Skip to main content

Testing Methods for Synaptic Conductance Analysis Using Controlled Conductance Injection with Dynamic Clamp

  • Chapter
  • First Online:
Dynamic-Clamp

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 1))

  • 691 Accesses

Abstract

In this chapter, we present different methods to analyze intracellular recordings and the testing of these methods using dynamic-clamp techniques. The methods are derived from a model of synaptic background activity where the synaptic membrane conductances are considered as stochastic processes. Because this fluctuating point-conductance model can be treated analytically, different methods can be outlined to estimate different characteristics of synaptic noise from the membrane potential (V m) activity, such as the mean and variance of the excitatory and inhibitory conductance distributions (the VmD method) or spike-triggered averages of conductances. These analysis methods can be validated in controlled conditions using dynamic-clamp injection of known synaptic conductance patterns, as we illustrate here. Our approach constitutes a novel application of the dynamic clamp, which could be extended to the testing of other methods for extracting conductance information from the recorded V m activity of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JS, Carandini M, Ferster D (2000) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84:909–926.

    PubMed  CAS  Google Scholar 

  • Baranyi A, Szente MB, Woody CD (1993) Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J Neurophysiol 69:1865–1879.

    PubMed  CAS  Google Scholar 

  • Bedard C, Destexhe A (2008) A modified cable formalism for modeling neuronal membranes at high frequencies. Biophys J 94:1133–1143.

    Article  PubMed  CAS  Google Scholar 

  • Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373.

    Article  PubMed  CAS  Google Scholar 

  • Brette R, Piwkowska Z, Monier C, Rudolph-Lilith M, Fournier J, Levy M, Fregnac Y, Bal T, Destexhe A (2008) High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron, 59:379–391.

    Google Scholar 

  • Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9:608–610.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham MO, Pervouchine DD, Racca C, Kopell NJ, Davies CH, Jones RS, Traub RD, Whittington M (2006) Neuronal metabolism governs cortical network response state. Proc Natl Acad Sci USA 103:5597–5601.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547.

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M (2004) Extracting information from the power spectrum of synaptic noise. J Comput Neurosci 17:327–345.

    Article  PubMed  Google Scholar 

  • Destexhe A, Hughes SW, Rudolph M, Crunelli V (2007) Are corticothalamic “up” states fragments of wakefulness? Trends Neurosci 30:334–342.

    Article  PubMed  CAS  Google Scholar 

  • Harsch A, Robinson HP (2000) Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J Neurosci 20:6181–6192.

    PubMed  CAS  Google Scholar 

  • Hughes SW, Lorincz M, Cope DW, Crunelli V (2008) NeuReal: An interactive simulation system for implementing artificial dendrites and large hybrid networks. J Neurosci Methods 169:290–301.

    Article  PubMed  Google Scholar 

  • Le Masson G, Renaud-Le Masson S, Sharp AA, Marder E, Abbott LF (1992) Real-time interaction between a model neuron and the crustacean stomatogastric nervous system In: Society for Neuroscience Meeting. 18, 1055.

    Google Scholar 

  • Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407.

    Article  PubMed  CAS  Google Scholar 

  • Leger J-F, Stern EA, Aertsen A, Heck D (2005) Synaptic integration in rat frontal cortex shaped by network activity. J Neurophysiol 93:281–293.

    Article  PubMed  Google Scholar 

  • Lindner B, Longtin A (2006) Comment on “Characterization of subthreshold voltage fluctuations in neuronal membranes”, by M. Rudolph and A. Destexhe. Neural Comput 18:1896–1931.

    Article  PubMed  Google Scholar 

  • Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Cope T, Fetz EE (1988) Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp Brain Res 70:463–469.

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13:1219–1231.

    Article  PubMed  Google Scholar 

  • Metherate R, Ashe JH (1993) Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation:whole-cell recordings in vivo. J Neurosci 13:5312–5323.

    PubMed  CAS  Google Scholar 

  • Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37:663–680.

    Article  PubMed  CAS  Google Scholar 

  • Monier C, Fournier J, Frégnac Y (2008) In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J Neurosci Meth 169:323–365.

    Article  CAS  Google Scholar 

  • Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537.

    Article  PubMed  CAS  Google Scholar 

  • Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. J Neurophysiol 79:1450–1460.

    PubMed  Google Scholar 

  • Piwkowska Z, Rudolph M, Badoual M, Destexhe A, Bal T (2005) Re-creating active states in vitro with a dynamic-clamp protocol. Neurocomputing 65–66:55–60.

    Article  Google Scholar 

  • Piwkowska Z, Pospischil M, Brette R, Sliwa J, Rudolph-Lilith M, Bal T, Destexhe A. (2008) Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation. J Neurosci Meth 169:302–322.

    Article  Google Scholar 

  • Pospischil M, Piwkowska Z, Rudolph M, Bal T, Destexhe A (2007) Calculating event-triggered average synaptic conductances from the membrane potential. J Neurophysiol 97:2544–2552.

    Article  PubMed  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical Recipes. The Art of Scientific Computing. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Richardson MJ (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys 69:051918.

    Article  PubMed  Google Scholar 

  • Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2003) Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput 15:2577–2618.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884–2896.

    Article  PubMed  Google Scholar 

  • Rudolph M, Destexhe (2005). An extended analytic expression for the membrane potential distribution of conductancebased synaptic noise. Neural Comput 17:2301–2315.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Pelletier J-G, Paré D, Destexhe A (2005) Characterization of synaptic conductances and integrative properties during electrically-induced EEG-activated states in neocortical neurons in vivo. J Neurophysiol 94:2805–2821.

    Article  PubMed  Google Scholar 

  • Rudolph M, Destexhe A (2006) On the use of analytic expressions for the voltage distribution to analyze intracellular recordings. Neural Comput 18: 2917–2922.

    Article  PubMed  Google Scholar 

  • Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20:4286–4299.

    PubMed  CAS  Google Scholar 

  • Silberberg G, Wu C, Markram H (2004) Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J Physiol 556:19–27.

    Article  PubMed  CAS  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995.

    PubMed  CAS  Google Scholar 

  • Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23:10388–10401.

    PubMed  CAS  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265.

    PubMed  CAS  Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985.

    PubMed  CAS  Google Scholar 

  • Timofeev I, Grenier F, Steriade M (2001) Disfacilitation and active inhibition in the neocortex during the natural sleepwake cycle: an intracellular study. Proc Natl Acad Sci USA 98:1924–1929.

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbeck GE and Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36:823–841.

    Article  Google Scholar 

  • Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.

    Article  PubMed  CAS  Google Scholar 

  • Wilent W, Contreras D (2005) Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neurosci 8:1364–1370.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7:961–967.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR (2005) Encoding and decoding of dendritic excitation during active states in pyramidal neurons. J Neurosci 25:5894–5902.

    Article  PubMed  CAS  Google Scholar 

  • Woody CD, Gruen E (1978) Characterization of electrophysiological properties of intracellularly recorded neurons in the neocortex of awake cats: a comparison of the response to injected current in spike overshoot and undershoot neurons. Brain Res 158:343–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by CNRS, ANR, ACI, HFSP, and the European Community (FACETS grant FP6 15879). Z.P. gratefully acknowledges the support of the FRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzanna Piwkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Piwkowska, Z., Pospischil, M., Rudolph-Lilith, M., Bal, T., Destexhe, A. (2009). Testing Methods for Synaptic Conductance Analysis Using Controlled Conductance Injection with Dynamic Clamp. In: Bal, T., Destexhe, A. (eds) Dynamic-Clamp. Springer Series in Computational Neuroscience, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89279-5_6

Download citation

Publish with us

Policies and ethics