Algal lipids and effect of the environment on their biochemistry



Lipids play a number of roles in living organisms and can be divided into two main groups: the nonpolar lipids (acylglycerols, sterols, free (nonesterified) fatty acids, wax, and steryl esters) and polar lipids (phosphoglycerides, glycosylglycerides). Polar lipids and sterols are important structural components of cell membranes which act as a selective permeable barrier for cells and organelles. These lipids maintain specific membrane functions providing the matrix for a very wide variety of metabolic processes and participate directly in membrane fusion events. In addition to a structural function, some polar lipids may act as key intermediates (or precursors of intermediates) in cell signalling pathways (e.g. inositol lipids, sphingolipids, oxidative products) and play a role in responding to changes in the environment. Of the nonpolar lipids, the triacylglycerols are abundant storage products, which can be easily catabolised to provide metabolic energy (Gurr et al. 2002). Waxes are common extracellular surface-covering compounds but may act (in form of wax esters) as energy stores especially in organisms from cold water habitats (Guschina and Harwood 2007). Sterols of algae have been studied extensively and a number of comprehensive reviews are already available on these nonpolar lipids (e.g., Patterson 1991; Volkman 2003; see also Chap. 3).


Fatty Acid Composition Photosynthetically Active Radiation Polar Lipid Steryl Ester Phaeodactylum Tricornutum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adlerstein, D., Bigogno, C., Khozin, I., and Cohen, Z. 1997. The effect of growth temperature and culture density on the molecular species composition of the galactolipids in the red microalga Porphyridium cruentum (Rhodophyta). J. Phycol. 33:975–979.CrossRefGoogle Scholar
  2. Al-Fadhli, A., Wahidulla, S., and D’Souza, L. 2006. Glycolipids from the red alga Chondria armata (Kütz.) Okamura. Glycobiology 16:902–915.PubMedCrossRefGoogle Scholar
  3. Alonso, D.L., Belarbi, E.H., Rodriguez-Ruiz, J., Segura, C.I., and Gimenez, A. 1998. Acyl lipids of three microalgae. Phytochemistry 47:1473–1481.CrossRefGoogle Scholar
  4. Alonso, D.L., Belarbi, E.H., Fernandez-Sevilla, J.M., Rodriguez-Ruiz, J., and Grima, E.M. 2000. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous cultures of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471.PubMedCrossRefGoogle Scholar
  5. Andersen, R.J. and Taglialatela-Scafati, O. 2005. Avrainvilloside, a 6-deoxy-6-aminoglucoglycerolipid from the green alga Avrainvillea nigricans. J. Nat. Prod. 68:1428–1430.PubMedCrossRefGoogle Scholar
  6. Anderson, R., Livermore, B.P., Kates, M., and Volcani, B.E. 1978a. The lipid composition of the non-photosynthetic diatom Nitzschia alba. Biochim. Biophys. Acta 528:77–88.Google Scholar
  7. Anderson, R., Kates, M., and Volcani, B.E. 1978b. Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim. Biophys. Acta 528:89–106.Google Scholar
  8. Andersson, M.X., Stridh, M.H., Larsson, K.E., Liljenberg, C., and Sandelius, A.S. 2003. Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett. 537:128–132.PubMedCrossRefGoogle Scholar
  9. Arisz, S.A., van Himbergen, J.A.J., Musgrave, A., van den Ende, H., and Munnik, T. 2000. Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270.PubMedCrossRefGoogle Scholar
  10. Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I., and Zamir, A. 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol. 129:1320–1329.PubMedCrossRefGoogle Scholar
  11. Benning, C., Huang, Z.H., and Gage, D.A. 1995. Accumulation of a novel glycolipid and a betaine lipid in the cells of Rhodobacter sphaeroides. Arch. Biochem. Biophys. 317:103–111.PubMedCrossRefGoogle Scholar
  12. Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., and Cohen, Z. 2002a. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503.CrossRefGoogle Scholar
  13. Bigogno, C., Khozin-Goldberg, I., and Cohen, Z. 2002b. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Phytochemistry 60:135–143.CrossRefGoogle Scholar
  14. Bisseret, P., Ito, S., Tremblay, P.A., Volcani, B.E., Dessort, D., and Kates, M. 1984. Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine in some diatoms and algae. Biochim. Biophys. Acta 796:320–327.PubMedGoogle Scholar
  15. Brett, M.T. and Müller-Navarra, D.C. 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biol. 38:483–499.CrossRefGoogle Scholar
  16. Brown, M.R., Dunstan, G.A., Norwood, S.J., and Miller, K.A. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J. Phycol. 32:64–73.CrossRefGoogle Scholar
  17. Dembitsky, V.M. 1996. Betaine ether-linked glycerolipids: chemistry and biology. Prog. Lipid Res. 35:1–51.PubMedCrossRefGoogle Scholar
  18. D’Ippolito, G., Tucci, S., Cutignano, A., Romano, G., Cimino, G., Miralto, A., et al 2004. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim. Biophys. Acta 1686:100–107.PubMedGoogle Scholar
  19. Eichenberger, W. and Gribi, C. 1997. Lipids of Pavlova lutheri: cellular site and metabolic role of DGCC. Phytochemistry 45:1561–1567.CrossRefGoogle Scholar
  20. Einicker-Lamas, M., Soares, M.J., Soares, M.S., and Oliveira, M.M. 1996. Effects of cadmium on Euglena gracilis membrane lipids. Braz. J. Med. Biol. Res. 29:941–948.PubMedGoogle Scholar
  21. Einicker-Lamas, M., Mezian, G.A., Fernandes, T.B., Silva, F.L.C., Guerra, F., Miranda, K., et al 2002. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ. Pollut. 120:779–786.PubMedGoogle Scholar
  22. Eltgroth, M.L., Watwood, R.L., and Wolfe, G.V. 2005. Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J. Phycol. 41:1000–1009.CrossRefGoogle Scholar
  23. El-Sheek, M.M. and Rady, A.A. 1995. Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 35:139–151.Google Scholar
  24. Fabregas, J., Maseda, A., Dominquez, A., and Otero, A. 2004. The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J. Microbiol. Biotechnol. 20:31–35.Google Scholar
  25. Floreto, E.A.T. and Teshima, S. 1998. The fatty acid composition of seaweeds exposed to different levels of light intensity and salinity. Bot. Mar. 41:467–481.CrossRefGoogle Scholar
  26. Floreto, E.A.T., Teshima, S., and Ishikawa, M. 1996. Effects of nitrogen and phosphorus on the growth and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 39:69–74.CrossRefGoogle Scholar
  27. Gombos, Z. and Murata, N. 1998. Genetic engineering of the unsaturation of membrane glycerolipid: effects on the ability of the photosynthetic machinery to tolerate temperature stress, pp. 249–262. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics, Kluwer, Dordrecht.Google Scholar
  28. Guckert, J.B. and Cooksey, K.E. 1990. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J. Phycol. 26:72–79.CrossRefGoogle Scholar
  29. Gunstone, F.D., Harwood, J.L., and Dijkstra, A.J. 2007. The Lipid Handbook, 3rd ed. Taylor and Francis, Boca Raton, FL, 1447 pp.Google Scholar
  30. Gurr, M.I., Harwood, J.L., and Frayn, K.N. 2002. Lipid Biochemistry. An Introduction, 5th ed. Blackwell, Oxford, 320 pp.CrossRefGoogle Scholar
  31. Guschina, I.A. and Harwood, J.L.2006a. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45:160–186.CrossRefGoogle Scholar
  32. Guschina, I.A. and Harwood, J.L. 2006b. Mechanisms of temperature adaptation in poikilotherms. FEBS Lett. 580:5477–5483.CrossRefGoogle Scholar
  33. Guschina, I.A. and Harwood, J.L. 2007. Complex lipid biosynthesis and its manipulation in plants, pp. 253–279. In P. Ranalli (ed.), Improvement of Crop Plants for Industrial End Use. Springer, Dordrecht.CrossRefGoogle Scholar
  34. Guschina, I.A., Dobson, G., and Harwood, J.L. 2003. Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 64:209–217.PubMedCrossRefGoogle Scholar
  35. Haigh, W.G., Yoder, T.F., Ericson, L., Pratum, T., and Winget, R.R. 1996. The characterisation and cyclic production of highly unsaturated homoserine lipid in Chlorella minutissima. Biochim. Biophys. Acta1299:183–190.Google Scholar
  36. Härtel, H., Dörmann, P., and Benning, C. 2000. DGD1-independent biosynthesis of extraplastidic galactolipids following phosphate deprivation in Arabidopsis. Proc. Natl Acad. Sci. U. S. A. 97:10649–10654.PubMedCrossRefGoogle Scholar
  37. Harwood, J.L. 1998a. Membrane lipids in algae, pp. 53–64. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht.Google Scholar
  38. Harwood, J.L. 1998b. Involvement of chloroplast lipids in the reaction of plants submitted to stress, pp. 287–302. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht.Google Scholar
  39. Harwood, J.L. and Jones, A.L. 1989. Lipid metabolism in algae. Adv. Bot. Res. 16:1–53.CrossRefGoogle Scholar
  40. Hu, H. and Gao, K. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett. 28:987–992.Google Scholar
  41. Jiang, H. and Gao, K. 2004. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 40:651–654.CrossRefGoogle Scholar
  42. Joh, T., Yoshida, T., Yoshimoto, M., Miyamoto, T., and Hatano, S. 1993. Composition and positional distribution of fatty acids in polar lipids from Chlorella ellipsoidea differing in chilling susceptibility and frost hardening. Physiol. Plantarum 89:285–290.CrossRefGoogle Scholar
  43. John, U., Tillmann, U., and Medlin, L.K. 2002. A comparative approach to study inhibition of grazing and lipid composition of a toxic and non-toxic clone of Chrysochromulina polylepis (Prymnesiophyceae). Harmful Algae 1:45–57.CrossRefGoogle Scholar
  44. Kato, M., Sakai, M., Adachi, K., Ikemoto, H., and Sano, H. 1996. Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345.CrossRefGoogle Scholar
  45. Keusgen, M., Curtis, J.M., Thibault, P., Walter, J.A., Windust, A., and Ayer, S.W. 1997. Sulfoquinovosyl diacylglycerols from the alga Heterosigma carterae. Lipids 32:1101–1112.PubMedCrossRefGoogle Scholar
  46. Khotimchenko, S.V. and Yakovleva, I.M. 2004. Effect of solar irradiance on lipids of green alga Ulva fenestrate Postels et Ruprecht. Bot. Mar. 47:395–401.CrossRefGoogle Scholar
  47. Khotimchenko, S.V. and Yakovleva, I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79.PubMedCrossRefGoogle Scholar
  48. Khozin-Goldberg, I. and Cohen, Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701.PubMedCrossRefGoogle Scholar
  49. Khozin-Goldberg, I., Yu, H.Z., Adlerstein, D., Didi-Cohen, S., Heimer, Y.M., and Cohen, Z. 2000. Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35:881–889.PubMedCrossRefGoogle Scholar
  50. Khozin-Goldberg, I., Shrestha, P., and Cohen, Z. 2005. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim. Biophys. Acta 1738:63–71.PubMedGoogle Scholar
  51. Lynn, S.G., Kilham, S.S., Kreeger, D.A., and Interlandi, S.J. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J. Phycol. 36:510–522.CrossRefGoogle Scholar
  52. Makewicz, A., Gribi, C., Eichenberger, W. 1997. Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [1-14C]oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol. 38:952–960.Google Scholar
  53. McLarnon-Riches, C.J., Rolph, C.E., Greenway, D.L.A., and Robinson, P.K. 1998. Effects of environmental factors and metals on Selenastrum capricornutum. Phytochemistry 49:1241–1247.CrossRefGoogle Scholar
  54. Mock, T. and Kroon, B.M.A. 2002. Photosynthetic energy conversion under extreme conditions-II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60.PubMedCrossRefGoogle Scholar
  55. Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L., and Huner, N.P.A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70:222–252.PubMedCrossRefGoogle Scholar
  56. Muradyan, E.A., Klyachko-Gurvich, G.L., Tsoglin, L.N., Sergeyenko, T.V., and Pronina, N.A. 2004. Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ. J. Plant Physiol. 51:53–62.CrossRefGoogle Scholar
  57. Murata, N. 1983. Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 24:81–86.Google Scholar
  58. Murphy, D.J. (ed.) 2005. Plant Lipids: Biology, Utilisation and Manipulation. Blackwell, Oxford, 403 pp.Google Scholar
  59. Napolitano, G.E. 1994. The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton. J. Phycol. 30:943–950.CrossRefGoogle Scholar
  60. Patterson, G.W. 1991. Sterols of algae, pp. 118–157. In G.W. Patterson and W.D. Nes (eds.), Physiology and Biochemistry of Sterols. AOCS Press, Urbana, IL.Google Scholar
  61. Poerschmann, J., Spijkerman, E., and Langer, U. 2004. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microbiol. Ecol. 48:78–89.Google Scholar
  62. Pronina, N.A., Rogova, N.B., Furnadzhieva, S., and Klyachko-Gurvich, G.L. 1998. Effect of CO2 concentration on the fatty acid composition of lipids in Chlamydomonas reinhardtii cia-3, a mutant deficient in CO2-concentrating mechanism. Russ. J. Plant Physiol. 45:447–455.Google Scholar
  63. Regnault, A., Chevrin, D., Chammai, A., Piton, F., Calvayrac, R., and Mazliak, P. 1995. Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40:725–733.CrossRefGoogle Scholar
  64. Reintan, K.I., Rainuzzo, J.R., and Olsen, Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30:972–977.CrossRefGoogle Scholar
  65. Renaud, S.M., Thinh, L.V., Lambrinidis, G., and Parry, D.L. 2002. Effects of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214.CrossRefGoogle Scholar
  66. Sato, N., Hagio, M., Wada, H., and Tsuzuki, M. 2000. Environmental effects on acidic lipids of thylakoid membranes, pp. 912–914. In J.L. Harwood and P.J. Quinn (eds.), Recent Advances in the Lipid Biochemistry of Plant Lipids. Portland Press , London.Google Scholar
  67. Sato, N., Tsuzuki, M., and Kawaguchi, A. 2003. Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of CO2 concentration during growth. Biochim. Biophys. Acta 1633:35–42.Google Scholar
  68. Son, B.W. 1990. Glycolipids from Gracilaria verrucosa. Phytochemistry 29:307–309.CrossRefGoogle Scholar
  69. Sukenik, A., Yamaguchi, Y., and Livne, A. 1993. Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J. Phycol. 29:620–626.CrossRefGoogle Scholar
  70. Sushchik, N.N., Kalacheva, G.S., Zhila, N.O., Gladyshev, M.I., and Volova, T.G. 2003. A temperature dependence of the intra- and extracellular fatty acid composition of green algae and cyanobacterium. Russ. J. Plant Physiol. 50:374–380.CrossRefGoogle Scholar
  71. Takagi, M., Karseno, B., and Yoshida, T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglycerols in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 3:223–226.CrossRefGoogle Scholar
  72. Tatsuzawa, H. and Takizawa, E. 1995. Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry 40:397–400.CrossRefGoogle Scholar
  73. Tatsuzawa, H., Takizawa, E., Wada, M., and Yamamoto, Y. 1996. Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J. Phycol. 32:598–601.CrossRefGoogle Scholar
  74. Thompson, G.A.J. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302:17–45.PubMedGoogle Scholar
  75. Tremolieres, A., and Siegenthaler, P.A. 1998. Role of acyl lipids in the function of photosynthetic membranes in higher plants, pp. 145–173. In P-A. Siegenthaler and N. Murata (eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht.Google Scholar
  76. Volkman, J.K. 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60:495–506.PubMedGoogle Scholar
  77. Zhu, C.J., Lee, Y.K., and Chao, T.M. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol. 9:451–457.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of BiosciencesCardiff UniversityWalesUK

Personalised recommendations