Drug Resistance in African Trypanosomiasis



African trypanosomes include the causative agents of sleeping sickness in humans and those affecting live stock. Vaccination being jeopardized by the ever-changing surface coats of bloodstream-form trypanosomes, chemotherapy is the mainstay in the control of infections. However, the drugs in use are old, cause severe side effects, and their efficacy is undermined by the emergence of drug-resistant trypanosomes. Reliable supply of drugs for the human disease is difficult to maintain since patients are unable to meet treatment costs. Fortunately the prospects for the control of trypanosomiasis have improved recently by drug donations from Sanofi-Aventis to the WHO and through support from the Bill and Melinda Gates Foundation. Here we review the current drugs against African trypanosomes, discuss the mechanisms of drug resistance, and address key issues for the control of trypanosomiasis in face of the limited options for chemotherapy.


Human African Trypanosomiasis Sterile Insect Technique Variant Surface Glycoprotein African Trypanosome Diminazene Aceturate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alibu, V.P., Richter C., Voncken, F., Marti, G., Shahi, S., Renggli, C.K., Seebeck, T., Brun, R. and Clayton, C. 2006. The role of Trypanosoma brucei MRPA in melarsoprol susceptibility. Mol. Biochem. Parasitol. 146, 38–44.CrossRefPubMedGoogle Scholar
  2. Aliu, Y.O., Mamman, M. and Peregrine, A.S. 1993. Pharmacokinetics of diminazene in female Boran (Bos indicus) cattle. J. Vet. Pharmacol. Therap. 16, 291–300.CrossRefGoogle Scholar
  3. Arinayagam, M.R., Oza, S.L., Guther, M.L.S. and Fairlamb, A.H. 2005. Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome. Biochem. J. 391, 425–432.CrossRefGoogle Scholar
  4. Armstrong, V.L. and Smith, C.C. 1974. Cyclization and N dealkylation of chloroguanide by rabbit and rat hepatic microsomes. Toxicol. Appl. Pharmacol. 29, 90.Google Scholar
  5. Bacchi, C.J., Nathan, H.C., Hutner, S.H., McCann, P.P., and Sjerdsma, A. 1980. Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210, 332–334.CrossRefPubMedGoogle Scholar
  6. Bales, J.D., Harrison, S.M., Mbwabi, D.L. and Schechter, P.J. 1989. Treatment of arsenical refractory Rhodesian sleeping sickness in Kenya. Ann. Trop. Med. Parasitol. 83, 111–114.PubMedGoogle Scholar
  7. Berberof, M., Perez-Morga, D. and Pays, E. 2001. A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. Mol. Biochem. Parasitol. 113, 127–138.CrossRefPubMedGoogle Scholar
  8. Bernhard, S., Nerima, B., Mäser, P. and Brun, R. 2007. Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance. Int. J.Parasitol. 37, 1443–1448.CrossRefPubMedGoogle Scholar
  9. Bisser S., N’Siesi, F-X., Lejon, V., Preux, P-M., Van Nieuwenhove, S., Miaka, C. and Buscher P. 2007. Equivalence trail of melarsoprol and Nifurtimox monotherapy and combination therapy for the treatment of second stage trypanosome brucei gambiense sleeping sickness. J. Infect. Dis. 195, 322–329.CrossRefPubMedGoogle Scholar
  10. Boid, R., Jones, T.W. and Payne, R.C., 1989. Malic enzyme VII isoenzyme as an indicator of suramin resistance in Trypanosoma evansi. Exp Parasitol. 69, 317–323.CrossRefPubMedGoogle Scholar
  11. Burri, C., Baltz, T., Giroud, C., Doua, F., Welker, H.A. and Brun, R. 1993. Pharmacokinetic properties of the trypanocidal drug melarsoprol. Chemotherapy 39, 225–234.CrossRefPubMedGoogle Scholar
  12. Carter, N.S. and Fairlamb, A.H. 1993. Arsenical resistant trypanosomes lack an unusual adenosine transporter. Nature 361:173–175.CrossRefPubMedGoogle Scholar
  13. Carter, N.S., Berger, B.J. and Fairlamb, A.H. 1995. Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. J. Biol. Chem. 270, 28153–28157.CrossRefPubMedGoogle Scholar
  14. Chitambo, H., Arakawa, A. and Ono, T. 1992. In vivo assessment of drug sensitivity of African trypanosomes using the akinetoplastic induction test. Res. Vet. Sci. 52, 243–249.PubMedGoogle Scholar
  15. Cortàzar, T.M., Coombs, G.H. and Walker, J. 2007. Leishmania panamensis: comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavanoids and pentamidin. Exp. Parasitol. 116, 475–482.CrossRefPubMedGoogle Scholar
  16. Degen R., Pospichal H., Enyaru J. and Jenni L. 1995. Sexual compatibility among Trypanosoma brucei isolates from an epidemic area in south-eastern Uganda. Parasitol. Res. 81, 253–257.PubMedGoogle Scholar
  17. De Gee, A.L.W., McCann, P.P. and Mansfield, J.M. 1983. Role of antibody in the elimination of trypanosomes after DL-α-difluoromethylornithine chemotherapy. J. Parasitol. 69, 818–822.CrossRefPubMedGoogle Scholar
  18. de Koning, H. 2001. Uptake of pentamidine in Trypanosoma brucei is mediated by three distinct transporters: implications for cross-resistance with arsenicals. Mol. Pharmacol. 59, 586–592.PubMedGoogle Scholar
  19. de Koning, H.P., Anderson, L.F., Stewart, M., Burchmore, R.J., Wallace, L.J. and Barrett, M.P. 2004. The trypanocide diminazene aceturate is accumulated predominantly through the TbAT1 purine transporter: additional insights on diamidine resistance in African trypanosomes. Antimicrob. Agents Chemother. 48, 1515–1519.CrossRefPubMedGoogle Scholar
  20. Delespaux, V., Chitanga, S., Geysen, D., Goethals, A.P., Van den Bossche, P. and Geerts, S. 2006. SSCP analysis of the P2 purine transporter TcoAT1 gene of Trypanosoma congolense leads to a simple PCR-RFLP test allowing the rapid identification of diminazene resistant stocks. Acta Trop. 100, 96–102.CrossRefPubMedGoogle Scholar
  21. Dey, S., Papadopoulou, B., Haimeur, A., Roy, G., Grondin, K., Dou, D., Rosen, B.P. and Ouellette, M. 1994. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol. Biochem. Parasitol. 67, 49–57.CrossRefPubMedGoogle Scholar
  22. Diggens, S.M., Gutteridge, W.E. and Trigg, P.I. 1970. An altered dihydrofolate reductase associated with pyrimethamine resistant P. bergei produced in a single step. Nature 228, 579–580.CrossRefPubMedGoogle Scholar
  23. El Rayah, I.E., Kaminsky, R., Schmid, C. and El Malikh, K.H. 1999. Drug resistance in Sudanese Trypanosoma evansi. Vet. Parasitol. 80, 281–287.CrossRefPubMedGoogle Scholar
  24. Fairlamb, A.H. 2003. Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol. 19, 488–494.Google Scholar
  25. Fairlamb, A.H. and Bowman, I.B.R. 1977. Trypanosoma brucei: suramin and other trypanocidal compounds effects on glycerol-3-phosphate oxidase. Exp. Parasitol. 43, 353–361.CrossRefPubMedGoogle Scholar
  26. Fairlamb, A.H. and Bowman, I.B.R. 1980. Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effects on respiration and growth rate in vivo. Mol. Biochem. Parasitol. 1, 315–333.CrossRefPubMedGoogle Scholar
  27. Foote, S.J. and Cowman, A.F. 1994. The mode of action and the mechanism of resistance to antimalarial drugs. Acta Trop. 56, 157–171.CrossRefPubMedGoogle Scholar
  28. Frommel, T.O. and Balber, A.E. 1987. Flow cytofluorimetric analysis of drug accumulation by multidrug-resistant Trypanosoma brucei brucei and T. b. rhodesiense. Mol. Biochem. Parasitol. 26, 183–192.CrossRefPubMedGoogle Scholar
  29. Fulton, J.D. and Grant, P.T. 1955. The preparation of a strain of Trypanosoma rhodesiense resistant to stilbamidine and some observations on its nature. Ann. Trop. Med. Parasitol. 49, 377–387.Google Scholar
  30. Gibson, W., Backhouse, T. and Griffiths, A. 2002. The human serum associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect. Genet. Evol. 1, 207–214.CrossRefPubMedGoogle Scholar
  31. Gibson, W. and Whittington, H. 1993. Genetic exchange in Trypanosoma brucei: selection of hybrid trypanosomes by introduction of genes conferring drug resistance. Mol. Biochem. Parasitol. 60, 19–26.CrossRefPubMedGoogle Scholar
  32. Giraldo, L.E., Acosta, M.C., Labrada, L.A., Praba, A., Montanegro-James, S., Saravia, N.G. and Krogstad, D.J. 1998. Frequency of the asn-108 and Thr-108 point mutations in the dihydrofolate reductase gene in Plasmodium falciparum from southwest Columbia. Am. J. Trop. Med. Hyg. 59, 124–128.PubMedGoogle Scholar
  33. Hawking, F. 1936. The absorption of arsenical compounds and tartar emetic by normal and resistant trypanosomes and its relation to drug-resistance. J. Pharm. Exp. Therap. 59, 123–156.Google Scholar
  34. Hawking, F. 1963a. Drug resistance of Trypanosoma congolense and other trypanosomes to quinapyramine, penanthridines, Berenil and other compounds in mice. Ann. Trop. Med. Parasitol. 57, 262–282.Google Scholar
  35. Hawking, F. 1963b. History of chemotherapy. In Experimental chemotherapy Ed R.J. Schnitzer, and F. Hawking. New York, Academic Press, Vol I, pp. 2–3.Google Scholar
  36. Hesse, F., Sezer, P.M., Mühlstädt, K. and Duszenko, M. 1995. A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Mol. Biochem. Parasitol. 70, 157–166.CrossRefPubMedGoogle Scholar
  37. Hoare, C.A. 1972. The trypanosomes of mammals: a zoological monograph. Oxford: Blackwell.Google Scholar
  38. Iten, M., Matovu, E., Brun, R. and Kaminsky, R. 1995. Innate lack of susceptibility of Ugandan Trypanosoma brucei rhodesiense to DL -α- difluorometylornithine (DFMO). Trop. Med. Parasitol. 46, 190–194.PubMedGoogle Scholar
  39. Iten, M., Mett, H., Evans, A., Enyaru, J.C.K., Brun, R. and Kaminsky R. 1997. Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to DL-a-difluoromethylornithine. Antimicrob. Agents Chemoth. 41, 1922–1925.Google Scholar
  40. Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, W.F., Wells, J.M., Tait, A., Paindavoine., Pays, E. and Steinert, M. 1986. Hybrid formation between African trypanosomes during cyclical transmission. Nature 322, 173–175.CrossRefPubMedGoogle Scholar
  41. Jennings, F.W., Whitelaw, D.D., Chizyuka, H.G.B., Holmes, P.H. and Urquhart, G. 1979. The brain as a source of relapsing Trypanosoma brucei infections in mice after chemotherapy. Int. J. Parasitol. 9, 381–384.CrossRefPubMedGoogle Scholar
  42. Kaminsky, R., Gumm, L.D., Zweygarth, E. and Chuma, F. 1990. A drug incubation infectivity test DIIT for assessing resistance in trypanosomes. Vet. Parasitol. 34, 335–343.CrossRefPubMedGoogle Scholar
  43. Keiser, J., Ericson, O. and Burri, C. 2000. Investigations on the metabolites of the trypanocidal drug melarsoprol. Clin. Pharmacol. Therap. 67, 478–488.CrossRefGoogle Scholar
  44. Kinabo, L.D.B. and Bogan, J.A. 1988. Pharmacokinetic and histopathological investigations of isometamidium in cattle. Res. Vet. Sci. 44, 267–269.PubMedGoogle Scholar
  45. Kinabo, L.D.B, McKellar, Q.A., and Eckersall, P.D. 1991. Isometamidium in pigs: disposition kinetics, tissue residues and adverse reactions. Res. Vet. Sci. 50, 6–13.PubMedGoogle Scholar
  46. Kuzoe, F.A.S. 1993. Current situation of African trypanosomiasis. Acta Trop. 54, 153–162.CrossRefPubMedGoogle Scholar
  47. Lanteri, C., Stewart, M., Brock, J., Alibu, V., Meshnick, S., Tidwell, R. and Barrett, M. 2006. Roles for the Trypanosoma brucei P2 transporter in DB75 uptake and resistance. Mol. Pharmacol. 70, 1585–1592.CrossRefPubMedGoogle Scholar
  48. Lanteri, C.A., Trumpower, B.L., Tidwell, R.R. and Meshnick, S.R. 2004. DB75, a novel trypanocidalagent disrupts mitochondrial function in Saccharomyces cerevisiae. Antimicrob. Agents Chemoth. 48, 3968–3974.CrossRefGoogle Scholar
  49. Legros, D., Evans, S., Maiso, F., Enyaru, J.C.K. and Mbulamberi, D. 1999. Risk factors for treatment failure after melarsoprol for Trypanosoma brucei gambiense trypanosomiasis in Uganda. Trans. R. Soc. Trop. Med. Parasitol. 93, 439–442.CrossRefGoogle Scholar
  50. Lester, H.M.O. 1939. Certain aspects of trypanosomiasis in some African independencies. Trans. R. Soc. Trop. Med. Hyg. 33, 11–36.CrossRefGoogle Scholar
  51. Luckins, A.G., Boid, R., Rae, P., Mahmoud, M.M., Malik, K.H. and Gray, A.R. 1979. Serodiagnosis of infection with T. evansi in camels in Sudan. Trop. Anim. Health Prod. 11, 1–12.CrossRefPubMedGoogle Scholar
  52. Lüscher, A., Nerima, B. and Mäser, P. 2006. Combined contribution of TbAT1 and TbMRPA to drug resistance in Trypanosoma brucei. Mol. Biochem. Parasitol. 150, 364–366.CrossRefPubMedGoogle Scholar
  53. MacAdam, R.F. and Williamson, J. 1972. Drug effects on the fine structure of Trypanosoma rhodesiense: diamidines. Trans. R. Soc. Trop. Med. Hyg. 66, 897–904.CrossRefPubMedGoogle Scholar
  54. Mamman, M. and Peregrine, A.S. 1994. Pharmacokinetics of diminazene in plasma and cerebrospinal fluid of goats. Res. Vet. Sci. 57, 253–255.PubMedGoogle Scholar
  55. Maina, N., Maina, K., Mäser, P. and Brun, R. 2007. Genotypic and phenotypic characterization of Trypanosoma brucei gambiense isolates from Ibba, South Sudan, an area of high melarsoprol treatment failure rate. Acta Trop. 104, 84–90.CrossRefPubMedGoogle Scholar
  56. Mäser, P., Sütterlin, C., Kralli, A. and Kaminsky, R. 1999. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 285, 242–244.CrossRefPubMedGoogle Scholar
  57. Mäser, P. and Kaminsky, R. 1998. Identification of three ABC transporter genes in Trypanosoma brucei spp. Parasitol. Res. 84, 106–111.Google Scholar
  58. Mäser, P., Lüscher, A. and Kaminsky, R. 2003. Drug transport and drug resistance in African trypanosomes. Drug Resist. Update 6, 281–290.CrossRefGoogle Scholar
  59. Matovu, E., Iten, M., Enyaru, J.C.K., Schmid, C., Lubega, G.W., Brun, R. and Kaminsky, R. 1997. Susceptibility of Ugandan Trypanosoma brucei rhodesiense isolated from man and animal reservoirs to diminazene, isometamidium and melarsoprol. Trop. Med. Int. Health 2, 13–18.CrossRefPubMedGoogle Scholar
  60. Matovu, E., Geiser, F., Schneider, V., Mäser, P., Enyaru, J.C.K., Kaminsky, R., Gallati, S. and Seebeck, T. 2001. Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy. Mol. Biochem. Parasitol. 117, 73–81.CrossRefPubMedGoogle Scholar
  61. Matovu, E., Stewart, M.L., Geiser, F., Brun, R., Mäser, P., Wallace, L.J., Burchmore, R.J., Enyaru, J.C., Barrett, M.P., Kaminsky, R., Seebeck, T. and de Koning, H.P. 2003. The mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Euk. Cell. 2, 1003–1008.CrossRefGoogle Scholar
  62. Molyneux, D.H. and Ashford, R.W. 1983. The biology of Trypanosoma and Leishmania, Parasites of man and domestic animals. Taylor & Fransis, London.Google Scholar
  63. Mulligan, H.W. (ed) 1970. The African trypanosomiases. London: George Allen & Unwin.Google Scholar
  64. Nerima, B., Matovu, E., Lubega, G. and Enyaru, J. 2007. Detection of mutant P2 adenosine transporter TbAT1) gene in Trypanosoma brucei gambiense isolates from northwest Uganda using allele-specific polymerase chain reaction. Trop. Med Int. Health 12, 1361–1368.CrossRefPubMedGoogle Scholar
  65. Okoth, J.O., Kirumira, E.K. and Kapaata, R. 1991. A new approach to community participation in tsetse control in the Busoga Sleeping sickness focus, Uganda. A preliminary report. Ann. Trop. Med. Parasitol. 85, 315–322.PubMedGoogle Scholar
  66. Ouellette, M. and Papadopoulou, B. 1993. Mechanisms of drug resistance in Leishmania. Parasitol. Today 9, 150–153.CrossRefPubMedGoogle Scholar
  67. Ouellette, M., Fase-Fowler, F. and Borst, P. 1990. The amplified H-circle of methotrexate-resistant Leishmania tarentolae contains a novel P-glycoprotein. EMBO J. 9, 1027–1033.PubMedGoogle Scholar
  68. Ouellette, M., Hettema, E., Wust, D., Fase-Fowler, F. and Borst, P. 1991. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 10, 1009–1016.PubMedGoogle Scholar
  69. Overath, P., Chaudri, M., Steverdig, D. and Ziegelbauer, K. 1994. Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitol. Today 10, 53–58.Google Scholar
  70. Pepin, J. and Milord, F. 1991. African trypanosomiasis and drug-induced encephalopathy; risk factors and pathogenesis. Trans. R. Soc. Trop. Med. Hyg. 85, 222–224.CrossRefPubMedGoogle Scholar
  71. Pepin, J. and Milord, F. 1994. The treatment of human African trypanosomiasis. Adv. Parasitol. 33, 1–47.CrossRefPubMedGoogle Scholar
  72. Radwanska, M., Claes, F., Magez, S., Magnus, E., Perez-Morga, D., Pays, E. and Büscher, P. 2002a. Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. Am. J. Trop. Med. Hyg. 67, 289–295.Google Scholar
  73. Radwanska, M., Chamekh, M., Vanhamme, L., Claes, F., Magez, S., Magnus, E., de Baetselier, P., Büscher, P. and Pays, E. 2002b. The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am. J. Trop. Med. Hyg. 67, 684–690.Google Scholar
  74. Reeder, J.C., Riekmann, K.H., Genton, B., Lorry, K., Wines, B. and Cowman, A.F. 1996. Point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes and in vitro susceptibility to pyrimathamine and cycloguanil of Plasmodium falciparum isolates from Papua New Guinea. Am. J. Trop. Med. Hyg. 55, 209–213.PubMedGoogle Scholar
  75. Schweingruber, M. 2004. The melaminophenyl arsenicals melarsoprol and melarsen oxide interfere with thiamine metabolism in the fission yeast Schizosaccharomyces pombe. Antimicrob. Agents Chemoth. 48, 3268–3271.CrossRefGoogle Scholar
  76. Shahi, S.K., Krauth-Siegel, R.L. and Clayton, C.E. 2002. Over-expression of the putative thiol conjugate transporter TbMRPA causes melarsoprol resistance in Trypanosoma brucei. Mol. Microbiol. 43, 1129–1138.CrossRefPubMedGoogle Scholar
  77. Stoffel, S., Rodenko, B., Schweingruber, A., Mäser, P., de Koning, H. and Schweingruber, M. 2006. Biosynthesis and uptake of thiamine vitamin B1. in bloodstream form Trypanosoma brucei brucei and interference of the vitamin with melarsen oxide activity. Int. J. Parasitol. 36, 229–236.CrossRefPubMedGoogle Scholar
  78. Suswam, E.A., Ross, C.A. and Martin, R.J. 2003. Changes in adenosine transport associated with melanophenyl arsenical (Mel CY. resiatnce in Trypanosoma evansi: down-regulation and affinity changes of the P2 transporter. Parasitology 127, 543–549.CrossRefPubMedGoogle Scholar
  79. Sutherland, I.A., Mounsey, A. and Holmes, P.H. (1992. Transport of isometamidium (Samorin) by drug resistant and drug sensitive Trypanosoma congolense. Parasitology 104, 461–467.CrossRefPubMedGoogle Scholar
  80. Sutherland, I.A. and Holmes, P.H. 1993. Alterations in drug transport in resistant Trypanosoma congolense, Acta Trop. 54, 271–278.CrossRefPubMedGoogle Scholar
  81. Szyniarowski, P., Bettendorff, L. and Schweingruber, M. 2006. The anti-trypanosomal drug melarsoprol competitively inhibits thiamin uptake in mouse neuroblastoma cells. Cell Biol. Toxicol. 22, 183–187.CrossRefPubMedGoogle Scholar
  82. Turner, M.J. 1985. The biochemistry of the surface antigens of African trypanosomes. Br. Med. Bull. 41, 137–143.PubMedGoogle Scholar
  83. Upcroft, P. 1994. Multiple drug resistance in the pathogenic protozoa. Acta Trop. 56, 195–212.CrossRefPubMedGoogle Scholar
  84. Van Nieuwenhove, S., Schechter, P.J., Declercq, J., Bone, G., Burke, J. and Sjoerdsma, A. 1985. Treatment of gambiense sleeping sickness in the Sudan with Oral DFMO DL-a-difluoromethylornithine), an inhibitor of the ornithine decarboxylase; first field trial. Trans. Roy. Soc. Trop. Med. Hyg. 79, 692–698.CrossRefPubMedGoogle Scholar
  85. Vansterkenburg, E.L.M., Coppens, I., Wilting, J., Bos, O.J.M., Fischer, M.J.E., Janssen, L.H.M. and Opperdoes, F.R. 1993. The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Trop. 54, 237–250.CrossRefPubMedGoogle Scholar
  86. Vickerman, K. 1978. Antigenic variation in trypanosomes. Nature 273, 613–617.CrossRefPubMedGoogle Scholar
  87. Vreysen, M.J. 2001. Principles of area-wide intergrated testse fly control using the sterile insect technique. Med. Trop. (Mars.) 61, 397–411.Google Scholar
  88. Vreysen, M.J., Saleh, K.M., Ali, M.Y., Abdulla, A.M., Zhu, Z.R., Juma, K.G., Dyck, V.A., Msangi, A.R., Mkonyi, P.A. and Feldmann, H.U. 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J. Econ. Entomol. 93, 123–135.CrossRefPubMedGoogle Scholar
  89. Walsh, C., Bradley, M. and Nadeau, K. 1991. Molecular studies on trypanothione reductase, a target for anti-parasitic drugs. TIBS 16, 305–309.PubMedGoogle Scholar
  90. Wang, C.C. 1995. Molecular mechanisms and therapeutic approaches to the treatment of African trypanosomiasis. Ann. Rev. Pharmacol. Toxicol. 35, 93–127.CrossRefGoogle Scholar
  91. Welburn, S.C., Coleman, P.G., Fevre, E., Maudlin, I. 2001. Sleeping sickness: a tale of two diseases. A review focussing on the contrasts between the epidemiology of T.b. rhodesiense and T. b. gambiense. Parasitol. Today 19, 19–24.Google Scholar
  92. WHO. 1986. Epidemiology and control of African trypanosomiasis. Report of a WHO Expert Committee, WHO, Geneva. Technical Report Series 739, pp.7.Google Scholar
  93. Wilson, K., Berens, R.L., Sifri, C.D. and Ullman, B. 1994. Amplification of the inosinate dehydrogenase gene in Trypanosoma brucei gambiense due to an increase in chromosome copy number. J. Biol. Chem. 269, 28979–28987.PubMedGoogle Scholar
  94. Witola, W.H., Inoue, N., Ohasi, K. and Onuma, M. 2004. RNA-interference silencing of the adenosine transporter gene in Trypanosoma evansi confers resistance to diminazene aceturate. Exp. Parasitol. 107, 47–57.CrossRefPubMedGoogle Scholar
  95. Xong, H.V., Vanhamme, L., Chamekh, M., Chimfwembe, C.E., Van Den Abbele, J., Pays, A., Van Meirvenne, N., Hamers, R., De Baetselier, P. and Pays E. 1998. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell, 95, 839–846.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Veterinary Parasitology and Microbiology, Faculty of Veterinary MedicineMakerere UniversityKampalaUganda
  2. 2.University of Bern, Institute of Cell BiologyBernSwitzerland

Personalised recommendations