Lipids in marine copepods: latitudinal characteristics and perspective to global warming

  • Gerhard Kattner
  • Wilhelm Hagen


Marine zooplankton represent a very diverse group in the world’s oceans, with numerous taxa of high abundance and biomass. Many of these zooplankton species, especially the dominating copepods, are able to accumulate large reserves of energy-rich lipids, exhibiting some of the highest lipid levels in organisms on earth. Their unusual way to store these lipids, namely as wax esters, is another particularity of many zooplankton species. It is generally accepted that wax esters serve as long-term metabolic reserves, whereas triacylglycerols are utilized for short-term demands, although the physiological advantage of wax esters as long-term deposits over triacylglycerols is still unclear. The geographical distribution of wax esters in marine zooplankton was first studied in detail by Lee and co-authors in the 1970s (Lee et al. 1971; Lee and Hirota 1973). They showed that especially herbivorous calanoid copepods from habitats with a marked seasonality intensely synthesize wax esters, which in many herbivorous species consist, to a large degree, of specific long-chain monounsaturated fatty acids (MUFA) and alcohols (reviewed by Sargent and Henderson 1986; Dalsgaard et al. 2003; Lee et al. 2006).


Essential Fatty Acid Zooplankton Species Calanoid Copepod Copepod Species Spring Phytoplankton Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Sigrid Schnack-Schiel for her constructive support and her expertise in copepod biology. We thank Martin Graeve for helpful comments and sharing unpublished lipid data.


  1. Ackman, R.G., Tocher, C.S., and McLachlan, J. 1968. Marine phytoplankter fatty acids. J. Fish. Res. Board Can. 25:1603–1620.Google Scholar
  2. Albers, C.S., Kattner, G., and Hagen, W. 1996. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar. Chem. 55:347–358.CrossRefGoogle Scholar
  3. Arts, M.T., Ackman, R.G., and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137.CrossRefGoogle Scholar
  4. Atkinson, A., Siegel, V., Pakhomov, E., and Rothery, P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103.PubMedCrossRefGoogle Scholar
  5. Auel, H., and Hagen, W. 2002. Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar. Biol. 140:1013–1021.CrossRefGoogle Scholar
  6. Båmstedt, U., and Tande, K. 1988. Physiological responses of Calanus finmarchicus and Metridia longa (Copepoda: Calanoida) during winter–spring transition. Mar. Biol. 99:31–38.CrossRefGoogle Scholar
  7. Bradford-Grieve, J.M., Markhaseva, E.L., Rocha, C.E.F., and Abiahy, B. 1999. Copepoda, pp. 869–1098. In D. Boltovskoy (ed.), South Atlantic Zooplankton, Vol. 2. Backhuys, Leyden.Google Scholar
  8. Campbell, R.W., and Dower, J.F. 2003. Role of lipids in the maintenance of neutral buoyancy by zooplankton. Mar. Ecol. Prog. Ser. 263:93–99.CrossRefGoogle Scholar
  9. Conover, R.J., and Huntley, M. 1991. Copepods in ice-covered seas – distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. J. Mar. Syst. 2:1–41.CrossRefGoogle Scholar
  10. Conover, R.J., and Siferd, T.D. 1993. Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic 46:303–311.Google Scholar
  11. Cornils, A., Schnack-Schiel, S.B., Böer, M., Graeve, M., Struck, U., Al-Najjar, T., and Richter, C. 2007. Feeding of Clausocalanids (Calanoida, Copepoda) on naturally occurring particles in the northern Gulf of Aqaba (Red Sea). Mar. Biol. 151:1261–1274.CrossRefGoogle Scholar
  12. Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D.C., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340.PubMedCrossRefGoogle Scholar
  13. Dittmar, T., and Kattner, G. 2003. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar. Chem. 83:103–120.CrossRefGoogle Scholar
  14. Falk-Petersen, S., Sargent, J.R., and Tande, K.S. 1987. Lipid composition of zooplankton in relation to the sub-Arctic food web. Polar Biol. 8:115–120.CrossRefGoogle Scholar
  15. Falk-Petersen, S., Hop, H., Budgell, W.P., Hegseth, E.N., Korsnes, R., Loyning, T.B., Ørbaek, J.B., Kawamura, T., and Shirasawa, K. 2000. Physical and ecological processes in the Marginal Ice Zone of the northern Barents Sea during the summer melt periods. J. Mar. Syst. 27:131–159.CrossRefGoogle Scholar
  16. Falk-Petersen, S., Timofeev, S., Pavlov, V., and Sargent, J.R. 2007. Climate variability and the possible effects on Arctic food chains. The role of Calanus, pp. 147–166. In J.B. Orbaek, T. Tombre, R. Kallenborn, E. Hegseth, S. Falk-Petersen, and A.H. Hoel (eds.), Arctic-Alpine Ecosystems and People in a Changing Environment. Springer, Berlin.CrossRefGoogle Scholar
  17. Farkas, T. 1979. Adaptation of fatty acid compositions to temperature – a study on planktonic crustaceans. Comp. Biochem. Physiol. 64B:71–76.Google Scholar
  18. Flato, G.M., Boer, G.J., Lee, W.G., McFarlane, N.A., Ramsden, D., Reader, M.C., and Weaver, A.J. 2000. The Canadian centre for climate modelling and analysis global coupled model and its climate. Climate Dyn. 16:451–467.CrossRefGoogle Scholar
  19. Fraser, A.J., Sargent, J.R., and Gamble, J.C. 1989. Lipid class and fatty acid composition of Calanus finmarchicus (Gunnerus), Pseudocalanus sp. and Temora longicornis Müller from a nutrient-enriched seawater enclosure. J. Exp. Mar. Biol. Ecol. 130:81–92.CrossRefGoogle Scholar
  20. Gatten, R.R., Corner, E.D.S., Kilvington, C.C., and Sargent, J.R. 1979. A seasonal survey of the lipids of Calanus helgolandicus Claus from the English channel, pp. 275–284. In E. Naylor, and R.G. Hartnoll (eds.), Cyclic Phenomena in Plants and Animals. Pergamon, Oxford.Google Scholar
  21. Gradinger, R. 1995. Climate change and biological oceanography of the Arctic Ocean. Phil. Trans. R. Soc. Lond. A 352:277–286.CrossRefGoogle Scholar
  22. Graeve, M., Albers, C., and Kattner, G. 2005. Assimilation and biosynthesis of lipids in Arctic Calanus species based on 13C feeding experiments with a diatom. J. Exp. Mar. Biol. Ecol. 317:109–125.CrossRefGoogle Scholar
  23. Graeve, M., Kattner, G., and Hagen, W. 1994a. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol. 182:97–110.CrossRefGoogle Scholar
  24. Graeve, M., Hagen, W., and Kattner, G. 1994b. Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep-Sea Res. 41:915–924.CrossRefGoogle Scholar
  25. Hagen, W., and Auel, H. 2001. Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104:313–326.PubMedCrossRefGoogle Scholar
  26. Hagen, W., Kattner, G., and Graeve, M. 1993. Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Mar. Ecol. Prog. Ser. 97:135–142.CrossRefGoogle Scholar
  27. Hagen, W., Kattner, G., and Graeve, M. 1995. On the lipid biochemistry of polar copepods: compositional differences in the Antarctic calanoids Euchaeta antarctica and Euchirella rostromagna. Mar. Biol. 123:451–457.CrossRefGoogle Scholar
  28. Hagen, W., Van Vleet, E.S., and Kattner, G. 1996. Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar. Ecol. Prog. Ser. 134:85–89.CrossRefGoogle Scholar
  29. Hagen, W., Kattner, G., Terbrüggen, A., and Van Vleet, E.S. 2001. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar. Biol. 139:95–104.CrossRefGoogle Scholar
  30. Hall, J.M., Parrish, C.C., and Thompson, R.J. 2002. Eicosapentaenoic acid regulates Scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull. 2002:201–203.CrossRefGoogle Scholar
  31. Hansen, A.S., Nielsen, T.G., Levinsen, H., Madsen, S.D., Thingstad, T.F., and Hansen, B.W. 2003. Impact of changing ice cover on pelagic productivity and foodweb structure in Disko Bay, West Greenland: a dynamic model approach. Deep-Sea Res. I 50:171–187.CrossRefGoogle Scholar
  32. Harrington, G.W., Beach, D.H., Dunham, J.E., and Holz, G.G. 1970. The polyunsaturated fatty acids of dinoflagellates. J. Protozool. 17:213–219.PubMedGoogle Scholar
  33. Heath, M.R., Boyle, P., Gislason, A., Gurney, W., Hay, S.J., Head, E., Holmes, S., Ingvarsdóttir, A., Jónasdóttir, S.H., Lindeque, P., Pollard, R., Rasmussen, J., Richards, K., Richardson, K., Smerdon, G., and Speirs, D. 2004. Comparative ecology of over-wintering Calanus finmarchicus in the northern North Atlantic, and implications for life-cycle patterns. ICES J. Mar. Sci. 61:698–708.CrossRefGoogle Scholar
  34. Hirche, H.-J. 1987. Temperature and plankton II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Mar. Biol. 94:347–356.CrossRefGoogle Scholar
  35. Hirche, H.-J. 1989. Spatial distribution of digestive enzyme activities of Calanus finmarchicus and C. hyperboreus in Fram Strait/Greenland Sea. J. Plankton Res. 11:431–443.CrossRefGoogle Scholar
  36. Hirche, H.-J. 1996. The reproductive biology of the marine copepod Calanus finmarchicus – a review. Ophelia 44:111–128.Google Scholar
  37. Hopkins, T.L., and Torres, J.J. 1989. Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep-Sea Res. 36:543–560.CrossRefGoogle Scholar
  38. Hopkins, C.C.E., Tande, K.S., Grønvik, S., and Sargent, J.R. 1984. Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: an analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa inermis (Krøyer) and Thysanoessa raschi (M. Sars). J. Exp. Mar. Biol. Ecol. 82:77–99.CrossRefGoogle Scholar
  39. Jónasdóttir, S.H. 1999. Lipid content of Calanus finmarchicus during overwintering in the Faroe-Shetland channel. Fish. Oceanogr. 8 (suppl. 1):61–72.CrossRefGoogle Scholar
  40. Kattner, G. 1989. Lipid composition of Calanus finmarchicus from the North Sea and the Arctic. A comparative study. Comp. Biochem. Physiol. 94B:185–188.Google Scholar
  41. Kattner, G., and Krause, M. 1987. Changes in lipids during the development of Calanus finmarchius s.l. from Copepodid I to adult. Mar. Biol. 96:511–518.CrossRefGoogle Scholar
  42. Kattner, G., and Krause, M. 1989. Seasonal variations of lipids (wax esters, fatty acids and alcohols) in calanoid copepods from the North Sea. Mar. Chem. 26:261–275.CrossRefGoogle Scholar
  43. Kattner, G., and Graeve, M. 1991. Wax ester composition of dominant calanoid copepods of the Greenland Sea/Fram Strait region. Polar Res. 10:479–487.CrossRefGoogle Scholar
  44. Kattner, G., and Hagen, W. 1995. Polar herbivorous copepods – different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52:329–335.CrossRefGoogle Scholar
  45. Kattner, G., Krause, M., and Trahms, J. 1981. Lipid composition of some typical North Sea copepods. Mar. Ecol. Prog. Ser. 4:69–74.CrossRefGoogle Scholar
  46. Kattner, G., Gercken, G., and Eberlein, K. 1983. Development of lipids during a spring plankton bloom in the northern North Sea. I. Particulate fatty acids. Mar. Chem. 14:149–162.CrossRefGoogle Scholar
  47. Kattner, G., Hirche, H.-J., and Krause, M. 1989. Spatial variability in lipid composition of calanoid copepods from Fram Strait, the Arctic. Mar. Biol. 102:473–480.CrossRefGoogle Scholar
  48. Kattner, G., Graeve, M., and Hagen, W. 1994. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 118:637–644.CrossRefGoogle Scholar
  49. Kattner, G., Hagen, W., Falk-Petersen, S., Sargent, J.R., and Henderson, R.J. 1996. Antarctic krill Thysanoessa macrura fills a major gap in marine lipogenic pathways. Mar. Ecol. Prog. Ser. 134:295–298.CrossRefGoogle Scholar
  50. Kattner, G., Hagen, W., Graeve, M., and Albers, C. 1998. Exceptional lipids and fatty acids in the pteropod Clione limacina (Gastropoda) from both polar oceans. Mar. Chem. 61:219–228.CrossRefGoogle Scholar
  51. Kattner, G., Albers, C., Graeve, M., and Schnack-Schiel, S.B. 2003. Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol. 26:666–671.CrossRefGoogle Scholar
  52. Kattner, G., Hagen, W., Lee, R.F., Campbell, R., Deibel, D., Falk-Petersen, S., Graeve, M., Hansen, B.W., Hirche, H.J., Jónasdóttir, S.H., Madsen, M.L., Mayzaud, P., Müller-Navarra, D.C., Nichols, P.D., Paffenhöfer, G.-A., Pond, D., Saito, H., Stübing, D., and Virtue, P. 2007. Perspectives on marine zooplankton lipids. Can. J. Fish. Aquat. Sci. 64:1628–1639.CrossRefGoogle Scholar
  53. Laakmann, S. 2004. Abundanz und Reproduktionserfolg ausgewählter calanoider Copepoden während der Frühjahrsplanktonblüte um Helgoland. M.Sc. thesis, University of Bremen, pp. 75.Google Scholar
  54. Lee, R.F. 1974. Lipid composition of the copepod Calanus hyperboreus from the Arctic Ocean. Changes with depth and season. Mar. Biol. 26:313–318.CrossRefGoogle Scholar
  55. Lee, R.F. 1975. Lipids of Arctic zooplankton. Comp. Biochem. Physiol. 51B:263–266.Google Scholar
  56. Lee, R.F., and Hirota, J. 1973. Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol. Oceanogr. 18:227–239.CrossRefGoogle Scholar
  57. Lee, R.F., Hirota, J., and Barnett, A.M. 1971. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res. 18:1147–1165.Google Scholar
  58. Lee, R.F., Nevenzel, J.C., and Paffenhöfer, G.-A. 1972. The presence of wax esters in marine planktonic copepods. Naturwissenschaften 59:406–411.CrossRefGoogle Scholar
  59. Lee, R.F., Nevenzel, J.C., and Lewis, A.G. 1974. Lipid changes during life cycle of marine copepod Euchaeta japonica Marukawa. Lipids 9:891–898.CrossRefGoogle Scholar
  60. Lee, R.F., Hagen, W., and Kattner, G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307:273–306.CrossRefGoogle Scholar
  61. Lischka, S., and Hagen, W. 2005. Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Polar Biol. 28:910–921.CrossRefGoogle Scholar
  62. Lischka, S., and Hagen, W. 2007. Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar. Biol. 150:445–454.Google Scholar
  63. Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W., and Trivelpiece, S. 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900.CrossRefGoogle Scholar
  64. Mauchline, J. 1998. The biology of calanoid copepods. Adv. Mar. Biol. 33:1–660.CrossRefGoogle Scholar
  65. Mayor, D., Anderson, T., Irigoien, X., and Harris, R. 2006. Feeding and reproduction of Calanus finmarchicus during non-bloom conditions in the Irminger Sea. J. Plankton Res. 28:1167–1179.CrossRefGoogle Scholar
  66. Metz, C. 1995. Seasonal variation in the distribution and abundance of Oithona and Oncaea species (Copepoda, Crustacea) in the southeastern Weddell Sea, Antarctica. Polar Biol. 15:187–194.CrossRefGoogle Scholar
  67. Miller, C.B. 1993. Pelagic production processes in the Subarctic Pacific. Prog. Oceanogr. 32:1–15.CrossRefGoogle Scholar
  68. Mumm, N. 1993. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13:451–461.CrossRefGoogle Scholar
  69. Norrbin, M.E., Olsen, R.-E., and Tande, K.S. 1990. Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, northern Norway. Mar. Biol. 105:205–211.CrossRefGoogle Scholar
  70. Paffenhöfer, G.-A. 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J. Plankton Res. 15:37–55.CrossRefGoogle Scholar
  71. Peters, J., Renz, J., van Beusekom, J., Boersma, M., and Hagen, W. 2006. Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar. Biol. 149:1417–1429.CrossRefGoogle Scholar
  72. Peters, J., Dutz, J., and Hagen, W. 2007. Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar. Ecol. Prog. Ser. 341:153–163.CrossRefGoogle Scholar
  73. Petersen, W. 1998. Life cycle strategies in coastal upwelling zones. J. Mar. Syst. 15:313–326.CrossRefGoogle Scholar
  74. Richardson, A.J., and Schoeman, D.S. 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1613.PubMedCrossRefGoogle Scholar
  75. Richardson, K., Jónasdóttir, S.H., Hay, S.J., and Christoffersen, A. 1999. Calanus finmarchicus egg production and food availability in the Faroe-Shetland Channel and northern North Sea: October-March. Fish. Oceanogr. 8:153–162.CrossRefGoogle Scholar
  76. Richter, C. 1994. Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea. Rep. Polar Res. 154:1–87.Google Scholar
  77. Runge, J.A., Therriault, J., Legendre, L., Ingram, R.G., and Demers, S. 1991. Coupling between ice microalgal productivity and the pelagic, metazoan food web in the southeastern Hudson Bay: a synthesis of results. Polar Res. 10:325–338.CrossRefGoogle Scholar
  78. Saito, H., and Kotani, Y. 2000. Lipids of four boreal species of calanoid copepods: origin of monoene fats of marine animals at higher trophic levels in the grazing food chain in the subarctic ocean ecosystem. Mar. Chem. 71:69–82.CrossRefGoogle Scholar
  79. Sargent, J.R., and Henderson, R.J. 1986. Lipids, pp. 59–108. In E.D.S. Corner and S.C.M. O’Hara (eds.), The Biological Chemistry of Marine Copepods. Clarendon, Oxford.Google Scholar
  80. Sargent, J.R., Eilertsen, H.C., Falk-Petersen, S., and Taasen, J.P. 1985. Carbon assimilation and lipid production in phytoplankton in northern Norwegian fjords. Mar. Biol. 85:109–116.CrossRefGoogle Scholar
  81. Sakshaug, E. 1997. Biomass and productivity distributions and their variability in the Barents Sea. ICES J. Mar. Sci. 54:341–351.CrossRefGoogle Scholar
  82. Schnack, S.B., Marschall, S., and Mizdalski, E. 1985. On the distribution of copepods and larvae of Euphausia superba in Antarctic waters during February 1982. Meeresforschung 30:251–263.Google Scholar
  83. Schnack-Schiel, S.B., and Hagen, W. 1995. Life-cycle strategies of Calanoides acutus, Calanus propinquus and Metridia gerlachei (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica. ICES J. Mar. Sci. 52:541–548.CrossRefGoogle Scholar
  84. Scott, C.L., Kwasniewski, S., Falk-Petersen, S., and Sargent, J.R. 2002. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser. 235:127–134.CrossRefGoogle Scholar
  85. Serreze, M.C., Holland, M., and Stroeve, J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536.PubMedCrossRefGoogle Scholar
  86. Sewell, R.B.S. 1947. The free-swimming planktonic copepods. Systematic account. Sci. Rep. John Murray Exped. 1933–1934. Br. Mus. Nat. Hist. 8:1–303.Google Scholar
  87. Shinitzky, M. 1984. Physiology of membrane fluidity. Vol. I, II. CRC Inc., Boca RatonGoogle Scholar
  88. Siegel, V. 2005. Distribution and population dynamics of Euphausia superba: Summary of recent findings. Polar Biol. 29:1–22.CrossRefGoogle Scholar
  89. Smetacek, V., and Nicol, S. 2005. Polar ocean ecosystems in a changing world. Nature 437:362–368.PubMedCrossRefGoogle Scholar
  90. Smith, S.L., and Schnack-Schiel, S.B. 1990. Polar zooplankton, pp. 527–598. In W.O. Smith (ed.), Polar Oceanography, Part B: Chemistry, Biology, and Geology. Academic, San Diego.Google Scholar
  91. Stillwell, W., and Wassall, S.R. 2003. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids 126:1–27.PubMedCrossRefGoogle Scholar
  92. Verheye, H.M., Hagen, W., Auel, H., Ekau, W., Loick, N., Rheenen, I., Wencke, P., and Jones, S. 2005. Life strategies, energetics and growth characteristics of Calanoides carinatus (Copepoda) in the Angola-Benguela Front region. African J. Mar. Sci. 27:641–652.CrossRefGoogle Scholar
  93. Visser, A.W, and Jónasdóttir, S.H. 1999. Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish. Oceanogr. 8:100–106.CrossRefGoogle Scholar
  94. Ward, P., Shreeve, R.S., and Cripps, G.C. 1996. Rhincalanus gigas and Calanus simillimus: Lipid storage patterns of two species of copepod in the seasonally ice free zone of the Southern Ocean. J. Plankton Res. 18:1439–1454.CrossRefGoogle Scholar
  95. Wu, P., Wood, R., and Stott, P. 2005. Human influence on increasing Arctic river discharges. Geophys. Res. Lett. 32:L02703.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine Research, Ecological ChemistryBremerhavenGermany
  2. 2.Marine ZoologyFaculty of Biology/Chemistry, University of BremenGermany

Personalised recommendations