Advertisement

Mechanisms of Antimicrobial Resistance

  • Denis K. Byarugaba
Chapter

Abstract

There is no doubt that antimicrobial agents have saved the human race from a lot of suffering due to infectious disease burden. Without antimicrobial agents, millions of people would have succumbed to infectious diseases. Man has survived the accidental wrath of microorganisms using antimicrobial agents and other mechanisms that keep them at bay. Hardly years after the discovery and use of the first antibiotics was observation made of organisms that still survived the effects of the antimicrobial agents. That was the beginning of the suspicion that different microorganisms were getting a way around previously harmful agents that is known today as antimicrobial resistance. Microbial resistance to antimicrobial agents was not a new phenomenon for it had been constantly used as competitive/survival mechanisms by microorganisms against others. These mechanisms have been well documented. This chapter therefore gives a brief overview of the mechanisms of resistance by bacteria against antimicrobial agents, and the mechanisms, levels, and patterns of resistance to the different microorganisms in developing countries are dealt with in detail elsewhere in the book. Understanding the mechanisms of resistance is important in order to define better ways to keep existing agents useful for a little longer but also to help in the design of better antimicrobial agents that are not affected by the currently known, predicted, or unknown mechanisms of resistance.

Keywords

Antimicrobial Agent Ribosome Protection Acquire Resistance Mechanism Ribosome Protection Protein DHFR Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aarestrup, F. M., Seyfarth, A. M., Emborg, H. D., Pedersen, K., Hendriksen, R. S., and Bager, F. 2001. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45: 2054–2059.CrossRefPubMedGoogle Scholar
  2. Bush, K., Jacoby, G. A., and Medeiros A. A. 1995. A functional classification scheme for beta lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother 39(6): 1211–1233.Google Scholar
  3. Butaye, P., Cloeckaert, A., and Schwarz, S. 2003. Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents 22: 205–210.CrossRefPubMedGoogle Scholar
  4. Byarugaba, D. K. 2004. A view on antmicrobial resistance in developing countries and responsible risk factors. Int. J. Antimicrob. Agents 24: 105–110.CrossRefPubMedGoogle Scholar
  5. Byarugaba, D. K. (2005). Antimicrobial resistance and its containment in developing countries. In Antibiotic Policies: Theory and Practice, ed. I. Gould and V. Meer, pp 617–646. New York: Springer.CrossRefGoogle Scholar
  6. Dessen, A., Di Guilmi, A. M., Vernet, T., and Dideberg, O. 2001. Molecular mechanisms of antibiotic resistance in gram-positive pathogens. Curr. Drug Targets Infect. Dis.. 1:63–77CrossRefGoogle Scholar
  7. Enne, V. I., Livermore, D. M., Stephens, P., and Hall, L. M. C. 2001. Persistence of sulfonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357:1325–1328CrossRefPubMedGoogle Scholar
  8. Everett, M. J. and L. J. V. Piddock. 1998. Mechanisms of resistance to fluoroquinolones. In Quinolone Antibacterials ed. J. Kuhlmann, A. Dahlhoff, and H. J. Zeiler pp. 259–297. Berlin:Springer-Verlag KG.Google Scholar
  9. Fluit, A. C., Visser, M. R., and Schmitz, F. J. 2001. Molecular detection of antimicrobial resistance. Clin. Microbiol. Rev. 14:836–71.CrossRefPubMedGoogle Scholar
  10. Hall, R. M. 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in Gram-negative bacteria. Ciba Found. Symp. 207: 192–205PubMedGoogle Scholar
  11. Hooper, D. C. 1999. Mechanisms of fluoroquinolone resistance. Drug Resist. Updates 2:38–55CrossRefGoogle Scholar
  12. Johnston, N. J., de Azavedo, J. C., Kellner, J. D., and Low, D. E. 1998. Prevalence and characterization of the mechanisms of macrolide, lincosamide and streptogramin resistance in isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 42:2425–2426PubMedGoogle Scholar
  13. Kehrenberg, C., Schulze-Tanzil, G., Martel, J. L., Chaslus-Dancla, E., and Schwarz, S. 2001. Antimicrobial resistance in Pasteurella and Mannheimia: epidemiology and genetic basis. Vet. Res. 32(3–4): 323–339.CrossRefPubMedGoogle Scholar
  14. Leclerq, R. and Courvalin, P.. 1997. Resistance to glycopeptides in enterococci. Clin. Infect. Dis. 24: 545–556Google Scholar
  15. Levy, S. B. 1988. Tetracycline resistance determinants are widespread. ASM News. 54:418–421.Google Scholar
  16. Quintiliani, R. and Courvalin, P. 1995. Mechanisms of resistance to antimicrobial agents, In Manual of Clinical Microbiology, ed P. R. Murray, E. J. Baron, M. A. Pfaller, F. R. Tenover, and R. H. Yolken, pp. 1308–1326. Washington, D.C: ASM Press.Google Scholar
  17. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19:1–24CrossRefPubMedGoogle Scholar
  18. Schmitz, F. J. and Fluit. A. C. 1999. Mechanisms of resistance. In Infectious Diseases. ed D. Armstrong, and S. Cohen, pp. 7.2.1–7.2.14 London: Mosby, Ltd.,Google Scholar
  19. Shaw, K. J., Rather, P. N., Have, R. S., and Miller, G. M. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside modifying enzymes. Microbiol. Rev. 57: 138–163PubMedGoogle Scholar
  20. Taylor, D. E. and Chau, A. 1996. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother. 40: 1–5PubMedGoogle Scholar
  21. Thomson, C. J. 1993. Trimethoprim and brodimoprim resistance of gram-positive and gram-negative bacteria. J. Chemother. 5: 458–464PubMedGoogle Scholar
  22. Traced, P., de Cespédès, G., Bentorcha, F., Delbos, F., Gaspar, E., and Horaud, T. 1993. Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: characterization of a new CAT determinant. Antimicrob. Agents Chemother. 37: 2593–2598Google Scholar
  23. Walsh, C. 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406: 775–781CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary MedicineMakerere UniversityKampalaUganda

Personalised recommendations