Advertisement

IndiGolog: A High-Level Programming Language for Embedded Reasoning Agents

  • Giuseppe De Giacomo
  • Yves Lespérance
  • Hector J. Levesque
  • Sebastian Sardina
Chapter

Abstract

IndiGolog isaprogramming languagefor autonomousagentsthat sense their environment anddo planning astheyoperate. Insteadof classical planning, it supports high-level program execution. The programmer provides a high-level nondeterministicprograminvolving domain-speci? c actions andteststo perform the agent’s tasks. The IndiGolog interpreterthenreasons aboutthepreconditions andeffectsofthe actionsintheprogramtonda legalterminatingexecution.To support this, the programmer provides a declarative specication of the domain (i.e.,primitive actions,preconditions andeffects, whatis known aboutthe initial state)inthe situation calculus. Theprogrammer can controlthe amountof non-determinism in the program and how muchof it is searched over. The language isrichand supports concurrentprogramming.Programsareexecuted onlinetogether withsensingthe environment and monitoringforevents,thus supporting thedevelopmentofreactiveagents.We discussthe language, itsimplementation, and applicationsthathave beenrealized withit.

Keywords

Multiagent System Primitive Action Situation Calculus Exogenous Event Nondeterministic Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The lateRayReiterwasamajor contributorto Golog andtoour approach to agent programming. Gerhard Lakemeyer helped us with the sections on reasoning about action androbotics applications.StavrosVassos helpeddeveloptheWumpusWorld application. Massimiliano de Leoni helped us with the section on applications involving mobile actors in pervasivecomputing scenarios.Wethankeveryonewhocontributedtodevelopingtheapproach and platformovertheyears.

References

  1. 1.
    van der Aalst, W., van Hee, K.: Workflow Management. Models, Methods, and Systems. MIT Press (2004)Google Scholar
  2. 2.
    Amir, E., Russell, S.: Logical filtering. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 75–82. Acapulco, Mexico (2003)Google Scholar
  3. 3.
    Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Mathematics and Artificial Intelligence 22, 5–27 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baier, J., McIlraith,S.: Onplanning with programs that sense. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR), pp. 492–502. Lake District, UK (2006)Google Scholar
  5. 5.
    Baier, J.A., Fritz, C., McIlraith, S.A.: Exploiting procedural domain control knowledge in state-of-the-art planners. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 26–33. Providence, Rhode Island (2007)Google Scholar
  6. 6.
    Baral, C., Son, T.C.: Relating theories of actions and reactive control. Electronic Transactions on Articial Intelligence 2(3-4), 211–271 (1998)MathSciNetGoogle Scholar
  7. 7.
    Belecheanu, R.A., Munroe, S.,Luck, M.,Payne,T., Miller,T., McBurney,P.,Pechoucek, M.: Commercial applications of agents: Lessons, experiences and challenges. In: ProceedGoogle Scholar
  8. 8.
    Bellifemine, F., Claire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley (2007)Google Scholar
  9. 9.
    Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for multiagent technology. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 10–15. ACM Press, New York, NY, USA (2006)Google Scholar
  10. 10.
    Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic domains under partial observability via symbolic model checking. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 473–478 (2001)Google Scholar
  11. 11.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley (2007). Series in Agent TechnologyCrossRefMATHGoogle Scholar
  12. 12.
    Borzenko, O., Lespérance, Y., Jenkin., M.: INVICON: a toolkit for knowledge-based control of vision systems. In: Proc. of the 4th Canadian Conference on Computer and Robot Vision (CRV’07), pp. 387–394. Montréal, QC, Canada (2007)Google Scholar
  13. 13.
    Borzenko, O., Xu, W., Obsniuk, M., Chopra, A., Jasiobedzki, P., Jenkin, M., Lespérance, Y.: Lights and camera: Intelligently controlled multi-channel pose estimation system. In: Proc. of the IEEE International Conference on Vision Systems (ICVS’06). New York, NY, USA (2006). Paper 42 (8 pages)Google Scholar
  14. 14.
    Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 355–362. AAAI Press, Menlo Park, CA (2000)Google Scholar
  15. 15.
    Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press (1987)Google Scholar
  16. 16.
    Burgard, W., Cremers, A., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114(1–2), 3–55 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents: Components for intelligent agents in Java. AgentLink Newsletter 2 (1999). Agent Oriented Software Pty. Ltd.Google Scholar
  18. 18.
    Carbone, A., Finzi, A., Orlandini, A., Pirri, F., Ugazio, G.: Augmenting situation awareness via model-based control in rescue robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3699–3705. Edmonton, AB, Canada (2005)Google Scholar
  19. 19.
    Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineering: The Tropos project. Information Systems 27(6), 365–389 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Classen, J., Engelmann, V., Lakemeyer, G., Röger, G.: Integrating Golog and planning: An empirical evaluation. In: Non-Monotonic Reasoning Workshop. Sydney, Australia (2008)Google Scholar
  21. 21.
    Classen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an integration of planning and Golog. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1846–1851. Hyderabad, India (2007)Google Scholar
  22. 22.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence Journal 42, 213–261 (1990)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dastani, M., de Boer, F.S., Dignum, F., van der Hoek, W., Kroese, M., Meyer, J.J.: Programming the deliberation cycle of cognitive robots. In: Proceedings of the International Cognitive Robotics Workshop (COGROBO). Edmonton, Canada (2002)Google Scholar
  24. 24.
    De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent programming language based on the situation calculus. Artificial Intelligence Journal 121(1–2), 109–169 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: On deliberation under incomplete information and the inadequacy of entailment and consistency-based formalizations. In: Proceedings of the Programming Multiagent Systems Languages, Frameworks, Techniques and Tools workshop (PROMAS). Melbourne, Australia (2003)Google Scholar
  26. 26.
    De Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level programs with sensing. In: H.J. Levesque, F. Pirri (eds.) Logical Foundations for Cognitive Agents: Contributions in Honor of Ray Reiter, pp. 86–102. Springer, Berlin (1999)CrossRefGoogle Scholar
  27. 27.
    De Giacomo, G., Levesque, H.J.: Projection using regression and sensors. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 160–165. Stockholm, Sweden (1999)Google Scholar
  28. 28.
    De Giacomo, G., Levesque, H.J., Sardina, S.: Incremental execution of guarded theories. ACM Transactions on Computational Logic (TOCL) 2(4), 495–525 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    De Giacomo, G., Mancini, T.: Scaling up reasoning about actions using relational database technology. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 245–256 (2004)Google Scholar
  30. 30.
    De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot programs. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR), pp. 453–465 (1998)Google Scholar
  31. 31.
    Dennett, D.: The Intentional Stance. The MIT Press (1987)Google Scholar
  32. 32.
    Doherty, P.: Advanced research with autonomous unmanned aerial vehicles. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR) (2004). Extended abstract for Plenary TalkGoogle Scholar
  33. 33.
    Erol, K., Hendler, J.A., Nau, D.S.: HTN planning: Complexity and expressivity. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1123–1228 (1994)Google Scholar
  34. 34.
    Ferrein, A., Fritz, C., Lakemeyer, G.: On-line decision-theoretic Golog for unpredictable domains. In: Proc. of 27th German Conference on Artificial Intelligence, pp. 322–336. Ulm, Germany, UK (2004)CrossRefGoogle Scholar
  35. 35.
    Finzi, A., Pirri, F., Pirrone, M., Romano, M.: Autonomous mobile manipulators managing perception and failures. In: Proceedings of the Annual Conference on Autonomous Agents (AGENTS), pp. 196–201. Montréal, QC, Canada (2001)CrossRefGoogle Scholar
  36. 36.
    Fritz, C., Baier, J.A., McIlraith, S.A.: ConGolog, Sin Trans: Compiling ConGolog into basic action theories for planning and beyond. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR), pp. 600–610. Sydney, Australia (2008)Google Scholar
  37. 37.
    Gabaldon, A.: Programming hierarchical task networks in the situation calculus. In: AIPS’02 Workshop on On-line Planning and Scheduling. Toulouse, France (2002)Google Scholar
  38. 38.
    Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., Meister, M.: Requirements modeling for organization networks: A (dis-)trust-based approach. In: Proc. of IEEE Int. Requirements Engineering Conf., pp. 154–163 (2001)Google Scholar
  39. 39.
    Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 677–682. Seattle, USA (1987)Google Scholar
  40. 40.
    Gerevini, A., Bonet, B., Givan, B. (eds.): Booklet of 4th International Planning Competition. Lake District, UK (2006). URL http://www.ldc.usb.ve/ bonet/ipc5/
  41. 41.
    Grosskreutz, H., Lakemeyer, G.: ccGolog: an action language with continuous change. Logic Journal of the IGPL (2003)Google Scholar
  42. 42.
    Hindriks, K., Lespérance, Y., Levesque, H.: An embedding of ConGolog in 3APL. Tech. Rep. UU-CS-2000-13, Department of Computer Science, Utrecht University (2000)Google Scholar
  43. 43.
    Hindriks, K., Lespérance, Y., Levesque, H.J.: A formal embedding of ConGolog in 3APL. In: Proceedings of the European Conference in Artificial Intelligence (ECAI), pp. 558–562. Berlin, Germany (2000)Google Scholar
  44. 44.
    Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming in 3APL. Autonomous Agents and Multi-Agent Systems 2, 357–401 (1999)CrossRefGoogle Scholar
  45. 45.
    Huber, M.J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the Annual Conference on Autonomous Agents (AGENTS), pp. 236–243. ACM Press, New York, NY, USA (1999)CrossRefGoogle Scholar
  46. 46.
    Kowalski, R.A.: Using meta-logic to reconcile reactive with rational agents. In: K.R. Apt, F. Turini (eds.) Meta-Logics and Logic Programming, pp. 227–242. The MIT Press (1995)Google Scholar
  47. 47.
    Lakemeyer, G.: Relevance from an epistemic perspective. Artificial Intelligence 97(1–2), 137–167 (1997)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Lakemeyer, G.: On sensing and off-line interpreting in Golog. In: H. Levesque, F. Pirri (eds.) Logical Foundations for Cognitive Agents: Contributions in Honor of Ray Reiter, pp. 173–187. Springer, Berlin (1999)CrossRefGoogle Scholar
  49. 49.
    Lapouchnian, A., Lespérance, Y.: Interfacing IndiGolog andOAA—a toolkit for advanced multiagent applications. Applied Artificial Intelligence 16(9-10), 813–829 (2002)CrossRefGoogle Scholar
  50. 50.
    Lapouchnian, A., Lespérance, Y.: Modeling mental states in agent-oriented requirements engineering. In: Proc. of the 18th Conference on Advanced Information Systems Engineering (CAiSE’06), pp. 480–494. Luxembourg (2006)Google Scholar
  51. 51.
    de Leoni, M.: Adaptive Process Management in Pervasive and Highly Dynamic Scenarios. Ph.D. thesis, SAPIENZA - University of Rome (2009)Google Scholar
  52. 52.
    de Leoni, M., Marrella, A., Mecella, M., Valentini, S., Sardina, S.: Coordinating mobile actors in pervasive and mobile scenarios: An AI-based approach. In: Proceedings of the 17th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE); CoMA sub-workshop. IEEE Computer Society, Rome, Italy (2008)Google Scholar
  53. 53.
    de Leoni, M., Mecella, M., De Giacomo, G.: Highly dynamic adaptation in process management systems through execution monitoring. In: Proceedings of the Fifth International Conference on Business Process Management (BPM’07), Lecture Notes in Computer Science, vol. 4714, pp. 182–197. Springer, Brisbane, Australia (2007)Google Scholar
  54. 54.
    Lespérance, Y., De Giacomo, G., Ozgovde, A.N.: A model of contingent planning for agent programming languages. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 477–484. Estoril, Portugal (2008)Google Scholar
  55. 55.
    Lespérance, Y., Levesque, H.J., Ruman, S.J.: An experiment in using Golog to build a personal banking assistant. In: L. Cavedon, A. Rao, W. Wobcke (eds.) Intelligent Agent Systems: Theoretical and Practical Issues (Based on a Workshop Held at PRICAI ’96 Cairns, Australia, August 1996),, LNAI, vol. 1209, pp. 27–43. Springer-Verlag (1997)Google Scholar
  56. 56.
    Lespérance, Y., Ng, H.K.: Integrating planning into reactive high-level robot programs. In: Proceedings of the International Cognitive RoboticsWorkshop (COGROBO), pp. 49–54. Berlin, Germany (2000)Google Scholar
  57. 57.
    Lespérance, Y., Tam, K., Jenkin, M.: Reactivity in a logic-based robot programming framework. In: N. Jennings, Y. Lespérance (eds.) Intelligent Agents VI — Agent Theories, Architectures, and Languages, 6th International Workshop, ATAL’99, Proceedings, LNAI, vol. 1757, pp. 173–187. Springer-Verlag, Berlin (2000)Google Scholar
  58. 58.
    Levesque, H.J.: What is planning in the presence of sensing? In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1139–1146. American Association for Artificial Intelligence, Portland, Oregon (1996)Google Scholar
  59. 59.
    Levesque, H.J.: Planning with loops. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 509–515 (2005)Google Scholar
  60. 60.
    Levesque, H.J., Pagnucco, M.: LeGolog: Inexpensive experiments in cognitive robotics. In: Proceedings of the International Cognitive Robotics Workshop (COGROBO), pp. 104– 109. Berlin, Germany (2000)Google Scholar
  61. 61.
    Levesque, H.J., Reiter, R.: High-level robotic control: Beyond planning. A position paper. In: AAAI 1998 Spring Symposium: Integrating Robotics Research: Taking the Next Big Leap (1998)Google Scholar
  62. 62.
    Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming 31, 59–84 (1997)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR (1999)Google Scholar
  64. 64.
    Lin, F., Reiter, R.: Forget it! In: Proceedings of AAAI Fall Symposium on Relevance. New Orleans, USA (1994)Google Scholar
  65. 65.
    Lin, F., Reiter, R.: How to progress a database. Artificial Intelligence Journal 92, 131–167 (1997)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Ljungberg, M., Lucas, A.: The OASIS air-traffic management system. In: Proceedings of the Pacific Rim International Conference on Artificial Intelligence (PRICAI). Seoul, Korea (1992)Google Scholar
  67. 67.
    Martin, D., Cheyer A, J., Moran, D.: The open agent architecture: A framework for building distributed software systems. Applied Artificial Intelligence 13, 91–128 (1999)CrossRefGoogle Scholar
  68. 68.
    Martinez, E.: Web service composition as a planning task: An agent oriented framework. Master’s thesis, Department of Computer Science, York University, Toronto,ON, Canada (2005)Google Scholar
  69. 69.
    Martinez, E., Lespérance, Y.: IG-JADE-PKSlib: an agent-based framework for advanced web service composition and provisioning. In: Proc. of the AAMAS 2004 Workshop on Web-services and Agent-based Engineering, pp. 2–10. New York, NY, USA (2004)Google Scholar
  70. 70.
    Martinez, E., Lespérance, Y.: Web service composition as a planning task: Experiments using knowledge-based planning. In: Proc. of the ICAPS-2004Workshop on Planning and Scheduling for Web and Grid Services, pp. 62–69. Whistler, BC, Canada (2004)Google Scholar
  71. 71.
    McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence 4, 463–502 (1969)MATHGoogle Scholar
  72. 72.
    McIlraith, S., Son, T.C.: Adapting Golog for programming the semantic web. In: Proceedings of the Eighth International Conference on Knowledge Representation and Reasoning (KR2002), pp. 482–493. Toulouse, France (2002)Google Scholar
  73. 73.
    Petrick, R., Bacchus, F.: A knowledge-based approach to planning with incomplete information and sensing. In: Proceedings of the International Conference on AI Planning & Scheduling (AIPS), pp. 212–221 (2002)Google Scholar
  74. 74.
    Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus. Journal of the ACM 46(3), 261–325 (1999)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI-FN-19, Computer Science Department, Aarhus University, Denmark (1981)Google Scholar
  76. 76.
    Pollack, M.E.: The uses of plans. Artificial Intelligence Journal 57(1), 43–68 (1992)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Pryor, L., Collins, G.: Planning for contingencies: A decision-based approach. J. of Artifi-cial Intelligence Research 4, 287–339 (1996)Google Scholar
  78. 78.
    Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: W.V. Velde, J.W. Perram (eds.) Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World. (Agents Breaking Away), Lecture Notes in Computer Science (LNCS), vol. 1038, pp. 42–55. Springer-Verlag (1996)Google Scholar
  79. 79.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR), pp. 473–484 (1991)Google Scholar
  80. 80.
    Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)Google Scholar
  81. 81.
    Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In: V. Lifschitz (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380. Academic Press, San Diego, CA (1991)CrossRefGoogle Scholar
  82. 82.
    Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press (2001)Google Scholar
  83. 83.
    Ruman, S.J.: GOLOG as an agent-programming language: Experiments in developing banking applications. Master’s thesis, Department of Computer Science, University of Toronto (1996)Google Scholar
  84. 84.
    Sardina, S.: Local conditional high-level robot programs. In: R. Nieuwenhuis, A. Voronkov (eds.) Proceedings of the International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), Lecture Notes in Computer Science (LNCS), vol. 2250, pp. 110–124. Springer, La Habana, Cuba (2001)Google Scholar
  85. 85.
    Sardina, S.: IndiGolog: An Integrated Agent Arquitecture: Programmer and User Manual. University of Toronto (2004). URL http://sourceforge.net/projects/indigolog/
  86. 86.
    Sardina, S.: Deliberation in agent programming languages. Ph.D. thesis, Department of Computer Science (2005)Google Scholar
  87. 87.
    Sardina, S., De Giacomo, G., Lespérance, Y., Levesque, H.J.: On the semantics of deliberation in IndiGolog – from theory to implementation. Annals of Mathematics and Artificial Intelligence 41(2–4), 259–299 (2004)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Sardina, S., De Giacomo, G., Lespérance, Y., Levesque, H.J.: On the limits of planning over belief states. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR), pp. 463–471. Lake District, UK (2005)Google Scholar
  89. 89.
    Sardina, S., de Silva, L.P., Padgham, L.: Hierarchical planning in BDI agent programming languages: A formal approach. In: H. Nakashima, M.P. Wellman, G. Weiss, P. Stone (eds.) Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1001–1008. ACM Press, Hakodate, Japan (2006)Google Scholar
  90. 90.
    Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning. In: E.H. Durfee, M. Yokoo, M.N. Huhns, O. Shehory (eds.) Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS). ACM Press, Hawaii, USA (2007)Google Scholar
  91. 91.
    Sardina, S., Shapiro, S.: Rational action in agent programs with prioritized goals. In: J.S. Rosenschein, M. Wooldridge, T. Sandholm, M. Yokoo (eds.) Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 417–424. ACM Press, Melbourne, Australia (2003)Google Scholar
  92. 92.
    Sardina, S., Vassos, S.: The Wumpus World in IndiGolog: A preliminary report. In: L. Morgenstern, M. Pagnucco (eds.) Proceedings of the Workshop on Non-monotonic Reasoning, Action and Change at IJCAI (NRAC-05), pp. 90–95 (2005)Google Scholar
  93. 93.
    Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelligence Journal 144(1–2), 1–39 (2003)MathSciNetCrossRefMATHGoogle Scholar
  94. 94.
    Shapiro, S.: Specifying and verifying multiagent systems using the cognitive agents speci- fication language (CASL). Ph.D. thesis, Department of Computer Science, University of Toronto (2005)Google Scholar
  95. 95.
    Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification language and verification environment for multiagent systems. In: C. Castelfranchi,W.L. Johnson (eds.) Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 19–26. ACM Press (2002)Google Scholar
  96. 96.
    Son, T.C., Baral, C.: Formalizing sensing actions — A transition function based approach. Artificial Intelligence 125(1–2), 19–91 (2001)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    Soutchanski, M.: An on-line decision-theoretic Golog interpreter. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 19–26. Seattle, WA, USA (2001)Google Scholar
  98. 98.
    Thielscher, M.: The fluent calculus. Tech. Rep. CL-2000-01, Computational Logic Group, Artificial Intelligence Institute, Department of Computer Science, Dresden University of Technology (2000)Google Scholar
  99. 99.
    Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory and Practice of Logic Programming 5(4–5), 533–565 (2005). Special Issue of Theory and Practice of Logic Programming on Constraint Handling RulesCrossRefMATHGoogle Scholar
  100. 100.
    Vassos, S.: A feasible approach to disjunctive knowledge in situation calculus. Master’s thesis, Department of Computer Science (2005)Google Scholar
  101. 101.
    Vassos, S., Lakemeyer, G., Levesque, H.: First-order strong progression for local-effect basic action theories. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR), pp. 662–672. Sydney, Australia (2008)Google Scholar
  102. 102.
    Vassos, S., Levesque, H.: Progression of situation calculus action theories with incomplete information. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 2024–2029. Hyderabad, India (2007)Google Scholar
  103. 103.
    Vassos, S., Levesque, H.: On the progression of situation calculus basic action theories: Resolving a 10-year-old conjecture. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1004–1009. Chicago, Illinois, USA (2008)Google Scholar
  104. 104.
    Wang, X., Lespérance, Y.: Agent-oriented requirements engineering using ConGolog and i*. In: G.Wagner, K. Karlapalem, Y. Lespérance, E. Yu (eds.) Agent-Oriented Information Systems 2001, Proceedings of the 3rd International Bi-Conference Workshop AOIS-2001, pp. 59–78. iCue Publishing, Berlin, Germany (2001)Google Scholar
  105. 105.
    Wielemaker, J.: An overview of the SWI-Prolog programming environment. In: F. Mesnard, A. Serebenik (eds.) Proceedings of the 13th International Workshop on Logic Programming Environments, pp. 1–16. Katholieke Universiteit Leuven, Heverlee, Belgium (2003). CW 371Google Scholar
  106. 106.
    Yongmei Liu, H.J.L.: Tractable reasoning with incomplete first-order knowledge in dynamic systems with context-dependent actions. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 522–527. Edinburgh, UK (2005)Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Giuseppe De Giacomo
    • 1
  • Yves Lespérance
    • 2
  • Hector J. Levesque
    • 3
  • Sebastian Sardina
    • 4
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Department of Computer Science and EngineeringYork UniversityTorontoCanada
  3. 3.Department of Computer ScienceUniversity of TorontoTorontoCanada
  4. 4.School of Computer Science and Information TechnologyRMIT UniversityMelbourneAustralia

Personalised recommendations