Skip to main content

Dendritic Dynamic Clamp – A Tool to Study Single Neuron Computation

  • Chapter
  • First Online:
Dynamic-Clamp

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 1))

  • 730 Accesses

Abstract

Central neurons receive the majority of synaptic input at dendritic sites. Classical models of neuronal function suggest that dendrites simply funnel synaptic input to the site of action potential initiation in the axon. Direct dendritic whole-cell recording techniques have however demonstrated that dendrites are electrically excitable. Recently, the dynamic clamp has been used to simulate synaptic activity at determined dendritic sites in neurons, to explore the constraints of the dendrosomatic spread of synaptic potentials and to examine the properties of local dendritic synaptic integration. Here, I describe the implementation of the dendritic dynamic-clamp technique and review the results of recent experiments using the dendritic dynamic clamp to explore the properties of synaptic integration in the dendrites of cortical pyramidal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archie KA and Mel BW (2000) A model for intradendritic computation of binocular disparity. Nat Neurosci 3, 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Astman N Gutnick MJ and Fleidervish IA (2006) Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon. J Neurosci 26, 3465–73.

    Article  PubMed  CAS  Google Scholar 

  • Berger T Larkum ME and Luscher HR (2001) High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 85, 855–68.

    PubMed  CAS  Google Scholar 

  • Clark BA Monsivais P Branco T London M and Hausser M (2005) The site of action potential initiation in cerebellar Purkinje neurons. Nat Neurosci 8, 137–9.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A Rudolph M and Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4, 739–51.

    Article  PubMed  CAS  Google Scholar 

  • Fregnac Y Monier C Chavane F Baudot P and Graham L (2003) Shunting inhibition, a silent step in visual cortical computation. J Physiol (Paris) 97, 441–51.

    Article  Google Scholar 

  • Hausser M Spruston N and Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290, 739–44.

    Article  PubMed  CAS  Google Scholar 

  • Hausser M and Mel B (2003) Dendrites: bug or feature? Curr Opin Neurobiol 13, 372–83.

    Article  PubMed  CAS  Google Scholar 

  • Khaliq ZM and Raman IM (2006) Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J Neurosci 26, 1935–44.

    Article  PubMed  CAS  Google Scholar 

  • Kim HG and Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci 13, 5301–11.

    PubMed  CAS  Google Scholar 

  • Kitamura K Judkewitz B Kano M Denk W and Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5, 61–7.

    Article  PubMed  CAS  Google Scholar 

  • Koch C Douglas R and Wehmeier U (1990) Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells. J Neurosci 10, 1728–44.

    PubMed  CAS  Google Scholar 

  • Kole MH Hallermann S and Stuart GJ (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 26, 1677–87.

    Article  PubMed  CAS  Google Scholar 

  • Kole MH Ilschner SU Kampa BM Williams SR Ruben PC and Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11, 178–86.

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME Zhu JJ and Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J Physiol (Lond) 533, 447–66.

    Article  CAS  Google Scholar 

  • Larkum ME and Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22, 6991–7005.

    PubMed  CAS  Google Scholar 

  • Larkum ME Waters J Sakmann B and Helmchen F (2007) Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci 27, 8999–9008.

    Article  PubMed  CAS  Google Scholar 

  • London M and Segev I (2004) Conducting synaptic music in dendrites. Nat Neurosci 7, 904–5.

    Article  PubMed  CAS  Google Scholar 

  • London M and Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28, 503–532.

    Article  PubMed  CAS  Google Scholar 

  • Lorincz A Notomi T Tamas G Shigemoto R and Nusser Z (2002) Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 5, 1185–93.

    Article  PubMed  Google Scholar 

  • Losonczy A and Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307.

    Article  PubMed  CAS  Google Scholar 

  • Losonczy A Makara JK and Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–41.

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18, 7613–24.

    PubMed  CAS  Google Scholar 

  • Magee JC (1999) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2, 848.

    Article  PubMed  CAS  Google Scholar 

  • Nevian T Larkum ME Polsky A and Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10, 206–214.

    Article  PubMed  CAS  Google Scholar 

  • Palmer LM and Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26, 1854–63.

    Article  PubMed  CAS  Google Scholar 

  • Poirazi P and Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–96.

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA Abbott LF and Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27, 218–24.

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30, 1138–68.

    PubMed  CAS  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In Handbook of Physiology – The Nervous System 1, ed. E. R. Kandel, pp. 39–97. American Physiological Society, Bethesda, Maryland.

    Google Scholar 

  • Schiller J Schiller Y Stuart G and Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol (Lond) 505, 605–16.

    Article  CAS  Google Scholar 

  • Stuart GJ Dodt HU and Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423, 511–8.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G and Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–76.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G (1999) Voltage-activated sodium channels amplify inhibition in neocortical pyramidal neurons. Nat Neurosci 2, 144–50.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR and Stuart GJ (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol (Lond) 521, 467–82.

    Article  CAS  Google Scholar 

  • Williams SR and Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J Neurophysiol 83, 3177–82.

    PubMed  CAS  Google Scholar 

  • Williams SR and Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–10.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR and Stuart GJ (2003a) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26, 147–54.

    Google Scholar 

  • Williams SR and Stuart GJ (2003b) Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23, 7358–67.

    Google Scholar 

  • Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7, 961–7.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR (2005) Encoding and decoding of dendritic excitation during active states in pyramidal neurons. J Neurosci 25, 5894–902.

    Article  PubMed  CAS  Google Scholar 

  • Williams SR and Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11, 790–8.

    Article  PubMed  CAS  Google Scholar 

  • Zsiros V and Hestrin S (2005) Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells. J Neurophysiol 93, 3248–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I am very grateful to Greg Stuart for introducing me to the field of dendritic physiology. The author’s work is supported by the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Williams, S.R. (2009). Dendritic Dynamic Clamp – A Tool to Study Single Neuron Computation. In: Bal, T., Destexhe, A. (eds) Dynamic-Clamp. Springer Series in Computational Neuroscience, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89279-5_2

Download citation

Publish with us

Policies and ethics