Skip to main content

Fatty Acid Ratios in Freshwater Fish, Zooplankton and Zoobenthos – Are There Specific Optima?

  • Chapter
  • First Online:

Abstract

Two groups of polyunsaturated fatty acids (PUFA), termed omega-3 and omega-6 in food (or here as n-3 and n-6 PUFA, respectively), are essential for all vertebrates and probably also for nearly all invertebrates. The absolute concentrations of the different PUFA are important, as is an appropriate balance between the two. The optimal ratio of n-3/n-6 is not known for most organisms but is anticipated to be more or less species-specific (Sargent et al. 1995). The three most important PUFA in vertebrates are eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6). Both EPA and ARA are precursors for biologically active eicosanoids that are vital components of cell membranes and play many dynamic roles in mediating and controlling a wide array of cellular activities (Crawford et al. 1989; Harrison 1990; Henderson et al. 1996; see Chap. 9). Since n-3 and n-6 PUFA cannot be synthesized de novo by most metazoans, they must be included in the diet, either as EPA, DHA and ARA, or as their precursors, such as α-linolenic acid (ALA, 18:3n-3, precursor of EPA and DHA) and linoleic acid (LIN, 18:2n-6, precursor of ARA) (Bell et al. 1986; Sargent et al. 1995). Both ALA and LIN are produced in the thylacoid membranes of algae and plants with chlorophyll (Sargent at al. 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrusán, G., Fink, P., and Lampert, W. 2007. Biochemical limitation of resting egg production in Daphnia. Limnol. Oecanogr. 52:1724–1724

    Article  Google Scholar 

  • Acharya, K., Jack, J. D., and Bukaveckas, P. 2005. Dietary effects on life history traits of riverine Bosmina. Freshw. Biol. 50:965–975

    Article  CAS  Google Scholar 

  • Ackefors, A., Castell, J., and Örde-Öström, I.-L. 1997. Preliminary results on the fatty acid composition of freshwater crayfish, Astacus astacus and Pacifastacus leniusculus, held in captivity. J. World Aquac. Soc. 28:97–105

    Article  Google Scholar 

  • Ahlgren, G., Lundstedt, L., Brett, M., and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818

    Article  CAS  Google Scholar 

  • Ahlgren, G., Gustafsson, I.-B., and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50

    Article  CAS  Google Scholar 

  • Ahlgren, G., Blomqvist, P., Boberg, M., and Gustafsson, I. B. 1994. Fatty acid content of the dorsal muscle – an indicator of fat quality in freshwater fish. J. Fish Biol. 45:131–157

    CAS  Google Scholar 

  • Ahlgren, G., Sonesten, L., Boberg, M., and Gustafsson, I. B. 1996. Fatty acid content of some freshwater fish in lakes of different trophic levels – a bottom-up effect? Ecol. Freshw. Fish 5:15–27

    Article  Google Scholar 

  • Ahlgren, G., Carlstein, M., and Gustafsson, I.-B. 1999. Effects of natural and commercial diets on the fatty acid content of European grayling. J. Fish Biol. 55:1142–1155

    Article  CAS  Google Scholar 

  • Ahlgren, G., Hyenstrand, P., Vrede, T., Karlsson, E., and Zetterberg, S. 2000. Nutritional quality of Scenedesmus quadricauda (Chlorophyceae) grown in different nitrogen regimes and tested on Daphnia. Verh. Internat. Verein. Limnol. 27:1234–1238

    CAS  Google Scholar 

  • Ahlgren, G., Van Nieuwerburgh, L., Wänstrand, I., Pedersén, M., Boberg, M., and Snoeijs, P. 2005. Imbalance of fatty acids in the base of the Baltic Sea food web – a mesocosm study. Can. J. Fish. Aquat. Sci. 62:2240–2253

    Article  CAS  Google Scholar 

  • Arts, M. T., Ackman, R. G., and Holub, B. J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137

    Article  CAS  Google Scholar 

  • Becker, C., and Boersma, M. 2005. Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnol. Oceanogr. 50:388–397

    Article  CAS  Google Scholar 

  • Bell, M. V., Henderson, R. J., and Sargent, J. R. 1986. Minireview. The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. 83B:711–719

    CAS  Google Scholar 

  • Bell, J. G., Ghioni, C., and Sargent, J. R. 1994. Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar); a comparison with commercial diets. Aquaculture 128:301–313

    Article  CAS  Google Scholar 

  • Bell, M. V., Dick, J. R., Thrush, M., and Navarro, J. C. 1996. Decreased 20:4n–6/20:5n–3 ratio in sperm from cultured sea bass, Dicentrarchus labrax, broodstock compared with wild fish. Aquaculture 144:189–199

    Article  CAS  Google Scholar 

  • Bjarnov, N. 1972. Carbohydrases in Chirononmus, Gammarus and some trichopteran larvae. Oikos 23:261–263

    Article  CAS  Google Scholar 

  • Boersma, M. 2000. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr. 45:1157–1161

    Article  CAS  Google Scholar 

  • Brett, M. T., and Müller-Navarra, D. C. 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw. Biol. 38:483–499

    Article  CAS  Google Scholar 

  • Brett, M. T., Müller-Navarra, D. C., Ballantyne, A. P., Ravet, J. L., and Goldman, C. R. 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51:2428–2437

    Article  CAS  Google Scholar 

  • Broadhurst, C. L., Cunnane, S. C., and Crawford, M. A. 1998. Rift valley lake fish and shellfish provided brain-specific nutrition for early Homo (review article). Br. J. Nutr. 79:3–21

    Article  PubMed  CAS  Google Scholar 

  • Castell, J. D., Bell, J. G., Tocher, D. R., and Sargent, J. R. 1994. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scrophthalmus maximus). Aquaculture 128:315–333

    Article  CAS  Google Scholar 

  • Copeman, L. A., Parrish, C. C., Brown, J. A., and Harel, M. 2002. Effects of docosahexaenoic, ecosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210:285–304

    Article  CAS  Google Scholar 

  • Crawford, M., and Marsh, D. 1989. The Driving Force. Heinemann, London

    Google Scholar 

  • Crawford, M. A., Casperd, N. M., and Sinclair, A. J. 1976. The long chain metabolites of linoleic and linolenic acids in liver and brain in herbivores and carnivores. Comp. Biochem. Physiol. 54B:395–401

    Google Scholar 

  • Crawford, M. A., Doyle, W., Williams, G., and Drury, P. J. 1989. The role of fats and EFAs for energy and cell structures in the growth of fetus and neonates, pp. 81–115. In A. J. Vergroesen, and M. Crawford [eds.], The role of fats in human nutrition. Academic Press, London

    Google Scholar 

  • Crawford, M. A., Bloom, M., Broadhurst, C. L., Schmidt, W. F., Cunnane, S. C., Galli, C., Gehbremeskel, K., Linseisen, F., Lloyd-Smith, L., and Parkinton, J. 1999. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34:S39–S47

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J. 2006. Functional feeding groups of benthic macro-invertebrates in Swedish lakes and streams and the importance of spatial scale. MSc-thesis. Swedish University of Agricultural Sciences, Department of Environmental Assessment, Report 1999:4

    Google Scholar 

  • Dalsgaard, J., StJohn, M., Kattner, G., Müller-Navarra, D., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–246

    Article  PubMed  Google Scholar 

  • De Lange, H. J., and Van Donk, E. 1997. Effects of UVB-irradiated algae on life history traits of Daphnia pulex. Freshw. Biol. 38:711–720

    Article  Google Scholar 

  • DeMott, W. R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69:334–340

    Article  Google Scholar 

  • DeMott, W. R., and Müller-Navarra, D. C. 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshw. Biol. 38:649–664

    Article  CAS  Google Scholar 

  • Elendt, B. -P. 1990. Nutritional quality of a microencapsulated diet for Daphnia magna. Effects on reproduction, fatty acid composition, a midgut ultrastructure. Arch. Hydrobiol. 118:461–475

    CAS  Google Scholar 

  • Gardner, W. S., Quigley, M. A., Fahnenstiel, G. L., Scavia, D., and Frez, W. A. 1990. Pontoporeia hoyi – a direct trophic link between spring diatoms and fish in Lake Michigan, pp. 632–644. In M. M. Tiller, and C. Serruya [eds.], Large lakes – ecological structure and function. Springer, New York

    Google Scholar 

  • Goedkoop, W., Sonesten, L., Markensten, H., and Ahlgren, G. 2000. Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. Can. J. Fish. Aquat. Sci. 57:2267–2279

    Article  CAS  Google Scholar 

  • Goedkoop, W., Demandt, M., and Ahlgren, G. 2007. Interactions between food quantity and quality (long-chain PUFA concentrations) effects on growth and development of the midge Chironomus riparius Meigen. Can. J. Fish. Aquat. Sci. 64:425–436

    Article  CAS  Google Scholar 

  • Harrison, K. E. 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J. Shellfish Res. 9:1–28

    Google Scholar 

  • Henderson, R. J., Tillmanns, M. M., and Sargent, J. R. 1996. The lipid composition of two species of Serasalmid fish in relation to dietary polyunsaturated fatty acids. J. Fish Biol. 48:522–538

    Article  CAS  Google Scholar 

  • Hessen, D. O., and Leu, E. 2006. Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshw. Biol. 51:1987–1998

    Article  CAS  Google Scholar 

  • Higgs, D. A., Macdonald, J. S., Levings, C. D., and Dosanjh, B. S. 1995. Nutrition and feeding habits in relation to life history stage, pp. 200–280. In C. Groot, L. Margolis, and W. C. Clarke [eds.], Physiological ecology of pacific salmon. UBC Press, Vancouver

    Google Scholar 

  • Kainz, M., Arts, M. T., and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793

    Article  CAS  Google Scholar 

  • Kainz, M., Telmer, K., and Mazumder, A. 2006. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish. Sci. Total Environ. 368:271–282

    Article  PubMed  CAS  Google Scholar 

  • Koussoroplis, A. M., Lemarchand, C., Bec, A., Desvilettes, C., Amblard, C., Fournier, C., Berny, P., and Bourdier, G. 2008. From aquatic to terrestrial food webs: decrease of the docosahexaenoic acid/linoleic acid ratio. Lipids 43:461–466

    Article  PubMed  CAS  Google Scholar 

  • Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., Behrens, P., and Tandler, A. 2001. The effect of dietary arachidonic acid (20:4n–6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193:107–122

    Article  CAS  Google Scholar 

  • Lürling, M., and Van Donk, E. 1997. Life history consequences for Daphnia pulex feeding on nutrient-limited phytoplankton. Freshw. Biol. 38:693–709

    Article  Google Scholar 

  • Maazouzi, C., Masson, G., Izquierdo, M. S., and Pihan, J. C. 2007. Fatty acid composition of the amphipod invader Dikerogammarus villosus: feeding strategies and feeding strategies and trophic links. Comp. Biochem. Physiol. A 147:868–875

    Article  Google Scholar 

  • Makhutova, O., Kalachova, G. S., and Gladyshev, M. I. 2003. A comparison of the fatty acid composition of Gammarus lacustris and its food sources from a freshwater reservoir, Bugach, and the saline Lake Shira in Siberia, Russia. Aquat. Ecol. 37:159–167

    Article  CAS  Google Scholar 

  • Milke, L. M., Bricelj, V. M., and Parrish, C. C. 2006. Comparison of early history stages of the bay scallop, Argopecten irradians: effects of microalgal diets on growth and biochemical composition. Aquaculture 260:272–289

    Article  CAS  Google Scholar 

  • Müller-Navarra, D. C. 2006. The nutritional importance of polyunsaturated fatty acids and their use as trophic markers for herbivorous zooplankton: does it contradict? Arch. Hydrobiol. 167:501–513

    Article  Google Scholar 

  • Navas, J. M., Thrush, M. A., Ramos, J., Zanuy, S., Carrillo, M., and Bromage, N. 1993. Calidad de puesta y niveles plasmaticos de vitelogenina en reproductores de lubina (Dicentrarchus labrax) mantenidos con diferentes dietas. Actas IV Congreso Nac. Acuicult. 19–24.

    Google Scholar 

  • Olsen, Y. 1999. Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture, pp. 161–202. In M. T. Arts, and B. C. Wainman [eds.], Lipids in freshwater ecosystems. Springer, New York

    Google Scholar 

  • Otwell, W. S., and Richards, W. L. 1981/1982. Cultured and wild American eels, Anguilla rostrata: fat content and fatty acid composition. Aquaculture 26:67–76

    Article  CAS  Google Scholar 

  • Parrish, C. C., Whiticar, M., and Puvanendran, V. 2007. Is ω6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna? Limnol. Oceanogr. 52:476–479

    CAS  Google Scholar 

  • Persson, J., and Vrede, T. 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw. Biol. 51:887–900

    Article  CAS  Google Scholar 

  • Pickova, J., Kiessling, A., Pettersson, A., and Dutta, P. C. 1999. Fatty acid and carotenoid composition of eggs from two nonanadromous Atlantic salmon stocks of cultured and wild origin. Fish Physiol. Biochem. 21:147–156

    Article  CAS  Google Scholar 

  • Ravet, J. L., Brett, M. T., and Müller-Navarra, D. C. 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol. Oceanogr. 48:1938–1947

    Article  CAS  Google Scholar 

  • Ravet, J. L., and Brett, M. T. 2006. Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction. Limnol. Oceanogr. 51:2438–2452

    Google Scholar 

  • Repka, S. 1997. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria. Freshw. Biol. 37:675–683

    Article  Google Scholar 

  • Sargent, J. R. 1995. Origins and functions of egg lipids: nutritional implications, pp. 353–372. In N. R. Bromage, and R. J. Robert [eds.], Brood stock managements and egg and larval quality. Blackwell Science, Cambridge

    Google Scholar 

  • Sargent, J. R., Parkes, R. J., Mueller-Harvey, I., and Henderson, R. J. 1987. Lipid markers in marine ecology, pp. 119–138. In M. A. Sleigh [ed.], Microbes in the sea. Ellis Horwood Ltd, Chichester

    Google Scholar 

  • Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., and Tocher, D. R. 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 11:183–198

    Article  CAS  Google Scholar 

  • Sargent, J. R., McEvoy, L. A., and Bell, J. G. 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155:117–127

    Article  CAS  Google Scholar 

  • Sargent, J. R., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., and Tocher, D. 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229

    Article  CAS  Google Scholar 

  • Schlechtriem, C., Arts, M. T., and Johannsson, O. E. 2008. Effect of long-term fasting on the use of fatty acids as trophic markers in the opossum shrimp Mysis relicta. A laboratory study. J. Great Lakes Res. 34:143–152

    Article  Google Scholar 

  • Stanley-Samuelson, D. W. 1994. Prostaglandins and related eicosanoids in insects. Adv. Insect Physiol. 24:115–212

    Article  CAS  Google Scholar 

  • Sushchik, N. N., Gladyshev, M. I., Moskvichova, A. V., Makhutova, O. N., and Kalachova, G. S. 2003. Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei River. Comp. Biochem. Physiol. B 134:111–122

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S. N. 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp. Biochem. Physiol. 45B:467–482

    Google Scholar 

  • Thrush, M., Navas, J. M. Ramos, J., Bromage, N., Carrillo, M., and Zanuy, S. 1993. The effect of artificial diets on lipid class and total fatty acid composition on cultured sea bass (Dicentrarchus labrax) eggs. Actas IV Congreso Nac. Acuicult. 37–42.

    Google Scholar 

  • Torres-Ruiz, M., Wehr, J. D., and Perrone, A. A. 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J. N. Am. Benthol. Soc. 26:509–522.

    Google Scholar 

  • Vanderploeg, H. A., Liebig, J. R., and Gluck, A. A. 1996. Evaluation of different phytoplankton for supporting development of zebra mussel larvae (Dreissena polymorpha): the importance of size and polyunsaturated fatty acid content. J. Great Lakes Res. 22:36–45

    Article  CAS  Google Scholar 

  • Van Vliet, T., and Katan, M. B. 1990. Lower ratio of n-3 to n-6 fatty acids in cultured than in wild fish. Am. J. Clin. Nutr. 51:1–2

    PubMed  CAS  Google Scholar 

  • Von Elert, E. 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr. 47:1764–1773

    Article  CAS  Google Scholar 

  • Von Elert, E., and Stampfl, P. 2000. Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids. Freshw. Biol. 45:189–200

    Article  CAS  Google Scholar 

  • Von Elert, E., and Wolffrom, T. 2001. Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia. Limnol. Oceanogr. 46:1552–1558

    Article  CAS  Google Scholar 

  • Von Elert, E., Martin-Creuzburg, D., and Le Coz, J. R. 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. Roy. Soc. B – Biol. Sci. 270:1209–1214

    Article  CAS  Google Scholar 

  • Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. 1991. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 266:19995–20000

    PubMed  CAS  Google Scholar 

  • Wacker, A., and Von Elert, E. 2004. Food quality controls egg quality of the zebra mussel Dreissena polymorpha: the role of fatty acids. Limnol. Oceanogr. 49:1794–1801

    Article  CAS  Google Scholar 

  • Wacker, A., Becher, P., and Von Elert, E. 2002. Food quality effects of unsaturated fatty acids on larvae of the mussel Deissena polymorpha. Limnol. Oceanogr. 47:1242–1248

    Article  Google Scholar 

  • Weers, P. M. M., and Gulati, R. D. 1997a. Effect of addition of polyunsaturated fatty acids to the diet on the growth and fecundity of Daphnia galeata. Freshw. Biol. 38:721–729

    Article  CAS  Google Scholar 

  • Weers, P. M. M., and Gulati, R. D. 1997b. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Clamydomonas reinhardtii. Limnol. Oceanogr. 42:1584–1589

    Article  CAS  Google Scholar 

  • Weissburg, M. J., Doall, M. H., and Yen, J. 1998. Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis. Proc. Roy. Soc. B – Biol. Sci. 353:701–712

    Article  CAS  Google Scholar 

  • Xu, X., Ji, W., Castell, J. D., and O’Dor, R. 1993. The nutritional value of dietary n-3 and n-6 fatty acids for the Chinese prawn (Panaeus chinensis). Aquaculture 118:277–285

    Article  CAS  Google Scholar 

  • Yang, X., and Dick, T. A. 1994. Arctic char (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss) differ in their growth and lipid metabolism in response to dietary polyunsaturated fatty acids. Can. J. Fish. Aquat. Sci. 51:1391–1400. J. Plankton Res. 14:495–512

    Google Scholar 

  • Yen, J., Lenz, P. H., Gassie, D. V., and Hartline, D. K. 1992. Mechanoreception in marine copepods: electrophysiological studies on the first antennae. J. Plankton Res. 14:495–512

    Article  Google Scholar 

  • Zenebe, T., Ahlgren, G., and Boberg, M. 1998a. Fatty acid content of some freshwater fish of commercial importance from tropical lakes in the Ethiopian Rift Valley. J. Fish Biol. 53:987–1005

    Article  CAS  Google Scholar 

  • Zenebe, T., Ahlgren, G., Gustafsson, I. B., and Boberg, M. 1998b. Fatty acid and lipid content of Oreochromis niloticus L. in Ethiopian lakes – dietary effects of phytoplankton. Ecol. Freshw. Fish 7:146–158

    Article  Google Scholar 

  • Zenebe, T., Boberg, M., Sonesten, L., and Ahlgren, G. 2003. Effects of algal diets and temperature on the growth and fatty acid content of the cichlid fish Oreochromis niloticus L. A laboratory study. Aquat. Ecol. 37:169–182

    Google Scholar 

Download references

Acknowledgements

We thank J. Johansson for chemical analyses, I. Ahlgren for help with collecting references and comments on the early manuscript, and several colleagues, such as J. Persson, M.T. Brett, M. Kainz and C, Schlechtriem, M.T. Arts and O.E. Johannsson, for the use of their data. We also bothered D.C. Müller-Navarra and E. von Elert several times with questions about original data. Important remarks of an anonymous referee improved an earlier version of this work. We are also deeply thankful to the editors, M.T. Arts, M.T. Brett and M. Kainz, whose support and encouragement made this chapter possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnel Ahlgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahlgren, G., Vrede, T., Goedkoop, W. (2009). Fatty Acid Ratios in Freshwater Fish, Zooplankton and Zoobenthos – Are There Specific Optima?. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_7

Download citation

Publish with us

Policies and ethics