Skip to main content

Health and condition in fish: the influence of lipids on membrane competency and immune response

  • Chapter
  • First Online:

Abstract

Traditionally fisheries biologists have used various metrics to indicate the condition and, by implication, health of fish. These indices are usually based on relationships between length and weight (Anderson and Neumann 1996). Although such metrics can, under some circumstances, provide a quick estimate of a fish’s condition, their ability to shed light on the underlying cause-and-effect relationship(s) governing a fish’s health and nutritional status are limited. Biochemical measures (e.g. lipids including fatty acids (FA) and sterols, proteins and their constituent amino acids, and trace elements) offer complimentary measures to assess, in a more specific way, the condition and underlying health of fish. Fatty acids and other lipids affect the health of fish in many ways; including, but not limited to, their effects on growth, reproduction, behavior, vision, osmoregularity, membrane fluidity (thermal adaptation), and immune response. In this review, we focus on the latter two roles that lipids play in mediating the health and condition of fish.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, S. M. 1999. Ecological role of lipids in the health and success of fish populations. In M.T. Arts and B.C. Wainman [eds.] , Lipids in Freshwater Ecosystems. Springer, New York, pp. 132–160

    Google Scholar 

  • Anderson, R. O. and Neumann, R. M. 1996. Length, weight, and associated structures. In B.R. Murphy and D.W. Willis [eds.], Fisheries Techniques, 2nd edition. American Fisheries Society, Bethesda, pp. 447–481

    Google Scholar 

  • Arts, M. T., Ackman, R. G., and Holub, B. J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137

    Article  CAS  Google Scholar 

  • Balfry, S. and Higgs, D. A. 2001. Influence of dietary lipid composition on the immune system and disease resistance of finfish. In C. Lim and C.D. Webster [eds.], Nutrition and fish health. Food Products Press, Binghampton, pp. 213–243

    Google Scholar 

  • Bell, J. G., McVicar, A. H., Park, M. T., and Sargent, J. R. 1991. High dietary linoleic acid affects the fatty acid compositions of individual phospholipids from tissues from Atlantic salmon (Salmo salar): association with stress susceptibility and cardiac lesion. J. Nutrition 121:1163–1172

    CAS  Google Scholar 

  • Bell, J. G., Sargent, J. R., and Raynard, R. S. 1992. Effects of increasing dietary linoleic acid on phospholipid fatty acid composition and eicosanoid production in leucocytes and gill cells in Atlantic salmon (Salmo salar). Prostaglandins, Leukotrienes, and Essential Fatty Acids 45:197–206

    Article  PubMed  CAS  Google Scholar 

  • Bell, J. G., Dick, J. R., McVicar, A. H., Sargent, J. R., and Thompson, K. D. 1993. Dietary sunflower, linseed, and fish oils affect phospholipid fatty acid composition, development of cardiac lesions, phospholipase activity, and eicosanoid production in Atlantic salmon (Salmo salar). Prostaglandins, Leukotrienes, and Essential Fatty Acids 49:665–673

    Article  PubMed  CAS  Google Scholar 

  • Bell, J. G., Tocher, D. R., MacDonald, F. M., and Sargent, J. R. 1994. Effects of diets rich in linoleic (18:2n-6) and ∝-linolenic (18:3n-3) acids on growth, lipid class and fatty acid compositions and eicosanoid production in juvenile turbot (Scophthalmus maximus L.) Fish Physiol. Biochem. 13:105–118

    CAS  Google Scholar 

  • Bell, J. G., Castell, J. D., Tocher, D. R., MacDonald, F. M., and Sargent, J. R. 1995. Effects of different dietary arachidonic acid: docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot (Scophthalmus maximus). Fish Physiol. Biochem. 14:139–151

    Article  CAS  Google Scholar 

  • Bell, J. G., Tocher, D. R., Henderson, R. J., Dick, J. R., and Crampton, V. O. 2003. Altered fatty acid composition in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J. Nutrition 133:2793–2801

    CAS  Google Scholar 

  • Bell, J. G., Henderson, R. J., Tocher, D. R., McGhee, F., and Sargent, J. R. 2004. Replacement of dietary fish oil with increasing levels of linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids 39:223–232

    Article  PubMed  CAS  Google Scholar 

  • Blazer, V. S. 1992. Nutrition and disease resistance in fish. Ann. Rev. Fish Dis. 2:309–323

    Article  Google Scholar 

  • Bowden, L. A., Weitzel, B., Ashton, I. P., Secombs, C. J., Restall, C. J., Walton, T. J., and Rowley, A. F. 1994. Effect of dietary cholesterol on membrane properties and immune functions in rainbow trout. Biochem. Soc. Trans. 22:339S

    PubMed  CAS  Google Scholar 

  • Bransden, M. P., Carter, C. G., and Nichols, P. D. 2003. Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition, and disease resistance. Comp. Biochem. Physiol. 135B:611–625

    CAS  Google Scholar 

  • Brett, M. T. and Müller-Navarra, D. C. 1997. The role of highly unsaturated fatty acids in aquatic food web processes. Freshw. Biol. 38:483–499

    Article  CAS  Google Scholar 

  • Brett, M. T., Muller-Navarra, D. C., Ballantyne, A. P., Ravet, J. L., and Goldman, C. R. 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 51:2428–2437

    Article  CAS  Google Scholar 

  • Brockerhoff, H. and Hoyle, R. J. 1963. On the structure of the depot fats of marine fish and mammals. Arch. Biochem. Biophys. 102:452–455

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff, H., Hoyle, R. J., and Ronald, K. 1964. Retention of the fatty acid distribution pattern of a dietary triglyceride in animals. J. Biol. Chem. 239:735–739

    PubMed  CAS  Google Scholar 

  • Brooks, S., Clark, G. T., Wright, S. M., Trueman, R. J., Postle, A. D., Cossins, A. R., and Maclean, N. M. 2002. Electrospray ionisation mass spectrometric analysis of lipid restructuring in the carp (Cyprinus carpio L.) during cold acclimation. J. Exp. Biol. 205:3989–3997

    PubMed  CAS  Google Scholar 

  • Buda, C. I., Dey, I., Balogh, N., Horvath, L. I., Maderspach, K., Juhasz, M., Yeo, Y. K., and Farkas, T. 1994. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Natl. Acad. Sci. USA. 91:8234–8238

    Article  PubMed  CAS  Google Scholar 

  • Caballero, M. J., Orbach, A., Rosenlund, G., Montero, D., Grisvold, M., and Izquierdo, M. S. 2002. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhychus mykiss. Aquaculture 214:253–271

    Article  CAS  Google Scholar 

  • Coolbear, K. P., Berde, C. B., and Keough, K. M. W. 1983. Gel to liquid-cystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochem. 22:1466–1473

    Article  CAS  Google Scholar 

  • Cooper, R. A., Leslie, M. H., Fischkoff, S., Shinitzky, M., and Shattil, S. J. 1978. Factors influencing the lipid composition and fluidity of red cell membranes in vitro: Production of red cells possessing more than two cholesterols per phospholipid. Biochem. 17:327–331

    Article  CAS  Google Scholar 

  • Dalsgaard, J., St. John, M., Kattner, G., Muller-Navarra, D., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340

    Article  PubMed  Google Scholar 

  • Dey, I., Buda, C., Wiik, T., Halver, J. E., and Farkas, T. 1993. Molecular and structural composition of phospholipid membranes in lives of marine and freshwater fish in relation to temperature, Proc. Nat. Acad. Sci. 90:7498–7502

    Article  PubMed  CAS  Google Scholar 

  • Eldho, N. V., Feller, S. E., Tristram-Nagle, S., Polozov, I. V., Gawrisch, K. 2003. Polyunsaturated docosahexaenoic vs docosapentaenoic acid-differences in lipid matrix properties from the loss of one double bond. J Am. Chem. Soc. 125:6409–6421

    Article  PubMed  CAS  Google Scholar 

  • Estévez, A., McEvoy, L. A., Bell, J. G., and Sargent, J. R. 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180:321–343

    Article  Google Scholar 

  • Farkas, T., Kitajka, K., Fodor, E., Csengeri, I., Landes, E., Yeo, Y. K., Krasznai, Z., and Halver, J. E. 2000. Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA. 97:6362–6366

    Article  PubMed  CAS  Google Scholar 

  • Feller, S. E., Gawrisch, K., MacKerrell, Jr., A. D. 2002. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc. 124:318–326

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, H. W., Morrison, D., Ostland, V. E., Lumsden, J., and Bryne, P. 1992. Responses of mucus-producing cells in gill disease of rainbow trout (Oncorhynchus mykiss). J. Comp. Pathol. 106:255–265

    Article  PubMed  CAS  Google Scholar 

  • Fodor, E., Jones, R. H., Buda, C., Kitajka, K., Dey, I., and Farkas, T. 1995. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Fracalossi, D. M. and Lovell, R. T. 1994. Dietary lipid sources influence responses of channel catfish (Ictalurus punctatus) to challenge with the pathogen Edwardsiella ictaluri. Aquaculture 119:287–298

    Article  CAS  Google Scholar 

  • Glencross, B. D., Hawkins, W. E., and Curnow, J. G. 2003. Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after growout on plant oil based diets. Aquacult. Nutr. 9:409–418

    Article  CAS  Google Scholar 

  • Hagve, T. A., Woldseth, B., Brox, J., Narce, M., and Poisson, J. P. 1998. Membrane fluidity and fatty acid metabolism in kidney cells from rats fed purified eicosapentaenoic acid or purified docosahexaenoic acid. Scand. J. Clin. Lab. Invest. 58:187–194

    Article  PubMed  CAS  Google Scholar 

  • Haines, T. H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers. Prog. Lipid Res. 40:299–324

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. M., Parish, C. C., and Thompson, R. J. 2002. Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull. 202:201–203

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, M., Hossain, S., and Shido, O. 2006. Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol. Cell. Biochem. 293:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hazel, J. R. 1993. Thermal Biology. In D.H. Evans [ed.], The Physiology of Fishes, CRC Press, Boca Raton, pp. 427–467

    Google Scholar 

  • Hazel, J. R. and Williams, E. E. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 26:281–347

    Google Scholar 

  • Hebert, C. E., Weseloh, D. V. C., Idrissi, A., Arts, M. T., O’Gorman, R., Gorman, O. T., Locke, B., Madenjian, C. P., and Roseman, E. F. 2008. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change. Ecology 89:891–897

    Article  PubMed  Google Scholar 

  • Higgs, D. A. and Dong, F. M. 2000. Lipids and fatty acids. In R.R. Stickney [ed.], Aquaculture Encyclopedia. Wiley, New York, pp. 476–496

    Google Scholar 

  • Holey, M. E., Elliot, R. F., Marcquenski, S. V., Hnath, J. G., and Smith, K. D. 1998. Chinook salmon epizootics in Lake Michigan: possible contributing factors and management implications. J. Aquat. Animal Health 10:201–210

    Article  Google Scholar 

  • Hossain, M. S., Hashimoto, M., Gamoh, S., and Masumura, S. 1999. Association of age-related decrease in platelet membrane fluidity with platelet lipid peroxide. Life Sci. 64:135–143

    Article  PubMed  CAS  Google Scholar 

  • Huber, T., Rajamoorthi, K., Kurze, V. F., Beyer, K., Brown, M. F. 2002. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by 2H NMR and molecular dynamics simulations. J. Am. Chem. Soc. 124:298–309

    Article  PubMed  CAS  Google Scholar 

  • Hull, M. C., Cambrea, L. R., Hovis, J. S. 2005. Infrared spectroscopy of fluid lipid bilayers. Anal. Chem. 77:6096–6099

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., and Rosenlund, G. 2003. Dietary lipid sources for seabream and seabass: Growth performance, tissue composition and flesh quality. Aquaculture Nutr. 9:397–407.

    Article  CAS  Google Scholar 

  • Jobling, M. 2003. Do changes in Atlantic salmon, Salmo salar L., fillet fatty acids following a dietary switch represent wash-out or dilution? Test of a dilution model and its application. Aquaculture Res. 34:1215–1221

    Article  CAS  Google Scholar 

  • Jobling, M. 2004a. Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232:551–562

    Article  CAS  Google Scholar 

  • Jobling, M. 2004b. “Finishing” feeds for carnivorous fish and the fatty acid dilution model. Aquaculture Res. 35:706–709

    Article  Google Scholar 

  • Kitajka, K., Buda, C. S., Fodor, E., Halver, J. E., and Farkas, T. 1996. Involvement of phospholipid molecular species in controlling structural order of vertebrate brain synaptic membranes during thermal evolution. Lipids 31:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Kelly, A. M. and Kohler, C. C. 1999. Cold tolerance and fatty acid composition of striped bass, white bass, and their hybrids. N. Am. J. Aquaculture 61:278–285

    Article  Google Scholar 

  • Lands, W. E. M. 1992. Biochemistry and physiology of n-3 fatty acids. Fed. Am. Soc. Exp. Biol. 6:2530–2536

    PubMed  CAS  Google Scholar 

  • Lane, R. L., Trushenski, J. T., and Kohler, C. C. 2006. Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops x M. saxatilis following change in dietary lipid source. Lipids 41:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Lewis, H. A. and Kohler, C. C. 2008. Corn gluten meal partially replaces dietary fish meal without compromising growth or the fatty acid composition of sunshine bass. N. Am. J. Aquaculture 70:50–60

    Article  Google Scholar 

  • Li, M. H., Wise, D. J., Johnson, M. R., and Robinson, E. H. 1994. Dietary menhaden oil reduced resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri. Aquaculture 128:335–344

    Article  CAS  Google Scholar 

  • Lin, Y. -H. and Shiau, S. -Y. 2007. Effect of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquaculture Nutr. 13:137–144

    Article  CAS  Google Scholar 

  • Lodemel, J. B., Mayhew, T. M., Myklebust, R., Olsen, R. E., Espelid, S., and Ringo, E. 2001. Effect of three dietary oils on disease susceptibility in arctic charr (Salvelinus alpinis L.) during cohabitant challenge with Aeromonus salmonicida ssp. salmonicida. Aquaculture Res. 32:935–945

    Article  CAS  Google Scholar 

  • Los, D. A. and Murata, N. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Lund, E. K., Harvey, L. J., Ladha, S., Clark, D. C., and Johnson, I. T. 1999. Effects of dietary fish oil supplementation on the phospholipid composition and fluidity of cell membranes from human volunteers. Ann. Nutr. Metab. 43:290–300

    Article  PubMed  CAS  Google Scholar 

  • Madenjian, C. P., Höök, T. O., Rutherford, E. S., Mason, D. M., Croley II, T. E., Szalai, E. B., and Bence, J. R. 2005. Recruitment variability of alewives in Lake Michigan. Trans. Am. Fish Soc. 134:218–230

    Article  Google Scholar 

  • Manning, B. B., Li, M. H., and Robinson, E. H. 2007. Feeding channel catfish, Ictalurus punctatus, diets amended with refined marine fish oil elevates omega-3 highly unsaturated fatty acids in fillets. J. World Aquaculture Soc. 38:49–58

    Article  Google Scholar 

  • Masuda, R., Takeuchi, T., Tsukamoto, K., Sato, H., Shimizu, K., and Imaizumi, K. 1999. Incorporation of dietary docosahexaenoic acid into the central nervous system of the yellowtail Seriola quinqueradiata. Brain Behav. Evol. 53:173–179

    Article  PubMed  CAS  Google Scholar 

  • Moffat, C. F. 1995. Fish oil triglycerides: a wealth of variation. Lipid Technol. 7:125–129

    Google Scholar 

  • Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. J., and Izquierdo, M. S. 2003. Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture 225:353–370

    Article  CAS  Google Scholar 

  • Müller-Navarra, D. C., Brett, M. T., Park, S., Chandra, S., Ballantyne, A. P., Zorita, E., and Goldman, C. R. 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72

    Article  PubMed  Google Scholar 

  • Nalepa, T. F., Fanslow, D. L., Foley, A. J. III, Lang, G. A., Eadie, B. J., and Quigley, M. A. 2006. Continued disappearance of the benthic amphipod Diporeia spp. in Lake Michigan: is there evidence for food limitation? Can. J. Fish Aquat. Sci. 63:872–890

    Article  CAS  Google Scholar 

  • Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., and Slotte, J. P. 2002. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 41:66–97

    Article  PubMed  CAS  Google Scholar 

  • O’Neal, C. C. and Kohler, C. C. 2008. Effects of replacing menhaden oil with catfish oil on the fatty acid composition of juvenile channel catfish, Ictalurus punctatus. J. World Aquaculture Soc. 39:62–71

    Article  Google Scholar 

  • Regost, C., Arzel, J., Robin, J., Rosenlund, G., and Kaushik, S. J. 2003. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima), 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217:465–482

    Article  CAS  Google Scholar 

  • Robin, J. H., Regost, C., Arzel, J., and Kaushik, S. J. 2003. Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture 225:283–293

    Article  CAS  Google Scholar 

  • Rowley, A. F., Knight, J., Lloyd-Evans, P., Holland, J. W., and Vickers, P. J. 1995. Eicosanoids and their role in immune modulation in fish—a brief overview. Fish and Shellfish Immunol. 5:549–567

    Article  Google Scholar 

  • Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., and Tocher, D. R. 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 11:183–198

    Article  CAS  Google Scholar 

  • Sargent, J. R., Tocher, D. R., and Bell, J. G. 2002. The lipids. In J.E. Halver R.W. Hardy [eds.] Fish nutrition, 3rd edition. Academic Press, San Diego, pp. 181–257

    Google Scholar 

  • Schlechtriem, C., Arts, M. T., and Zellmer, I. D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids 41:397–400

    Article  PubMed  CAS  Google Scholar 

  • Shearer, K. D. 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119:63–88

    Article  CAS  Google Scholar 

  • Sheldon, Jr., W. M. and Blazer, V. S. 1991. Influence of dietary lipid and temperature on bactericidal activity of channel catfish macrophages. J. Aquat. Animal Health 3:87–93

    Article  Google Scholar 

  • Sinensky, M. 1974. Homoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:522–525

    Article  CAS  Google Scholar 

  • Singer, S. J. and Nicholson, G. L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Stillwell, W. and Wassall, S. R. 2003. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids. 126:1–27

    Article  PubMed  CAS  Google Scholar 

  • Stubbs, C. D. and Smith, A. D. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to fluidity and function. Biochim. Biophys. Acta. 779:89–137

    PubMed  CAS  Google Scholar 

  • Snyder, R. J. and Hennessey, T. M. 2003. Cold tolerance and homeoviscous adaptation in freshwater alewives (Alosa pseudoharengus). Fish Physiol. Biochem. 29:117–126

    Article  CAS  Google Scholar 

  • Tocher, D. R. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish Sci. 11:107–184

    Article  CAS  Google Scholar 

  • Torstensen, B. E., Froyland, L., Ornsrud, R., and Lie, O. 2004. Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem. 87:567–580

    Article  CAS  Google Scholar 

  • Tort, L., Balasch, J. C., and MacKenzie, S. 2004. Fish health challenge after stress. Indicators of immunocompetence. Contrib. Sci. 2:443–454

    Google Scholar 

  • Trueman, R. J., Tiku, P. E., Caddick, M. X., and Cossins, A. R. 2000. Thermal thresholds of lipid restructuring and ▵9-desaturase expression in the liver of carp (Cyprinus carpio). J. Exp. Biol. 203:641–650

    PubMed  CAS  Google Scholar 

  • Trushenski, J. T., Kasper, C. S., and Kohler, C. C. 2006. Challenges and opportunities in finfish nutrition. N. Am. J. Aquaculture 68:122–140

    Article  Google Scholar 

  • Trushenski, J. T. and Kohler, C. C. 2008. Influence of stress, exertion, and dietary natural source vitamen E on prostaglandin synthesis, hematology, and tissue fatty acid composition of sunshine bass. N. Am. J. Aquaculture 70:251–265

    Article  Google Scholar 

  • Ulbricht, T. L. V. and Southgate, D. A. T. 1991. Coronary heart disease: seven dietary factors. Lancet 338:985–992

    Article  PubMed  CAS  Google Scholar 

  • Wassall, S. R., Brzustowicz, M. R., Shaikh, S. R., Cherezov, V., Caffrey, M., and Stillwell, W. 2004. Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids 132:79–88

    PubMed  CAS  Google Scholar 

  • Wonnacott, E. J., Lane, R. L., and Kohler, C. C. 2004. Influence of dietary replacement of menhaden oil with canola oil on fatty acid composition of sunshine bass. N. Am. J. Aquaculture 66:243–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Arts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arts, M.T., Kohler, C.C. (2009). Health and condition in fish: the influence of lipids on membrane competency and immune response. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_10

Download citation

Publish with us

Policies and ethics