Fatty acids and oxylipins as semiochemicals

  • Susan B. Watson
  • Gary Caldwell
  • Georg Pohnert


On the one hand, in marine systems, a long history of research established the roles of PUFA derivatives as pheromones and in grazer defense (Sects. 4.3 and 4.4). For a long time, this work was directed largely toward littoral interactions involving seaweeds (notably phaeophytes and rhodophytes). On the other hand, in freshwater systems, the nutritive value of algal PUFA in food webs has been recognized for some time, but their potential role(s) in chemical defense has been only acknowledged recently; and was similarly first convincingly elucidated in littoral communities (Jüttner 2001). Planktonic and littoral algal PUFA derivatives have also long been notorious as potent taste-odor agents in freshwater supplies, and even more extensively characterized in the food and flavor/perfume industries as sources of rancid, oily, fishy, cucumber, fruity, and floral flavors in both essential oils and spoiled lipid-rich food products (Watson et al. 2000, 2001; Watson 2003).


Domoic Acid Planktonic Diatom Algal Taxon Tetraenoic Acid Gomphonema Parvulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adolph, S., Poulet, S.A., and Pohnert, G. 2003. Synthesis and biological activity of α,β,γ,δ-unsaturated aldehydes from diatoms. Tetrahedron 59:3003–3008.Google Scholar
  2. Adolph, S., Bach, S., Blondel, M., Cueff, A., Moreau, M., Pohnert, G., Poulet, S., Wichard, T., and Zuccaro, A. 2004. Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J. Exp. Biol. 207:2935–2946.PubMedGoogle Scholar
  3. Alekseev, V. and Lampert, W. 2001. Maternal control of resting-egg productoin in Daphnia. Nature 414:899–900.Google Scholar
  4. Ban, S.H. 1994. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of the calanoid copepod Eurytemora affinis. J. Plankton Res. 16:721–735.Google Scholar
  5. Ban, S., Burns, C., Castel, J., Chaudron, Y., Christou, E., Escribano, R., Umani, S.F., Gasparini, S., Ruiz, F.G., Hoffmeyer, M., Ianora, A., Kang, H.K., Laabir, M., Lacoste, A., Miralto, A., Ning, X., Poulet, S., Rodriguez, V., Runge, J., Shi, J., Starr, M., Uye, S., and Wang, Y. 1997. The paradox of diatom-copepod interactions. Mar. Ecol. Prog. Ser. 157:287–293.Google Scholar
  6. Barofsky, A., and Pohnert, G. 2007. Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula. Org. Lett. 9:1017–1020.PubMedGoogle Scholar
  7. Barreiro, A., Guisande, C., Maneiro, I., Vergara, A.R., Riveiro, I., and Iglesias, P. 2007. Zooplankton interactions with toxic phytoplankton: some implications for food web studies and algal defense strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity. Acta Oecol. 32:279–290.Google Scholar
  8. Bell, M.V., Dick, J.R., Thrush, M., and Navarro, J.C. 1996. Decreased 20:4n-6/20:5n-3 ratio in sperm from cultured sea bass, Dicentrarchus labrax, broodstock compared with wild fish. Aquaculture 144:189–199.Google Scholar
  9. Boland, W. 1995. The chemistry of gamete attraction: chemical structures, biosynthesis, and abiotic degradation of algal pheromones. Proc. Natl Acad. Sci. U. S. A. 92:37–43.PubMedGoogle Scholar
  10. Boland, W., Marner, F., Jaenicke, L., Mueller, D., and Foelster, E. 1983. Comparative receptor study in gamete chemotaxis of the seaweeds Ectocarpus siliculosus and Cutleria multifida: an approach to interspecific communication of algal gametes. Eur. J. Biochem. 134:97–104.PubMedGoogle Scholar
  11. Bottrell, H.H., Duncan, A., Gliwics, Z.M., Grygierek, E., and Herzig, A. 1976. A review of some problems in zooplankton production. Norw. J. Zool. 24:419–456.Google Scholar
  12. Bradow, J., and Connick, J.W. 1990. Volatile seed germination inhibitors from plant residues. J. Chem. Ecol. 16:645–667.Google Scholar
  13. Bricelj, V.M., Connell, L., Konoki, K., MacQuarrie, S.P., Scheuer, T., Catterall, W.A., and Trainer, V.L. 2005. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434:763–767.PubMedGoogle Scholar
  14. Bury, N.R., Codd, G.A., Bonga, S.E.W., and Flik, G. 1998. Fatty acids from the cyanobacterium Microcystis aeruginosa with potent inhibitory effects on fish gill Na+/K+-ATPase activity. J. Exp. Biol. 201:81–89.PubMedGoogle Scholar
  15. Caldwell, G.S., Olive, P.J.W., and Bentley, M.G. 2002. Inhibition of embryonic development and fertilization in broadcast spawning marine invertebrates by water soluble diatom extracts and the diatom toxin 2-trans, 4-trans decadienal. Aquat. Toxicol. 60:123–137.PubMedGoogle Scholar
  16. Caldwell, G.S., Bentley, M.G., and Olive, P.J.W. 2004a. First evidence of sperm motility inhibition by the diatom aldehyde 2E, 4E-decadienal. Mar. Ecol. Prog. Ser. 273:97–108.Google Scholar
  17. Caldwell, G.S., Watson, S.B., and Bentley, M.G. 2004b. How to assess toxin ingestion and postingestion partitioning in zooplankton? J. Plankton Res. 26:1369–1377.Google Scholar
  18. Caldwell, G.S., Lewis, C., Olive, P.J.W., and Bentley, M.G. 2005. Exposure to 2,4-decadienal negatively impacts upon marine invertebrate larval fitness. Mar. Environ. Res. 59:405–417.PubMedGoogle Scholar
  19. Camazine, S.M., Resch, J.F., Eisner, T., and Meinwald, J. 1983. Mushroom chemical defense: pungent sesquiterpenoid dialdehyde antifeedant to opossum. J. Chem. Ecol. 9:1439–1447.Google Scholar
  20. Carotenuto, Y., and Lampert, W. 2004. Ingestion and incorporation of freshwater diatoms by Daphnia pulicaria: do morphology and oxylipin production matter? J. Plankton Res. 26:563–569.Google Scholar
  21. Carotenuto, Y., Wichard, T., Pohnert, G., and Lampert, W. 2005. Life-history responses of Daphnia pulicaria to diets containing freshwater diatoms: effects of nutritional quality versus polyunsaturated aldehydes. Limnol. Oceanogr. 50:449–454.Google Scholar
  22. Casotti, R., Mazza, S., Brunet, C., Vantrepotte, V., Ianora, A., and Miralto, A. 2005. Growth inhibition and toxicity of the diatom aldehyde 2-trans, 4-trans-decadienal on Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 41:7–20.Google Scholar
  23. Cavill, G.W.K., and Hinterberger, H. 1960. The chemistry of ants IV. Terpenoid constituents of some Dolichoderus and Iridomyrmex species. Aust. J. Chem. 13:514–519.Google Scholar
  24. Cembella, A.D. 2003. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447.Google Scholar
  25. Charnov, E.L. 1997. Trade-off-invariant rules for evolutionary stable life histories. Nature 387:3993–3994.Google Scholar
  26. Chaudron, Y., Poulet, S.A., Laabir, M., Ianora, A., and Miralto, A. 1996. Is hatching success of copepod eggs diatom density-dependent? Mar. Ecol. Prog. Ser. 144:185–193.Google Scholar
  27. Chen, W.H., and Folt, C.L. 1993. Measures of food quality as demographic predictors in freshwater copepods. J. Plankton Res. 15:1247–1261.Google Scholar
  28. Chiang, I.Z., Huang, W.Y., and Wu, J.T. 2004. Allelochemicals of Botryococcus braunii (Chlorophyceae). J. Phycol. 40:474–480.Google Scholar
  29. Chuecas, L., and Riley, J.P. 1969. Component fatty acids of the total lipids of some marine phytoplankton. J. Mar. Biol. Ass. U. K. 49:97–116.Google Scholar
  30. Clare, A.S., and Walker, G. 1986. Further studies on the control of the hatching process in Balanus balanoides (L). J. Exp. Mar. Biol. Ecol. 97:295–304.Google Scholar
  31. Cook, H.W. 1996. Fatty acid desaturation and chain elongation in eukaryotes, pp. 129–152. In D.E. Vance and J.E. Vance (eds.), Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier, Amsterdam.Google Scholar
  32. Cook, A., and Elvidge, J. 1951. Fertilization in the Fucaceae: investigations of the nature of the chemotacatic substance produced by eggs of Fucus serratus and Fvesiculosus. Proc. R. Soc. Lond. Ser. B 138:97–114.Google Scholar
  33. Cutignano, A., d’Ippolito, G., Romano, G., Lamari, N., Cimino, G., Febbraio, F., Nucci, R., and Fontana, A. 2006. Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom Thalassiosira rotula Chem. BioChem. 7:450–456.Google Scholar
  34. Derenbach, J.B., and Pesando, D. 1986. Investigations into a small fraction of volatile hydrocarbons. iii. Two diatom cultures produce ectocarpene, a pheromone of brown algae. Mar. Chem. 19:337–342.Google Scholar
  35. Dicke, M., and Sabelis, M.W. 1988. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2:131–139.Google Scholar
  36. Di Marzo, V., De Petrocellis, L., Gianfrani, C., and Cimino, G. 1993. Biosynthesis, structure and biological activity of hydroxyeicosatetraenoic acids in Hydra vulgaris. Biochem. J. 295:23–29.PubMedGoogle Scholar
  37. Dittberner, U., Eisenbrand, G., and Zankl, H. 1995. Genotoxic effects of the α,β-unsaturated aldehydes 2-trans-butenal, 2-trans-hexenal and 2-trans, 6-cis-nonadienal. Mutat. Res. 335:259–265.PubMedGoogle Scholar
  38. Dutz, J., Koski, M., and Jonasdottir, S.H. 2008. Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnol. Oceanogr. 53:225–235.Google Scholar
  39. Feussner, I., and Wasternack, C. 2002. The lipoxygenase pathway. Ann. Rev. Plant Biol. 53:275–297.Google Scholar
  40. Findlay, J.A., and Patil, A.D. 1984. Antibacterial constituents of the diatom Navicula delognei. J. Nat. Prod. 47:815–818.PubMedGoogle Scholar
  41. Fink, P., von Elert, E., and Jüttner, F. 2006. Volatile foraging kairomones in the littoral zone: attraction of an herbivorous freshwater gastropod to algal odors. J. Chem. Ecol. 32:1867–1831.PubMedGoogle Scholar
  42. Fontana, A., d’Ippolito, G., Cutignano, A., Romano, G., Lamari, N., Gallucci, A.M., Cimino, G., Miralto, A., and Ianora, A. 2007. LOX-induced Lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. Chembiochem: A European Journal of Chemical Biology 8:1810–1818.Google Scholar
  43. Fu, M., Koulman, A., Van Rijssel, M., Luetzen, A., De Boer, M.K., Tyl, M.R., and Liebezeit, G. 2004. Chemical characterisation of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43:355–363.PubMedGoogle Scholar
  44. Gerwick, W.H. 1994. Structure and biosynthesis of marine algal oxylipins. Biochim. Biophys. Acta 1211:243–255PubMedGoogle Scholar
  45. Guisande, C., Maneiro, I., and Riveiro, I. 1999. Homeostasis in the essential amino acid composition of the marine copepod Euterina acutifrons. Limnol. Oceanogr. 44:691–696.Google Scholar
  46. Hairston, N.G., Holtmeier, C.L., Lampert, W., Weider, L.J., Post, D.M., Fischer, J.M., Caceres, C.E., Fox, J.A., and Gaedke, U. 2001. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55:2203–2214.PubMedGoogle Scholar
  47. Hansen, L.R., Kristiansen, J., and Rasmussen, J.V. 1994. Potential toxicity of the freshwater Chrysochromulina species C. parva (Prymnesiophyceae). Hydrobiologia 287:157–159.Google Scholar
  48. Hansen, E., Even, Y., and Genevière, A.M. 2004a. The α,β,γ,δ-unsaturated aldehyde 2-trans-4-trans-decadienal disturbs DNA replication and mitotic events in early sea urchin embryos. Toxicol. Sci. 81:190–197.Google Scholar
  49. Hansen, E., Ernstsen, A., and Eilertsen, H.C. 2004b. Isolation and characterisation of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim. Toxicology 199:207–217.Google Scholar
  50. Harrison, K.E. 1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J. Shellfish Res. 9:1–28.Google Scholar
  51. Hombeck, M., and Boland, W. 1998. Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella formosa (Bacillariophyceae). Tetrahedron 54:11033–11042.Google Scholar
  52. Hombeck, M., Pohnert, G., and Boland, W. 1999. Biosynthesis of dictyopterene A: stereoselectivity of a lipoxygenase/hydroperoxide lyase from Gomphonema parvulum (Bacillariophyceae). Chem. Commun. 3:243–244.Google Scholar
  53. Huntley, M.E. 1982. Yellow water in La Jolla Bay, California, July 1980. II. Suppression of zooplankton grazing. J. Exp. Mar. Biol. Ecol. 63:81–91.Google Scholar
  54. Huntley, M., Sykes, P., Rohan, S., and Marin, V. 1986. Chemically mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus – mechanism, occurrence and significance. Mar. Ecol. Prog. Ser. 28:105–120.Google Scholar
  55. Ianora, A., Miralto, A., and Poulet, S.A. 1999. Are diatoms good or toxic for copepods? Reply to comment by Jónasdottir et al. Mar. Ecol. Prog. Ser. 177:305–308.Google Scholar
  56. Ianora, A., Miralto, A., Poulet, S.A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert, G., Wichard, T., Colucci-D’Amato, L., Terrazzano, G., and Smetacek, V. 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407.PubMedGoogle Scholar
  57. Ikawa, M., Haney, J.F., and Sasner, J.J. 1996. Inhibition of Chlorella growth by the lipids of cyanobacterium Microcystis aeruginosa. Hydrobiologia 331:167–170.Google Scholar
  58. d’Ippolito, G., Romano, G., Caruso, T., Spinella, A., Cimino, G., and Fontana, A. 2003. Production of octadienal in the marine diatom Skeletonema costatum. Organ. Lett. 5:885–887.Google Scholar
  59. d’Ippolito, G., Tucci, S., Cutignano, A., Romano, G., Cimino, G., Miralto, A., and Fontana, A. 2004. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys. Acta 1686:100–107.PubMedGoogle Scholar
  60. d’Ippolito, G., Cutignano, A., Briante, R., Febbraio, F., Cimino, G., and Fontana, A. 2005. New C-16 fatty-acid-based oxylipin pathway in the marine diatom Thalassiosira rotula. Org. Biomol. Chem. 3:4065–4070.PubMedGoogle Scholar
  61. d’Ippolito, G., Cutignano, A., Tucci, S., Romano, G., Cimino, G., and Fontana, A. 2006. Biosynthetic intermediates and stereochemical aspects of aldehyde biosynthesis in the marine diatom Thalassiosira rotula. Phytochemistry 67:314–322.PubMedGoogle Scholar
  62. Irigoien, X., Harris, R.P., Verheye, H.M., Joly, P., Runge, J., Starr, M., Pond, D., Campbell, R., Shreeve, R., Ward, P., Smith, A.N., Dam, H.G., Peterson, W., Tirelli, V., Koski, M., Smith, T., Harbour, D., and Davidson, R. 2002. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419:387–389.PubMedGoogle Scholar
  63. Jeckel, W.H., de Moreno, J.E.A., Oreno, V., and Moreno, V.J. 1989. Biochemical composition, lipid classes and fatty acids in the male reproductive system of the shrimp Pleoticus muelleri Bate. Comp. Biochem. Physiol. B 93:807–811.Google Scholar
  64. Jónasdóttir, S.H., and Kiørboe, T. 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Mar. Biol. 125:743–750.Google Scholar
  65. Jones, R.H., and Flynn, K.J. 2005. Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459.PubMedGoogle Scholar
  66. Jüttner, F. 1981. Detection of lipid degradation products in the water of a reservoir during a bloom of Synura uvella. Appl. Environ. Microbiol. 41:100–106.PubMedGoogle Scholar
  67. Jüttner, F. 1984. Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Appl. Environ. Microbiol. 47:815–820.Google Scholar
  68. Jüttner, F. 1992. Flavour compounds in weakly polluted rivers as a means to differentiate pollution sources. Water Sci. Technol. 25:155–164.Google Scholar
  69. Jüttner, F. 1995. Physiology and biochemistry of odourous compounds from freshwater cyanobacteria and algae. Water Sci. Technol. 31:69–78.Google Scholar
  70. Jüttner, F. 2001. Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J. Phycol. 37:744–755.Google Scholar
  71. Jüttner, F. 2005. Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers. Aquatic Ecol. 39:271–282.Google Scholar
  72. Jüttner, F., and Müller, H. 1979. Excretion of octadiene and octatrienes by a freshwater diatom. Naturwissenschaften 66:363–364.Google Scholar
  73. Jüttner, F., and Dürst, U. 1997. High lipoxygenase activities in epilithic biofilms of diatoms. Archiv. Hydrobiol. 138:451–463.Google Scholar
  74. Jüttner, F., Hoflacher, B., and Wurster, K. 1986. Seasonal analysis of volatile organic biogenic substances in freshwater phytoplankton populationsdominated by Dinobryon Microcystis and Aphanizomenon. J. Phycol. 22:169–175.Google Scholar
  75. Kainz, M., Arts, M.T., and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793.Google Scholar
  76. Kamiya, H., Naka, K., and Hashimoto, K. 1979. Ichthyotoxicity of a flagellate Uroglena volvox. Bull. Jpn Soc. Sci. Fish. 45:129.Google Scholar
  77. Kieber, R., Hydro, L., and Seaton, P. 1997. Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances. Limnol. Oceanogr. 42:1454–1462.Google Scholar
  78. Kleppel, G.S. 1993. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99:183–195.Google Scholar
  79. Koski, M., Wichard, T., and Jónasdóttir, S. 2008. “Good” and “bad” diatoms: development, growth and juvenile mortality of the copepod Temora longicornis on diatom diets. Mar. Biol. 154:719–734.Google Scholar
  80. Kubo, I., Lee, Y.-W., Pettei, M., Pilkiewicz, F., and Nakanishi, K. 1976. Potent army worm antifeedants from the east African Warburgia plants. Chem. Commun. 24:1013–1014.Google Scholar
  81. Laabir, M., Poulet, S.A., Ianora, A., Miralto, A., and Cueff, A. 1995. Reproductive response of Calanus helgolandicus. II. In situ inhibition of embryonic development. Mar. Ecol. Prog. Ser. 129:97–105.Google Scholar
  82. Laabir, M., Poulet, S.A., Cueff, A., and Ianora, A. 1999. Effect of diet on levels of amino acids during embryonic and naupliar development of the copepod Calanus helgolandicus. Mar. Biol. 134:89–98.Google Scholar
  83. LaMontagne, J.M., and McCauley, E. 2001. Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol. Lett. 4:64–71.Google Scholar
  84. Leeper, D.A., and Porter, K.G. 1995. Toxicity of the mixotrophic chrysophyte Poterioochromonas malhamensis to the cladoceran Daphnia ambigua. Arch. Hydrobiol. 134:207–222.Google Scholar
  85. Lewis, C., Caldwell, G.S., Bentley, M.G., and Olive, P.J.W. 2004. Effects of a bioactive diatom-derived aldehyde on developmental stability in Nereis virens (Sars) larvae: an analysis using fluctuating asymmetry. J. Exp. Mar. Biol. Ecol. 304:1–16.Google Scholar
  86. Lincoln, J.A., Turner, J.T., Bates, S.S., Leger, C., and Gauthier, D.A. 2001. Feeding, egg production, and egg hatching success of the copepods Acartia tonsa and Temora longicornis on diets of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschia pungens. Hydrobiologia 453:107–120.Google Scholar
  87. Loureiro, A.P.M., Di Masco, P., Gomes, O.F., and Medeiros, M.H.G. 2000. trans,trans-2,4-Decadienal-induced 1,N-2-etheno-2’-deoxyguanosine adduct formation. Chem. Res. Toxicol. 13:601–609.PubMedGoogle Scholar
  88. Mann, D. 1999. The species concept in diatoms. Phycologia 38:437–495.Google Scholar
  89. Matsui, K. 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9:274–280.PubMedGoogle Scholar
  90. Matsutani, T., and Nomura, T. 1987. In vitro effects of serotonin and prostaglandins on release of eggs from the ovary of the scallop, Patinopecten yessoensis. Gen. Comp. Endocrinol. 67:111–118.PubMedGoogle Scholar
  91. McGrattan, D., Sullivan, J., and Ikawa, M. 1976. Inhibition of Chlorella (Chlorophyceae) growth by fatty acids, using the paper disk method. J. Phycol. 12:129–131.Google Scholar
  92. Meijer, L., Brash, A., Bryant, R., Ng, K., Maclouf, J., and Sprecher, H. 1986. Stereospecific induction of starfish oocyte maturation by (8r)-hydroxyeicosatetraenoic acid. J. Biol. Chem. 261:7040–7047.Google Scholar
  93. Miralto, A., Barone, G., Romano, G., Poulet, S., Ianora, A., Russo, G., Buttino, I., Mazzarella, G., Laabir, M., Cabrini, M., and Giacobbe, M. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.Google Scholar
  94. Morimoto, M., Tanimoto, K., Sakatani, A., and Komai, K. 2002. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura. Phytochemistry 60:163–166.PubMedGoogle Scholar
  95. Murakami, M., Makebe, K., Yamaguchi, K., and Konosu, S. 1989. Cytotoxic polyunsaturated fatty acid from Pediastrum. Phytochemistry 28:625–626.Google Scholar
  96. Okamoto, T., and Katoh, S. 1977. Linolenic acid binding by chloroplasts. Plant Cell Physiol. 18:539–550.Google Scholar
  97. Okamoto, T., Katoh, S., and Murakuami, S. 1977. Effects of linolenic acid on spinach chloroplast structure. Plant Cell Physiol. 18:551–560.Google Scholar
  98. Olive, P.J.W. 1992. The adaptive significance of seasonal reproduction in marine invertebrates: the importance of distinguishing between models. Invertebr. Reprod. Dev. 22:165–174.Google Scholar
  99. Paffenhöfer, G.A., Ianora, A., Miralto, A., Turner, J., Kleppel, G.S., Ribera d’Alcalà, M., Casotti, R., Caldwell, G., Pohnert, G., Fontana, A., Müller-Navarra, D., Jónasdóttir, S., Armbrust, V., Båmstedt, U., Ban, S., Bentley, M.G., Boersma, M., Bundy, M., Buttino, I., Calbet, A., Carlotti, F., Carotenuto, Y., d’Ippolito, G., Frost, B., Guisande, C., Lampert, W., Lee, R., Mazza, S., Mazzocchi, M., Nejstgaard, J.C., Poulet, S.A., Romano, G., Smetacek, V., Uye, S., Wakeham, S., Watson, S., and Wichard, T. 2005. Colloquium on diatom–copepod interactions. 2005. Mar. Ecol. Prog. Ser. 286:293–305.Google Scholar
  100. Pohnert, G. 2000. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. Engl. 39:4352–4354.Google Scholar
  101. Pohnert, G. 2002. Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant Physiol. 129:103–111.PubMedGoogle Scholar
  102. Pohnert, G. 2005. Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. Chem. BioChem. 6:946–959.Google Scholar
  103. Pohnert, G., and Boland, W. 1996. Biosynthesis of the algal pheromone hormosirene by the freshwater diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082.Google Scholar
  104. Pohnert, G., and Boland, W. 2002. The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat. Prod. Rep. 19:108–122.PubMedGoogle Scholar
  105. Pohnert, G., Adolph, S., and Wichard, T. 2004. Short synthesis of labeled and unlabeled 6Z,9Z,12Z,15-hexadecatetraenoic acid as metabolic probes for biosynthetic studies on diatoms. Chem. Phys. Lipids 131:159–166.PubMedGoogle Scholar
  106. Poulet, S.A., and Marsot, P. 1978. Chemosensory grazing by calanoid copepods (Arthropoda: Crustacea). Science 200:1403–1405.PubMedGoogle Scholar
  107. Poulet, S.A., Ianora, A., Miralto, A., and Meijer, L. 1994. Do diatoms arrest embryonic development in copepods? Mar. Ecol. Prog. Ser. 111:79–86.Google Scholar
  108. Poulet, S.A., de Forges, M.R., Cueff, A., and Lennon, J.F. 2003. Double-labelling methods used to diagnose apoptotic and necrotic cell degradations in copepod nauplii. Mar. Biol. 143:889–895.Google Scholar
  109. Poulet, S.A., Cueff, A., Wichard, T., Marchetti, J., Dancie, C., and Pohnert, G. 2007. Influence of diatoms on copepod reproduction. III. Consequences of abnormal oocyte maturation on reproductive factors in Calanus helgolandicus. Mar. Biol. 152:415–428.Google Scholar
  110. Reinikainen, M., Meriluoto, J.A.O., Spoof, L., and Harada, K. 2001. The toxicities of a polyunsaturated fatty acid and a microcystin to Daphnia magna. Exp. Toxicol. 16:444–448.Google Scholar
  111. Rengefors, K., and Legrande, C. 2001. Toxicity in Peridinium aciculiferum – an adaptive strategy to outcompete other winter phytoplankton? Limnol. Oceanogr. 46:1990–1997.Google Scholar
  112. Ribalet, F., Wichard, T., Pohnert, G., Ianora, A., Miralto, A., and Casotti, R. 2007a. Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067.Google Scholar
  113. Ribalet, F., Berges, J.A., Ianora, A., Casotti, R. 2007b. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat. Toxicol. 85:219–227.Google Scholar
  114. Romano, G., Russo, G.L., Buttino, I., Ianora, A., and Miralto, A. 2003. A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J. Exp. Biol. 2006:3487–3494.Google Scholar
  115. Rukmini, C. 1990. Reproductive toxicology and nutritional studies on manhua oil (Madhuca latifolia). Food Chem. Toxicol. 28:601–605.PubMedGoogle Scholar
  116. Sandgren C. 1988. The ecology of chrysophyte flagellates: their growth and perenniation strategies as freshwater phytoplankton, pp. 99–105. In Sandgren C. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  117. Schnitzler, I., Pohnert, G., Hay, M., and Boland, W. 2001. Chemical defense of brown algae (Dictyopteris spp.) against the herbivorous amphipod Ampithoe longimana. Oecologia 126:515–521.Google Scholar
  118. Schuel, H., Moss, R., and Schuel, R. 1985. Induction of polyspermic fertilization in sea urchins by the leukotriene antagonist FPL-55712 and the 5-lipoxygenase inhibitor BW755C. Gamete Res. 11:41–50.Google Scholar
  119. Scutt, J. 1964. Autoinhibition production by Chorella vulgaris. Am. J. Bot. 51:581–584.Google Scholar
  120. Sellem, F., Pesando, D., Bodennec, G., El Abed, A., and Girard, J.P. 2000. Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the seaurchin Paracentrotus lividus. Water Res. 34:550–556.Google Scholar
  121. Shilo, M. 1981. The toxic principles of Prymnesium parvum, pp. 37–47. In W.W. Carmichael (ed.), Algal Toxins and Health. Plenum, New York.Google Scholar
  122. Stanley-Samuelson, D.W. 1994. The biological significance of prostaglandins and related eicosanoids in invertebrates. Am. Zool. 34:589–598.Google Scholar
  123. Støttrup, J.G., and Jensen, J. 1990. Influence of algal diet on feeding and egg production of the calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 141:87–105.Google Scholar
  124. Taylor, F.J.R. 1985. The taxonomy and relationships of red tide flagellates, pp. 11–26. In D. Anderson, A. White, and D. Baden (eds.), 3rd International Conference on Toxic Dino­flagellates. Elsevier, New York.Google Scholar
  125. Tosti, E., Romano, G., Buttino, I., Cuomo, A., Ianora, A., and Miralto, A. 2003. Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytes. Mol. Reprod. Dev. 66:72–80.PubMedGoogle Scholar
  126. Trombetta, D., Saija, A., Bisignano, G., Arena, S., Caruso, S., Mazzanti, G., Uccella, N., and Castelli, F. 2002. Study on the mechanisms of the antibacterial action of some plant alpha,beta-unsaturated aldehydes. Lett. Appl. Microbiol. 35:285–290.PubMedGoogle Scholar
  127. Tsubo, Y. 1961. Chemotaxis and sexual behavior in Chlamydomonas. J. Protozool. 8:114–121.Google Scholar
  128. Vardi, A., Formiggini, F., Casotti, R., Martino, A., Ribalet, F., Miralto, A., and Bowler, C. 2006. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLOS Biol. 4:411–419.Google Scholar
  129. Walton, W., and Sandgren, C. 1995. The influence of zooplankton herbivory on the biogeography of chrysophyte algae, pp. 269–302. In C. Sandgren, J. Smol, and J. Kristiansen (eds.), Chrysophyte Algae. Cambridge University Press, Cambridge.Google Scholar
  130. Watson, S.B. 2003. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350.Google Scholar
  131. Watson, S.B., and Satchwill, T. 2003. Chrysophyte odour production: the impact of resources at the cell and population levels. Phycologia 42:393–405.Google Scholar
  132. Watson, S.B., Satchwill, T., and McCauley, E. 2000. Drinking water taste and odour: a chrysophyte perspective. Nova Hedwigia 122:119–146.Google Scholar
  133. Watson, S.B., Satchwill, T., and McCauley, E. 2001. Under-ice blooms and source-water odour in a nutrient-poor reservoir: biological, ecological and applied perspectives. Freshwater Biol. 46:1–15.Google Scholar
  134. Watson, S.B., Jüttner, F., and Köster, O. 2007. Daphnia behavioural responses to taste and odour compounds: ecological significance and application as an inline treatment plant monitoring tool. Water Sci. Technol. 55:23–31.PubMedGoogle Scholar
  135. Wee, J.L., Harris, S.A., Smith, J.P., Dionigi, C.P., and Millie, D.F. 1994. Production of the taste/odour compound, trans-2, cis-6-nonadienal within the Synurophyceae. J. Appl. Phycol. 6:365–369.Google Scholar
  136. Wendel, T., and Jüttner, F. 1996. Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochemistry 41:1445–1449.Google Scholar
  137. White, A.W. 1981. Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnol. Oceanogr. 26:103–109.Google Scholar
  138. Wichard, T., and Pohnert, G. 2006. Formation of halogenated medium chain hydrocarbons by a lipoxygenase/hydroperoxide halolyase-mediated transformation in planktonic microalgae. J. Am. Chem. Soc. 128:7114–7115.PubMedGoogle Scholar
  139. Wichard, T., Gobel, C., Feussner, I., and Pohnert, G. 2005a. Unprecedented lipoxygenase/hydroperoxide lyase pathways in the moss Physcomitrella patens. Angew. Chem. Int. Ed. Engl. 44:158–161.Google Scholar
  140. Wichard, T., Poulet, S., Halsband-Lenk, C., Albaina, A., Harris, R., Liu, D., and Pohnert, G. 2005b. Survey of the chemical defense potential of diatoms: screening of fifty one species for a,β,λ,δ unsaturated aldehydes. J. Chem. Ecol. 31:949–958.Google Scholar
  141. Wichard, T., Poulet, S.A., and Pohnert, G. 2005c. Determination and quantification of alpha,beta,gamma,delta-unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 814:155–161.Google Scholar
  142. Wichard, T., Gerecht, A., Boersma, M., Poulet, S.A., Wiltshire, K., and Pohnert, G. 2007. Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Chembiochem: A European Journal of Chemical Biology 8:1146–1153.Google Scholar
  143. Wichard, T., Poulet, S.A., Boulesteix, A.L., Ledoux, J.B., Lebreton, B., Marchetti, J., and Pohnert, G. 2008. Influence of diatoms on copepod reproduction. II. Uncorrelated effects of diatom-derived α,β,χ,δ-unsaturated aldehydes and polyunsaturated fatty acids on Calanus helgolandicus in the field. Prog. Oceanogr. 77:30–44.Google Scholar
  144. Wood, W.F. 1983. Chemical ecology: chemical communication in nature. J. Chem. Ed. 60:531–539.Google Scholar
  145. Wu, J.T., Chiang, Y.R., Huang, W.Y., and Jane, W.N. 2006. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat. Toxicol. 80:338–345.PubMedGoogle Scholar
  146. Yamada, N., Murakami, N., Kawamura, N., and Sakakibara, J. 1994. Mechanism of an early lysis by fatty acids from axenic Phormidium tenue (musty odor-producing cyanobacterium) and its growth prolongation by bacteria. Biol. Pharm. Bull. 17:1277–1281.PubMedGoogle Scholar
  147. Yasumoto, T., Underdal, B., Aune, T., Hormazabal, V., Skulberg, O.M., and Oshima, Y. 1990. Screening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norwegian coastal waters, pp. 436–440. In E. Graneli, B. Sundström, L. Edler, and D.M. Anderson (eds.), 4th International Conference on Toxic Marine Phytoplankton. Elsevier, New York.Google Scholar
  148. Yongmanitchai, W., and Ward, O.P. 1991. Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry 31:2963–2967.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Aquatic Ecosystems Management Research DivisionNational Water Research Institute – Environment CanadaBurlingtonCanada
  2. 2.School of Marine Science and TechnologyNewcastle UniversityNewcastle upon Tyne NE1 7RUUK
  3. 3.Laboratory of Chemical Ecology – LECHEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations