Crustacean zooplankton fatty acid composition

  • Michael T. Brett
  • Dörthe C. Müller-Navarra
  • Jonas Persson


Fatty acids (FA) are among the most important molecules transferred across the plant–animal interface in aquatic food webs. Particular classes of FA, such as the n-3 highly unsaturated fatty acids (HUFA), are important somatic growth limiting compounds for herbivorous zooplankton (Müller-Navarra 1995a; Müller-Navarra et al. 2000; Ravet et al. 2003). These molecules are also critical for the growth, disease resistance, and general well being of juvenile fish (Adams 1999; Olsen 1999; Sargent et al. 1999). Thus, knowing how nutritionally important FA are conveyed through food webs has important implications for understanding economically important fisheries. A very substantial literature shows these same molecules have a wide range of positive impacts on human health (Simopoulos 1999; Arts et al. 2001). Specific FA may also help interpret trophic relations in aquatic systems (Dalsgaard et al. 2003), as the group specific FA composition of primary producers varies greatly (Volkman et al. 1989; Ahlgren et al. 1992). Therefore, it is important to understand how much the FA composition of zooplankton is determined by taxonomic affiliation, changed by diet, and modified by starvation or temperature. It is also essential to know whether zooplankton maintain a semiconstant FA profile relative to their diets or, alternatively, bioconvert some FA into other FA molecules. This review will summarize the published information on how these factors regulate the FA composition of freshwater and marine zooplankton.


Fatty Acid Composition Fatty Acid Profile Calanoid Copepod Highly Unsaturated Fatty Acid Marine Copepod 


  1. Abrusán, G., Fink, P., and Lampert, W. 2007. Biochemical limitation of resting egg production in Daphnia. Limnol. Oceangr. 52:1724–1728.CrossRefGoogle Scholar
  2. Ackman, R.G. and Eaton, C.A. 1966. Lipids of the fin whale (Baluenoptera physalus) from North Atlantic waters. III. Occurrence of eicosenoic and docosenoic fatty acids in the zooplankter Meganyctiphanes norvegica (M. Sars) and their effect on whale oil composition. Can. J. Biochem. 44:1561–1566.CrossRefGoogle Scholar
  3. Adams, S.M. 1999. Ecological role of lipids in the health and success of fish populations, pp.132–160. In M.T. Arts and B.C. Wainman [eds.], Lipids in Freshwater Ecosystems. Springer, New York.Google Scholar
  4. Ahlgren, G., Lundstedt, L., Brett, M.T., and Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809–818.CrossRefGoogle Scholar
  5. Ahlgren, G., Gustafsson, I.-B., and Boberg, M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50.CrossRefGoogle Scholar
  6. Arhonditsis, G.B., Brett, M.T., and Frodge, J. 2003. Environmental control and limnological impacts of a large recurrent spring bloom in Lake Washington, USA. Env. Manag. 31:603–618.CrossRefGoogle Scholar
  7. Arts, M.T., Ackman, R.G., and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J. Fish. Aq. Sci. 58:122–137.CrossRefGoogle Scholar
  8. Arts, M.T., Evans, M.S., and Robarts, R.D. 1992. Seasonal patterns of total and energy reserve lipids of dominant zooplanktonic crustaceans from a hypereutrophic lake. Oecologia 90:560–571.CrossRefGoogle Scholar
  9. Ballantyne, A.P., Brett, M.T., and Schindler, D.E. 2003. The importance of dietary phosphorus and highly unsaturated fatty acids for sockeye (Oncorhynchus nerka) growth in Lake Washington – a bioenergetics approach. Can J. Fish. Aq. Sci. 60:12–22.CrossRefGoogle Scholar
  10. Bourdier, G., and Amblard, C. 1989. Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae. J. Plankton Res. 11:1201–1212.CrossRefGoogle Scholar
  11. Brett, M.T., Müller-Navarra, D.C., Ballantyne, A.P., and Ravet, J.L. 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51:2428–2437.CrossRefGoogle Scholar
  12. Broglio, E., Jonasdóttir, S.H., Calbet, A., Jakobsen, H.H., Saiz, E. 2003. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol. 31:267–278.CrossRefGoogle Scholar
  13. Caramujo, M.-J., Boschker, H.T.S., and Admiraal, W. 2008. Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshw. Biol. 53:77–90.Google Scholar
  14. Coutteau, P., and Mourente, G. 1997. Lipid classes and their content of n-3 highly unsaturated fatty acids (HUFA) in Artemia franciscana after hatching, HUFA-enrichment and subsequent starvation. Mar. Biol. 130:81–91.CrossRefGoogle Scholar
  15. Cripps, G.C., and Atkinson, A. 2000. Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can. J. Fish. Aq. Sci. 57:31–37. Suppl. 3.CrossRefGoogle Scholar
  16. Cripps, G.C., Watkins, J.L., Hill, H.J., and Atkinson, A. 1999. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181:177–188.CrossRefGoogle Scholar
  17. Csengeri, I., and Halver, J.E. 2006. Tibor Farkas 1929–2003. A biographical memoir. National Academy of Sciences, Washington, D.C. 27 pgs.Google Scholar
  18. D’Abramo, L.R., and Sheen, S.-S. 1993. Polyunsaturated fatty acid nutrition in juvenile freshwater prawn Macrobrachium rosenbergii. Aquaculture 115:63–86.CrossRefGoogle Scholar
  19. Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D.C., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine food environment. Adv. Mar. Biol. 46:226–340.Google Scholar
  20. Desvilettes, C., Bourdier, G., Amblard, C., and Barth, B. 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshw. Biol. 38:629–637.CrossRefGoogle Scholar
  21. Dunstan, G.A., Volkman, J.K., Barrett, S.M., Leroi, J.M., and Jeffrey, S.W. 1994. Essential polyunsaturated fatty-acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161.CrossRefGoogle Scholar
  22. Dunstan, G.A., Brown, M.R., and Volkman, J.K. 2005. Cryptophyceae and Rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570.PubMedCrossRefGoogle Scholar
  23. Ederington, M.C., McManus, G.B., and Harvey, H.R. 1995. Trophic transfer of fatty-acids, sterols, and a triterpeniod alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnol. Oceanogr. 40:860–867.CrossRefGoogle Scholar
  24. Elendt, B.-P. 1990. Nutritional quality of a microencapsulated diet for Daphnia magna. Effects on reproduction, fatty acid composition, and midgut ultrastructure. Arch. Hydrobiol. 118:461–475.Google Scholar
  25. Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A., and Sargent, J.R. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can. J. Fish. Aq Sci. 57:178–191. Suppl. 3.CrossRefGoogle Scholar
  26. Farkas, T. 1970. Fats in fresh water crustaceans. Acta Biol. Acad. Sci. Hung. 21:225–233.PubMedCrossRefGoogle Scholar
  27. Farkas, T. 1979. Adaptation of fatty-acid compositions to temperature-study on planktonic crustaceans. Comp. Biochem. Physiol. 64B:71–76.Google Scholar
  28. Farkas, T., and Herodek, S. 1964. Effect of environmental temperature on fatty acid composition of crustacean plankton. J. Lipid Res. 5:369–373.PubMedGoogle Scholar
  29. Farkas, T., Nemecz, G., and Csengeri, I. 1984. Differential response of lipid-metabolism and membrane physical state by an actively and passively over wintering planktonic crustacean. Lipids 19:436–442.CrossRefGoogle Scholar
  30. Fraser, A.J., Sargent, J.R., Gamble, J.C., and Seaton, D.D. 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Mar. Chem. 27:1–18.CrossRefGoogle Scholar
  31. Gatenby, C.M., Orcutt, D.M., Kreeger, D.A., Parker, B.C., Jones, V.A., and Neves, R.J. 2003. Biochemical composition of three algal species proposed as food for captive freshwater mussels. J. Appl. Phycol. 15:1–11.CrossRefGoogle Scholar
  32. Goulden, C. E., and Place, A. R. 1990. Fatty acid synthesis and accumulation rates in daphnids. J. Exp. Zool. 256:168–178.CrossRefGoogle Scholar
  33. Graeve, M., Kattner, G., and Hagen, W. 1994. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182:97–110.CrossRefGoogle Scholar
  34. Graeve, M., Albers, C., and Kattner, G. 2005. Assimilation and biosynthesis of lipids in Arctic Calanus species based on feeding experiments with a 13C labelled diatom. J. Exp. Mar. Biol. Ecol. 317:109–125.CrossRefGoogle Scholar
  35. Hagen, W., Kattner, G., and Graeve, M. 1993. Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Mar. Ecol. Prog. Ser. 97:135–142.CrossRefGoogle Scholar
  36. Hagen, W., van Vleet, E.S., and Kattner, G. 1996. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Progr. Ser. 134:85–89.CrossRefGoogle Scholar
  37. Hagen, W., Kattner, G., Terbruggen, A., and Van Vleet, E.S. 2001. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar. Biol. 139:95–104.CrossRefGoogle Scholar
  38. Hazel, J.R. 1995. Thermal adaptation in biological-membranes- is homeoviscous adaptation the explanation. Ann. Rev. Physiol. 57:19–42.CrossRefGoogle Scholar
  39. Henderson, R.J., Park, M.T., and Sargent, J.R. 1995. The desaturation and elongation of 14C-labelled polyunsaturated fatty acids by pike (Esox lucius L.) in vivo. Fish Physiol. Biochem. 14:223–235.CrossRefGoogle Scholar
  40. Hessen, D.O., and Leu, E. 2006. Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshw. Biol. 51:1987–1998.CrossRefGoogle Scholar
  41. Jeffries, H.P. 1970. Seasonal composition of temperate plankton communities: fatty acids. Limnol. Oceanogr. 15:419–426.CrossRefGoogle Scholar
  42. Jobling, M. 2004. Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232:551–562.CrossRefGoogle Scholar
  43. Jónasdóttir, S.H., Fields, D., and Pantoja, S. 1995. Copepod egg production in Long Island Sound USA, as a function of the chemical composition of seston. Mar. Ecol. Progr. Ser. 119:87–98.CrossRefGoogle Scholar
  44. Kainz, M., Arts, M.T., and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793.CrossRefGoogle Scholar
  45. Kattner, G., Graeve, M., and Hagen, W. 1994. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 118:637–644.CrossRefGoogle Scholar
  46. Langdon, C.J., and Waldock, M.J. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Boil. Ass. U.K. 61:431–448.CrossRefGoogle Scholar
  47. Lee, R.F., Nevenzel, J.C., and Paffenhofer, G.-A. 1971. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar. Biol. 9:99–108.CrossRefGoogle Scholar
  48. Lee, R.F., Hagen, W., and Kattner, G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307:273–306.CrossRefGoogle Scholar
  49. Lenz, P.H., Hartline, D.K. and Davis, A.D. 2000. The need for speed. I. Fast reactions and myelinated axons in copepods. J. Comp. Phys. A 186:337–345.CrossRefGoogle Scholar
  50. Lewis, R.W. 1969. The fatty acid composition of arctic marine phytoplankton and zooplankton with special reference to minor acids. Limnol. Oceanogr. 14:35–40.CrossRefGoogle Scholar
  51. Lourenco, S.O., Barbarino, E., Mancini-Filho, J., Schinke, K.P., and Aidar, E. 2002. Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168.CrossRefGoogle Scholar
  52. Lovern, J.A. 1935. The fats of some plankton crustacea. Biochem. J. 29:847–849.PubMedGoogle Scholar
  53. Müller-Navarra, D.C. 1995a. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132:297–307.Google Scholar
  54. Müller-Navarra, D.C. 1995b. Biochemical versus mineral limitation in Daphnia. Limnol. Oceanogr. 40:1209–1214.CrossRefGoogle Scholar
  55. Müller-Navarra, D.C. 2006. The nutritional importance of polyunsaturated fatty acids and their use as trophic markers for herbivorous zooplankton: Does it contradict? Arch. Hydrobiol. 167:501–513.CrossRefGoogle Scholar
  56. Müller-Navarra, D.C., Brett, M.T., Liston, A., and Goldman, C.R. 2000. A highly-unsaturated fatty acid predicts biomass transfer between primary producers and consumers. Nature 403:74–77.PubMedCrossRefGoogle Scholar
  57. Nanton, D.A., and Castell, J.D. 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp, for use as a live food for marine fish larvae. Aquaculture 163:251–261.CrossRefGoogle Scholar
  58. Nanton, D.A., and Castell, J.D. 1999. The effects of temperature and dietary fatty acids on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175:167–181.CrossRefGoogle Scholar
  59. Norsker, N.H., and Støttrup, J.G. 1994. The importance of dietary HUFA for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 125:155–166.CrossRefGoogle Scholar
  60. Olsen, Y. 1999. Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture?, pp. 161–202. In M.T. Arts and B.C. Wainman [eds.], Lipids in Freshwater Ecosystems. Springer, New York.Google Scholar
  61. Palmtag, M.R., Faulk, C.K., and Holt, G.J. 2006. Highly unsaturated fatty acid composition of rotifers (Brachionus plicatilis) and Artemia fed various enrichments. J. World Aquaculture Soc. 37:126–131.CrossRefGoogle Scholar
  62. Parrish, C.C., McKenzie, C.H., MacDonald, B.A., and Hatfield, E.A. 1995. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. Ecol. Progr. Ser. 129:151–164.CrossRefGoogle Scholar
  63. Patil, V., Kallqvist, T., Olsen, E., Vogt, G., and Gislerod, H.R. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture Int. 15:1–9.CrossRefGoogle Scholar
  64. Persson, J., and Vrede, T. 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw. Biol. 51:887–900.CrossRefGoogle Scholar
  65. Persson, J., Brett, M.T., Vrede, T., and Ravet, J.L. 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116:1152–1163.CrossRefGoogle Scholar
  66. Peters, J., Renz, J., van Beusekom, J., Boersma, M., and Hagen, W. 2006. Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar. Biol. 149:1417–1429.CrossRefGoogle Scholar
  67. Pond, D.W., Atkinson, A., Shreeve, R.S., Tarling, G., and Ward, P. 2005. Diatom fatty acid biomarkers indicate recent growth rates in Antarctic krill. Limnol. Oceanogr. 50:732–736.CrossRefGoogle Scholar
  68. Provasoli, L., and D’Agostino, A. 1969. Development of artificial media for Artemia salina. Biol. Bull. 136:434–453.CrossRefGoogle Scholar
  69. Ravet, J.L., Brett, M.T., and Arhonditsis, G.B. 2009. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington. Ecology (in press).Google Scholar
  70. Ravet, J.L., Brett, M.T., and Müller-Navarra, D.C. 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol. Oceanogr. 48:1938–1947.CrossRefGoogle Scholar
  71. Reitan, K.I., Rainuzzo, J.R., and Olsen, Y. 1994. Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae. J. Phycol. 30:972–979.CrossRefGoogle Scholar
  72. Renaud, S.M., Thinh, L.V., and Parry, D.L. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159.CrossRefGoogle Scholar
  73. Renaud, S.M., Thinh, L.V., Lambrinidis, G., and Parry, D.L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:1–4.CrossRefGoogle Scholar
  74. Richoux, N.B., Deibel, D., Raymond, J., Thompson, R.J., and Parrish, C.C. 2005. Seasonal and developmental variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). J. Plankton Res. 27:719–733.CrossRefGoogle Scholar
  75. Sargent, J.R., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., and Tocher, D. 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229.CrossRefGoogle Scholar
  76. Sargent, J.R., and Henderson, R.J., 1986. Lipids, pp. 59–108. In: E.D.S. Corner and S. O’Hara [eds.], Biological Chemistry of Marine Copepods, Oxford University Press, Oxford.Google Scholar
  77. Schlechtriem, C., Arts, M.T., and Zellmer, I.D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (crustacea, cladocera) Lipids 41:397–400.PubMedCrossRefGoogle Scholar
  78. Schmidt, K., Atkinson, A., Petzke, K.J., Voss, M., and Pond, D.W. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol. Oceanogr. 51:2409–2427.CrossRefGoogle Scholar
  79. Scott, C.L., Kwasniewski, S., Falk-Petersen, S., and Sargent, J.R. 2002. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser. 235:127–134.CrossRefGoogle Scholar
  80. Simopoulos, A.P. 1999. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 70:560S–569S.PubMedGoogle Scholar
  81. Smyntek, P.M., Teece, M.A., Schulz, K.L., and Storch, A.J. 2008. Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshw. Biol. 53:1768–1782.CrossRefGoogle Scholar
  82. Stevens, C.J., Deibel, D., and Parrish, C.C. 2004. Copepod omnivory in the North Water Polynya (Baffin Bay) during autumn: spatial patterns in lipid composition. Deep-Sea Res. Part I 51:1637–1658.Google Scholar
  83. Stübing, D., Hagen, W., and Schmidt, K. 2003. On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill, Euphausia superba. Limnol. Oceanogr. 48:1685–1700.CrossRefGoogle Scholar
  84. Tremblay, R., Cartier, S., Miner, P., Pernet, F., Quere, C., Moal, J., Muzellec, M.L., Mazuret, M., and Samain, J.F. 2007. Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 26:410–418.CrossRefGoogle Scholar
  85. Veloza, A.J., Chu, F.L., and Tang, K.W. 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 48:779–788.CrossRefGoogle Scholar
  86. Vismara, R., Vestri, S., Barsanti, L., and Gualtieri, P. 2003. Diet-induced variations in fatty acid content and composition of two on-grown stages of Artemia salina. J. Appl. Phycol. 15:477–483.CrossRefGoogle Scholar
  87. Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., and Garland, C.D. 1989. Fatty-acid and lipid-composition of 10 sepcies of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128:219–240.CrossRefGoogle Scholar
  88. Wacker, A., and Martin-Creuzburg, D. 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct. Ecol. 21:738–747.CrossRefGoogle Scholar
  89. Wacker, A., Becher, P., and von Elert, E., 2002. Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha. Limnol. Oceanogr. 47:1242–1248.CrossRefGoogle Scholar
  90. Weers, P.M.M., Siewertsen, K., and Gulati, R.D. 1997. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet? Freshw. Biol. 38:731–738.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael T. Brett
    • 1
  • Dörthe C. Müller-Navarra
    • 1
  • Jonas Persson
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations