Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions

  • Michael V. Bell
  • Douglas R. Tocher


It is now well established that the long-chain, omega-3 (ω3 or n-3) polyunsaturated fatty acids (PUFA) are vitally important in human nutrition, reflecting their particular roles in critical physiological processes (see Chap. 14). In comparison to terrestrial ecosystems, marine or freshwater ecosystems are characterised by relatively high levels of long-chain n-3PUFA and, indeed, fish are the most important source of these vital nutrients in the human food basket. Virtually all PUFA originate from primary producers but can be modified as they pass up the food chain. This is generally termed trophic upgrading, and various aspects of these phenomena have been described in Chaps. 2, 6 and 7 (this volume). However, while qualitative aspects of essential fatty acid production and requirements in aquatic ecosystems are relatively well understood, in order to fully understand and model ecosystems, quantitative information is needed on synthesis and turnover rates of n-3PUFA at different trophic levels in the food web. The present chapter describes the biochemistry and molecular biology involved in the various pathways of PUFA biosynthesis and interconversions in aquatic ecosystems.


Atlantic Salmon Highly Unsaturated Fatty Acid Desaturase Gene Ethylenic Bond Enoyl Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbadi, A., Domergue, F., Bauer, J., Napier, J.A., Welti, R., Zahringer, U., Cirpus, P., and Heinz, E. 2004. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell. 16:1–15CrossRefGoogle Scholar
  2. Agaba, M., Tocher, D.R., Dickson, C., Dick, J.R., and Teale, A.J. 2004. A zebrafish cDNA encoding a multifunctional enzyme involved in the elongation of polyunsaturated, monounsaturated and saturated fatty acids. Mar. Biotechnol. 6:251–261PubMedCrossRefGoogle Scholar
  3. Agaba, M.K., Tocher, D.R., Dickson, C.A., Zheng, X., Dick, J.R., and Teale, A.J. 2005. Cloning and functional characterisation of polyunsaturated fatty acid elongases from marine and freshwater teleost fish. Comp. Biochem. Physiol. 142B:342–352Google Scholar
  4. Aki, T., Shimada, Y., Inagaki, K., Higashimoto, H., Kawamoto, S., Shiget, S., Ono, K., and Suzuki, O. 1999. Molecular cloning and functional characterisation of rat ∆6 fatty acid desaturase. Biochem. Biophys. Res. Commun. 255:575–579PubMedCrossRefGoogle Scholar
  5. Alimuddin, Y.G., Kiron, V., Satoh, S., and Takeuchi, T. 2005. Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon delta-6-desaturase-like gene in zebrafish. Transgenic Res. 14:159–165PubMedCrossRefGoogle Scholar
  6. Arts, M.T., Ackman, R.G., and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137CrossRefGoogle Scholar
  7. Barclay, W.R., Meager, K.M., and Abril, J.R. 1994. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol. 6:123–129CrossRefGoogle Scholar
  8. Beaudoin, F., Michaelson, L.V., Lewis, M.J., Shewry, P.R., Sayanova, O., and Napier, J.A. 2000. Production of C20 polyunsaturated fatty acids (PUFAs) by pathway engineering: identification of a PUFA elongase component from Caenorhabditis elegans. Biochem. Soc. Trans. 28:661–663PubMedCrossRefGoogle Scholar
  9. Bell, M.V., and Dick, J.R. 2004. Changes in capacity to synthesise 22:6n-3 during early development in rainbow trout (Oncorhynchus mykiss). Aquaculture 235:393–409CrossRefGoogle Scholar
  10. Bell, M.V., and Pond, D.W. 1996. Lipid composition during growth of motile and coccolith forms of Emiliania huxleyi. Phytochemistry 41:465–471CrossRefGoogle Scholar
  11. Bell, M.V., Dick, J.R., and Pond, D.W. 1997. Octadecapentaenoic acid in a raphidophyte alga, Heterosigma akashiwo. Phytochemistry 45:303–306CrossRefGoogle Scholar
  12. Bell, M.V., Dick, J.R., and Kelly, M.S. 2001a. Biosynthesis of eicosapentaenoic acid in the sea urchin Psammechinus miliaris. Lipids 36:79–82CrossRefGoogle Scholar
  13. Bell, M.V., Dick, J.R., and Porter, A.E.A. 2001b. Biosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in rainbow trout (Oncorhynchus mykiss). Lipids 36:1153–1159CrossRefGoogle Scholar
  14. Bell, M.V., Dick, J.R., and Porter, A.E.A. 2003a. Pyloric ceca are a major site of 22:6n-3 synthesis in rainbow trout (Oncorhynchus mykiss). Lipids 38:39–44CrossRefGoogle Scholar
  15. Bell, M.V., Dick, J.R., and Porter, A.E.A. 2003b. Tissue deposition of n-3 FA pathway intermediates in the synthesis of DHA in rainbow trout (Oncorhynchus mykiss). Lipids 38:925–931CrossRefGoogle Scholar
  16. Bell, M.V., Dick, J.R., Anderson, T.R., and Pond, D.W. 2007. Application of liposome and stable isotope tracer techniques to study polyunsaturated fatty acid biosynthesis in marine zooplankton. J. Plankton Res. 29:417–422CrossRefGoogle Scholar
  17. Bowman, J.P., Gosink, J.J., McCammon, S.A., Lewis, T.E., Nichols, D.S., Nichols, P.D., Skerratt, J.H., Staley, J.T., and McMeekin, T.A. 1998. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. Bacteriol. 48:1171–1180Google Scholar
  18. Buzzi, M., Henderson, R.J., and Sargent, J.R. 1996. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhyncus mykiss) fed diets containing fish oil or olive oil. Biochim. Biophys. Acta 1299:235–244PubMedGoogle Scholar
  19. Buzzi, M., Henderson, R.J., and Sargent, J.R. 1997. Biosynthesis of docosahexaenoic acid in trout hepatocytes proceeds via 24-carbon intermediates. Comp. Biochem. Physiol. 116:263–267CrossRefGoogle Scholar
  20. Cho, H.P., Nakamura, M.T., and Clarke, S.D. 1999a. Cloning, expression and nutritional regulation of the human ∆6 desaturase. J. Biol. Chem. 274:471–477CrossRefGoogle Scholar
  21. Cho, H.P., Nakamura, M.T., and Clarke, S.D. 1999b. Cloning, expression and nutritional regulation of the human ∆5 desaturase. J. Biol. Chem. 274:37335–37339CrossRefGoogle Scholar
  22. Chu, F.L.E., Lund, E., Soudant, P., and Harvey, E. 2002. De novo arachidonic acid synthesis in Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica. Mol. Biochem. Parasitol. 119:179–190PubMedCrossRefGoogle Scholar
  23. Cripps, C., Blomquist, G.J., and de Renobales, M. 1986. De novo synthesis of linoleic acid in insects. Biochim. Biophys. Acta 876:572–580Google Scholar
  24. D’Andrea, S., Guillou, H., Jan, S., Catheline, D., Thibault, J.-N., Bouriel, M., Rioux, V., and Legrand, P. 2002. The same rat ∆6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem. J. 364:49–55PubMedGoogle Scholar
  25. Dawczynski, C., Schibert, R., and Jahreis, G. 2007. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 103:891–899CrossRefGoogle Scholar
  26. De Antueno, R.J., Knickle, L.C., Smith, H., Elliot, M.L., Allen, S.J., Nwaka, S., and Winther, M.D. 2001. Activity of human ∆5 and ∆6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett. 509:77–80PubMedCrossRefGoogle Scholar
  27. Desvilettes, C., Bourdier, G., and Breton, J.C. 1997. On the occurrence of a possible bioconversion of linolenic acid into docosahexaenoic acid by the copepod Eucyclops serrulatus fed on microalgae. J. Plankton Res. 19:273–278CrossRefGoogle Scholar
  28. Dunstan, G.A., Volkman, J.K., Jeffrey, S.W., and Barrett, S.M. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 161:115–134Google Scholar
  29. Ghioni, C., Tocher, D.R., Bell, M.V., Dick, J.R., and Sargent, J.R. 1999. Low C18 to C20 fatty acid elongase activity and limited conversion of stearidonic acid, 18:4n-3, to eicosapentaenoic acid, 20:5n-3, in a cell line from the turbot, Scophthalmus maximus. Biochim. Biophys. Acta 1437:170–181PubMedGoogle Scholar
  30. Hastings, N., Agaba, M., Tocher, D.R., Leaver, M.J., Dick, J.R., Sargent, J.R., and Teale, A.J. 2001. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc. Natl. Acad. Sci. U.S.A. 98:14304–14309PubMedCrossRefGoogle Scholar
  31. Hastings, N., Agaba, M.K., Tocher, D.R., Zheng, X., Dickson, C.A., Dick, J.R., and Teale, A.J. 2004. Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from α-linolenic acid in Atlantic salmon (Salmo salar). Mar. Biotechnol. 6:463–474PubMedCrossRefGoogle Scholar
  32. Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S., and Metz, J.G. 2006. Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type 1 fatty acid synthase. Lipids 41:739–747PubMedCrossRefGoogle Scholar
  33. Henderson, R.J., and Mackinlay, E.E. 1991. Polyunsaturated fatty acid metabolism in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 30:1781–1787CrossRefGoogle Scholar
  34. Inagaki, K., Aki, T., Fukuda, Y., Kawamoto, S., Shigeta, S., Ono, K., and Suzuki, O. 2002. Identification and expression of a rat fatty acid elongase involved the biosynthesis of C18 fatty acids. Biosci. Biotechnol. Biochem. 66:613–621PubMedCrossRefGoogle Scholar
  35. Johns, R.B., and Perry, G.J. 1977. Lipids of the bacterium Flexibacter polymorphus. Arch. Microbiol. 114: 267–271CrossRefGoogle Scholar
  36. Jordal, A.-E.O., Torstensen, B.E., Tsoi, S., Tocher, D.R., Lall, S.P., and Douglas, S. 2005. Profiling of genes involved in hepatic lipid metabolism in Atlantic salmon (Salmo salar L.) – Effect of dietary rapeseed oil replacement. J. Nutr. 135:2355–2361PubMedGoogle Scholar
  37. Joseph, J.D. 1975. Identification of 3, 6, 9, 12, 15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids 10: 395–403PubMedCrossRefGoogle Scholar
  38. Jøstensen, J.P., and Landfald, B. 1997. High prevalence of polyunsaturated-fatty-acid producing bacteria in Arctic invertebrates. FEMS Microbiol. Lett. 151: 95–101CrossRefGoogle Scholar
  39. Leonard, A.E., Bobik, E.G., Dorado, J., Kroeger, P.E., Chuang, L.-T., Thurmond, J.M., Parker-Barnes, J.M., Das, T., Huang, Y.-S., and Murkerji, P. 2000. Cloning of a human cDNA encoding a novel enzyme involved in the elongation of long chain polyunsaturated fatty acids. Biochem. J. 350:765–770PubMedCrossRefGoogle Scholar
  40. Leonard, A.E., Kelder, B., Bobik, E.G., Chuang, L.-T., Lewis, C.J., Kopchick, J.J., Murkerji, P., and Huang, Y.-S. 2002. Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37:733–740PubMedCrossRefGoogle Scholar
  41. Lubzens, E., Marko, A., and Tietz, A. 1985. De novo synthesis of fatty acids in the rotifer, Brachionus plicatilis. Aquaculture 47: 27–37CrossRefGoogle Scholar
  42. Mansour, M.P., Volkman, J.K., Holdsworth, D.G., Jackson, A.E., and Blackburn, S.I. 1999. Very-long chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 50:541–548CrossRefGoogle Scholar
  43. Metz, J.G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabel, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., and Browse, J. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293PubMedCrossRefGoogle Scholar
  44. Meyer, A., Cirpus, P., Ott, C., Schlecker, R., Zahringer, U., and Heinz, E. 2003. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a ∆4-fatty acyl group desaturase. Biochemistry 42:9779–9788PubMedCrossRefGoogle Scholar
  45. Meyer, A., Kirsch, H., Domergue, F., Abbadi, A., Sperling, P., Bauer, J., Cirpus, P., Zank, T.K., Moreau, H., Roscoe, T.J., Zähringer, U., and Heinz, E. 2004. Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J. Lipid Res. 45:1899–1909PubMedCrossRefGoogle Scholar
  46. Michaelson, L.V., Napier, J.A., Lewis, M., Griffiths, G., Lazarus, C.M., and Stobart, A.K. 1998. Functional identification of a fatty acid ∆5 desaturase gene from Caenorhabditis elegans. FEBS Lett. 439:215–218PubMedCrossRefGoogle Scholar
  47. Mourente, G., Dick, J.R., Bell, J.G., and Tocher, D.R. 2005. Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and oxidation of [1-14C] 18:3n-3 and [1-14C]20:5n-3 in hepatocytes and enterocytes of European sea bass (Dicentrarchus labrax L.). Aquaculture 248:173–186CrossRefGoogle Scholar
  48. Nanton, D.A., and Castell, J.D. 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use in live food for marine fish larvae. Aquaculture 163:251–261CrossRefGoogle Scholar
  49. Napier, J.A., Hey, S.J., Lacey, D.J., and Shewry, P. 1998. Identification of a Caenorhabditis elegans ∆6 fatty acid – desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem. J. 330:611–614PubMedGoogle Scholar
  50. Nelson, J.S. 1994. Fishes of the World. 3rd edition. New York: John WileyGoogle Scholar
  51. Nichols, P.D., Jones, G.J., de Leeuw, J.W., and Johns, R.B. 1984. The fatty acid and sterol composition of two marine dinoflagellates. Phytochemistry 23:1043–1047CrossRefGoogle Scholar
  52. Nichols, P.D., Volkman, J.K., Hallegraeff, G.M., and Blackburn, S.I. 1987. Sterols and fatty acids of the red tide flagellates Heterosigma akashiwo and Chattonella antiqua (Raphidophyceae). Phytochemistry. 26:2537–2541CrossRefGoogle Scholar
  53. O’Hagan, D. 1995. Biosynthesis of fatty acid and polyketide metabolites. Nat Prod Rep. 12:1–32CrossRefGoogle Scholar
  54. Okuyama, H., Kogame, K., and Takeda, S. 1993. Phylogenetic significance of the limited distribution of octadecapentaenoic acid in prymnesiophytes and photosynthetic dinoflagellates. Proc. NIPR Symp. Polar Biol. 6:21–26Google Scholar
  55. Perrière, G., and Gouy, M. 1996. WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie. 78:364–369PubMedCrossRefGoogle Scholar
  56. Pond, D.W., and Harris, R.P. 1996. The lipid composition of the coccolithophore Emiliania huxleyi and its possible ecophysiological significance. J. Mar. Biol. Assoc. U.K. 76:579–594CrossRefGoogle Scholar
  57. Qiu, X., Hong, H.P., and Mackenzie, S.L. 2001. Identification of a ∆4 fatty acid desaturase from Thraustochytrium sp. involved in biosynthesis of docosahexaenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J. Biol. Chem. 276:31561–31566Google Scholar
  58. Robert, S.S., Singh, S.P., Zhou, X.R., Petrie, J.R., Blackburn, S.I., Mansour, P.M., Nichols, P.D., Liu, Q., and Green, A.G. 2005. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct. Plant Biol. 32:473–479CrossRefGoogle Scholar
  59. Russell, N.J., and Nichols, D.S. 1999. Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:765–779CrossRefGoogle Scholar
  60. Sanchez-Machado, D.I., Lopez-Cervantes, J., Lopez-Hernandez, J., and Paseiro-Losada, P. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85:439–444CrossRefGoogle Scholar
  61. Sargent, J.R., Tocher, D.R., and Bell, J.G. 2002. The Lipids, pp. 181–257, In J.E. Halver and R.W. Hardy (eds.), Fish Nutrition, 3rd edition. Academic Press, San DiegoGoogle Scholar
  62. Schlechtriem, C., Arts, M.T., and Zellmer, I.D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids 41:397–400PubMedCrossRefGoogle Scholar
  63. Seiliez, I., Panserat, S., Corraze, G., Kaushik, S., and Bergot, P. 2003. Cloning and nutritional regulation of a Δ6-desaturase-like enzyme in the marine teleost gilthead seabream (Sparus aurata). Comp. Biochem. Physiol. 135B:449–460Google Scholar
  64. Seiliez, I., Panserat, S., Kaushik, S., and Bergot, P. 2001. Cloning, tissue distribution and nutritional regulation of a D6-desaturase-like enzyme in rainbow trout. Comp. Biochem. Physiol. 130B:83–93Google Scholar
  65. Shimizu, Y. 1996. Microalgal metabolites:a new perspective. Annu. Rev. Microbiol. 50:431–465PubMedCrossRefGoogle Scholar
  66. Simopoulos, A.P. 2000. Human requirement for n-3 polyunsaturated fatty acids. Poult. Sci. 79:961–970PubMedGoogle Scholar
  67. Sprecher, H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta 1486:219–231PubMedGoogle Scholar
  68. Tocher, D.R. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fisheries Sci. 11:107–184CrossRefGoogle Scholar
  69. Tocher, D.R., and Ghioni, C. 1999. Fatty acid metabolism in marine fish: low activity of Δ5 desaturation in gilthead sea bream (Sparus aurata) cells. Lipids 34:433–440PubMedCrossRefGoogle Scholar
  70. Tocher, D.R., and Sargent, J.R. 1990. Effect of temperature on the incorporation into phospholipid classes and the metabolism via desaturation and elongation of (n-3) and (n-6) polyunsaturated fatty acids in fish cells in culture. Lipids 25:435–442CrossRefGoogle Scholar
  71. Tocher, D.R., Carr, J., and Sargent, J.R. 1989. Polyunsaturated fatty acid metabolism in cultured cell lines: differential metabolism of (n-3) and (n-6) series acids by cultured cells originating from a freshwater teleost fish and from a marine teleost fish. Comp. Biochem. Physiol. 94B:367–374Google Scholar
  72. Tocher, D.R., Bell, J.G., Dick, J.R., and Sargent, J.R. 1997. Fatty acid desaturation in isolated hepatocytes from Atlantic salmon (Salmo salar): stimulation by dietary borage oil containing γ-linolenic acid. Lipids 32:1237–1247PubMedCrossRefGoogle Scholar
  73. Tocher, D.R., Leaver, M.J., and Hodgson, P.A. 1998. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog. Lipid Res. 37:73–117PubMedCrossRefGoogle Scholar
  74. Tocher, D.R., Bell, J.G., MacGlaughlin, P., McGhee, F., and Dick, J.R. 2001a. Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary vegetable oil. Comp. Biochem. Physiol. 130B:257–270Google Scholar
  75. Tocher, D.R., Agaba, M., Hastings, N., Bell, J.G., Dick, J.R., and Teale, A.J. 2001b. Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis nilotica). Fish Physiol. Biochem. 24:309–320CrossRefGoogle Scholar
  76. Tocher, D.R., Fonseca-Madrigal, J., Bell, J.G., Dick, J.R., Henderson, R.J., and Sargent, J.R. 2002. Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes in Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 26:157–170CrossRefGoogle Scholar
  77. Tocher, D.R., Zheng, X., Schlechtriem, C., Hastings, N., Dick, J.R., and Teale, A.J. (2006). Highly unsaturated fatty acid synthesis in marine fish; cloning, functional characterisation and nutritional regulation of fatty acid ∆6 desaturase Atlantic cod (Gadus morhua L.). Lipids 42:1003–1016CrossRefGoogle Scholar
  78. Tonon, T., Sayanova, O., Michaelson, L.V., Qing, R., Harvey, D., Larson, T.R., Li, Y., Napier, J.A., and Graham, I.A. 2005. Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J. 272:3401–3412PubMedCrossRefGoogle Scholar
  79. Venegas-Calerón, M., Beaudoin, F., Sayanova, O., and Napier, J.A. 2007. Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J. Biol. Chem. 282:2996–3003PubMedCrossRefGoogle Scholar
  80. Volkman, J.K., Smith, D.J., Eglington, G., Forsberg, T.E.V., and Corner, E.D.S. 1981. Sterol and fatty acid composition of four marine haptophycean algae. J. Mar. Biol. Assoc. U.K. 61:509–527CrossRefGoogle Scholar
  81. Watts, J.L., and Browse, J. 1999. Isolation and characterisation of a ∆5 fatty acid desaturase from Caenorhabditis elegans. Arch. Biochem. Biophys. 362:175–182PubMedCrossRefGoogle Scholar
  82. Yano, Y., Nakayama, A., Saito, H., and Ishihara, K. 1994. Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527–528PubMedCrossRefGoogle Scholar
  83. Yazawa, K. 1996. Production of eicosapentaenoic acid from marine bacteria. Lipids 31:S297–S300PubMedCrossRefGoogle Scholar
  84. Zheng, X., Seiliez, I., Hastings, N., Tocher, D.R., Panserat, S., Dickson, C.A., Bergot, P., Teale, A.J. 2004a. Characterisation and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp. Biochem. Physiol. 139B:269–279Google Scholar
  85. Zheng, X., Tocher, D.R., Dickson, C.A., Bell, J.G., and Teale, A.J. 2004b. Effects of diets containing vegetable oil on expression of genes involved in polyunsaturated fatty acid biosynthesis in liver of Atlantic salmon (Salmo salar). Aquaculture 236:467–483CrossRefGoogle Scholar
  86. Zheng, X., Tocher, D.R., Dickson, C.A., Dick, J.R., Bell, J.G., and Teale, A.J. 2005a. Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterisation of a ∆6 desaturase of Atlantic salmon. Lipids 40:13–24CrossRefGoogle Scholar
  87. Zheng, X., Torstensen, B.E., Tocher, D.R., Dick, J.R., Henderson, R.J., and Bell, J.G. 2005b. Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochim. Biophys. Acta 1734:13–24Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of AquacultureUniversity of StirlingStirlingUK

Personalised recommendations