, N., Socheat, D., Sokhan, C., Blum, N., Christophel, E. M., and Smine, A. 2006. Counterfeit and substandard antimalarial drugs in Cambodia. Trans. R. Soc. Trop. Med. Hyg. 100:1019–1024.CrossRefPubMedGoogle Scholar
  25. Moellering, R. C. Jr. 1998. Antibiotic resistance: Lessons for the future. Clin. Infect. Dis. 27 (suppl 1):S135–S140.CrossRefPubMedGoogle Scholar
  26. Newton, P., Proux, S., Green, M., Smithuis, F., Rozendaal, J., Prakongpan, S., Chotivanich, K., Mayxay, M., Looareesuwan, S., Farrar, J., Nosten, F., and White, N. J. 2001. Fake artesunate in Southeast Asia. Lancet 357:1948–1950.CrossRefPubMedGoogle Scholar
  27. Nosten, F., van Vugt, M., Price, R., Luxemberger, C., Thway, K. L., Brockman, A., McGready, A., ter Kuile, F., Looareesuwan, S., and White, N. J. 2000. Effects of artesunate–mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in Western Thailand: A prospective study. Lancet 356:297–302.CrossRefPubMedGoogle Scholar
  28. Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., Pablos-Mendez, A., and Klugman, K. P. 2005a. Antimicrobial resistance in developing countries. Part 1: Recent trends and current status. Lancet 5:481–493.Google Scholar
  29. Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., Pablos-Mendez, A., and Laxminarayan, R. 2005b. Antimicrobial resistance in developing countries. Part II: Strategies for containment. Lancet 5:568–580.Google Scholar
  30. Parry, C. M., Duong, N. M., Zhou, J., Hoang Mai, N. T., Diep, T. S., Thinh, L. Q., Wain, J., Van Vinh Chau, N., Griffings, D., Day, N. P., White, N. J., Hien, T. T., Spratt, B. G., and Farrar, J. J. 2002. Emergence in Vietnam of Streptococcus pneumoniae resistant to multiple antimicrobial agents as a result of dissemination of the multiresistant Spain 23F–1 clone. Antimicrob. Agents Chemother. 46:3512–3517.CrossRefPubMedGoogle Scholar
  31. Pillay, M., and Sturm, A. W. 2007. Evolution of the extended drug-resistant F15/LAM4/KXZN strain of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. Clin. Infect. Dis. 45:1409–1414.CrossRefPubMedGoogle Scholar
  32. Ray, K., Bala, M., Kumar, J., and Misra, R. S. 2000. Trend of antimicrobial resistance in Neisseria gonorrhoeae at New Delhi, India. Int. J. STD AIDS 11:115–118.CrossRefPubMedGoogle Scholar
  33. Rhem, S. J., and Weber, T. 2007. The far-reaching impact of antimicrobial resistance. Clin. Infect. Dis. 45:S97–S98.CrossRefGoogle Scholar
  34. Riley, L. W., Ko, A. I., Unger, A., and Reis, M. G. 2007. Slum health: Diseases of neglected populations. BMC Int. Health Hum. Rights 7:2.CrossRefPubMedGoogle Scholar
  35. Sabir, N., Khan, E., Sheikh, L., and Hasan, R. 2004. Impact of antibiotic usage on resistance in microorganisms; urinary tract infections with E. coli as a case in point. J. Pak. Med. Assoc. 54:472–475.PubMedGoogle Scholar
  36. Selgelid, M. J., Kelly, P. M., and Sleigh A. 2008. Ethical challenges in TB control in the era of XDR-TB. Int. J. Tuberc. Lung Dis. 12:231–235.Google Scholar
  37. Shekelle, P., Maglione, M., Geotz, M. B., Wagner, G., Wang, Z., Hilton, L., Carter, J., Chen, S., Tringle, C., Mojica, W., and Newberry, S. 2007. Antiretroviral (ARV) drug resistance in the developing world. Evid. Rep. Technol. Assess. 156:1–74.Google Scholar
  38. Sirinavin, S., and Dowell, S. F. 2002. Antimicrobial resistance in countries with limited resources: Unique challenges and limited alternatives. Semin. Pediatr. Infect. Dis. 15:94–98.CrossRefGoogle Scholar
  39. Sungkanuparaph, S., Manosuthi, W., Kiertiburanakul, S. Piyavong, B., Chumpathat, N., and Chantratita, W. 2007. Options for a second-line antiretroviral regimen for HIV type-1 infected patients whose initial regimen of a fixed-dose combination of stavudine, lamivudine, and nevirapine falls. Clin. Infect. Dis. 44:447–452.CrossRefGoogle Scholar
  40. Tupasi, T. E. 1999. Quinolone use in the developing world. Drugs 58 (Supp.2):55–59.CrossRefPubMedGoogle Scholar
  41. Vaypayee, M., Kaushik, S., Mojumdar, K., and Sreenivas, V. 2007. Antiretroviral treatment in resource-poor settings: A View from India. Indian J. Med. Sci. 61:390–397.CrossRefGoogle Scholar
  42. WHO 2001. WHO Global strategy for containment of antimicrobial resistance. Geneva, Switzerland: World Health Organization.Google Scholar
  43. Weller I (2007). Delivery of antiretroviral therapy in Sub-Saharan Africa. Clin. Infect Dis. 43: 777–778.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carlos Franco-Paredes
    • 1
  • Jose Ignacio Santos-Preciado
    • 2
  1. 1.Hospital Infantil de México, Federico Gómez, México, DF, México; Emory University School of MedicineAtlantaUSA
  2. 2.Facultad de Medicina, Departmento de Medicina ExperimentalUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations