Dynamic-Clamp pp 399-415 | Cite as

Development of a Genetically Engineered Cardiac Pacemaker: Insights from Dynamic Action Potential Clamp Experiments

  • Arie O. Verkerk
  • Jan G. Zegers
  • Antoni C.G. van Ginneken
  • Ronald Wilders
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 1)


In this chapter, we briefly review the use of dynamic clamp in cardiac cellular electrophysiology and present novel results obtained with the ‘dynamic action potential clamp’ (dAPC) technique. This is a technique that we recently developed to study the effects of long-QT syndrome-related ion channel mutations by effectively replacing the associated native ionic current of a cardiac myocyte with wild-type or mutant current recorded from a HEK-293 cell that is voltage clamped by the free-running action potential of the myocyte. Here we demonstrate that the dAPC technique can also be used as a powerful tool in the development of a ‘biological pacemaker’ or ‘bio-pacemaker,’ i.e. a genetically engineered cardiac pacemaker. We record ‘pacemaker current’ from an HCN4-transfected HEK-293 cell and inject this current into a model of a human atrial cell of which the free-running membrane potential is used to voltage clamp the HEK-293 cell. Thus we explore the conditions under which this HCN4-based pacemaker current turns the atrial cell into a pacemaker cell.


Atrial Cell HERG Channel HCN4 Channel HERG Current Dynamic Clamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Berend de Jonge for expert biotechnical assistance.


  1. Anderson AJ, Patmore L (1988) Calcium currents evoked in embryonic chick myocytes during depolarization with an action potential voltage waveform. J Physiol 407:126P.Google Scholar
  2. Barabanov M, Yodaiken V (1997) Introducing real-time Linux. Linux J 34:19–23Google Scholar
  3. Bellocq C, Wilders R, Schott J-J, Louérat-Oriou B, Boisseau P, Le Marec H, Escande D, Baró I (2004) A common antitussive drug, clobutinol, precipitates the long QT syndrome 2. Mol Pharmacol 66:1093–1102PubMedCrossRefGoogle Scholar
  4. Berecki G, Zegers JG, Verkerk AO, Bhuiyan ZA, de Jonge B, Veldkamp MW, Wilders R, van Ginneken ACG (2005) HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys J 88:566–578PubMedCrossRefGoogle Scholar
  5. Berecki G, Zegers JG, Bhuiyan ZA, Verkerk AO, Wilders R, van Ginneken ACG (2006) Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. J Physiol 570:237–250PubMedGoogle Scholar
  6. Boink GJJ, Seppen J, de Bakker JMT, Tan HL (2007) Gene therapy to create biological pacemakers. Med Biol Eng Comput 45:167–176PubMedCrossRefGoogle Scholar
  7. Boink GJJ, Verkerk AO, van Amersfoorth SCM, Tasseron SJ, van der Rijt R, Bakker D, Linnenbank AC, van der Meulen J, de Bakker JMT, Seppen J, Tan HL (2008) Engineering physiologically controlled pacemaker cells with lentiviral HCN4 gene transfer. J Gene Med. 10:487–497Google Scholar
  8. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301–H321.PubMedGoogle Scholar
  9. de Haas V, Vogel W (1989) Sodium and potassium currents recorded during an action potential. Eur Biophys J 17:49–51PubMedGoogle Scholar
  10. Doerr T, Denger R, Trautwein W (1989) Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflügers Arch 413:599–603PubMedCrossRefGoogle Scholar
  11. Doerr T, Denger R, Doerr A, Trautwein W (1990) Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflügers Arch 416:230–237PubMedCrossRefGoogle Scholar
  12. Dong M, Sun X, Prinz AA, Wang H-S (2006) Effect of simulated Ito on guinea pig and canine ventricular action potential morphology. Am J Physiol Heart Circ Physiol 291:H631–H637PubMedCrossRefGoogle Scholar
  13. Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:698–714PubMedGoogle Scholar
  14. Jiang B, Sun X, Cao K, Wang R (2002) Endogenous KV channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 238:69–79PubMedCrossRefGoogle Scholar
  15. Joyner RW, Sugiura H, Tan RC (1991) Unidirectional block between isolated rabbit ventricular cells coupled by a variable resistance. Biophys J 60:1038–1045PubMedCrossRefGoogle Scholar
  16. Marbán E, Cho HC (2007) Creation of a biological pacemaker by gene- or cell-based approaches. Med Biol Eng Comput 45:133–144PubMedCrossRefGoogle Scholar
  17. Marbán E, Cho HC (2008) Biological pacemakers as a therapy for cardiac arrhythmias. Curr Opin Cardiol 23:46–54PubMedCrossRefGoogle Scholar
  18. Mazzanti M, DeFelice LJ (1987) Regulation of the Na-conducting Ca channel during the cardiac action potential. Biophys J 51:115–121PubMedCrossRefGoogle Scholar
  19. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652PubMedCrossRefGoogle Scholar
  20. Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circ Res 82:1206–1223PubMedGoogle Scholar
  21. Qu J, Altomare C, Bucchi A, DiFrancesco D, Robinson RB (2002) Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells. Pflügers Arch 444:597–601PubMedCrossRefGoogle Scholar
  22. Robinson HPC, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Meth 49:157–165CrossRefGoogle Scholar
  23. Robinson RB, Brink PR, Cohen IS, Rosen MR (2006) If and the biological pacemaker. Pharmacol Res 53:407–415PubMedCrossRefGoogle Scholar
  24. Rosen MR, Brink PR, Cohen IS, Robinson RB (2007) Biological pacemakers based on If. Med Biol Eng Comput 45:157–166PubMedCrossRefGoogle Scholar
  25. Scott S (1979) Stimulation Simulations of Young Yet Cultured Beating Hearts. Dissertation, State University of New York at BuffaloGoogle Scholar
  26. Sharp AA, Abbott LF, Marder E (1992) Artificial electrical synapses in oscillatory networks. J Neurophysiol 67:1691–1694PubMedGoogle Scholar
  27. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993a) Dynamic clamp: Computer-generated conductances in real neurons. J Neurophysiol 69:992–995Google Scholar
  28. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993b) The dynamic clamp: Artificial conductances in biological neurons. Trends Neurosci 16:389–394Google Scholar
  29. Spaan JAE, Coronel R, de Bakker JMT, Zaza A (eds) (2007) Biopacemaking. Springer, HeidelbergGoogle Scholar
  30. Starzak ME, Starzak RJ (1978) An action potential clamp to probe the effectiveness of space clamp in axons. IEEE Trans Biomed Eng 25:201–204PubMedCrossRefGoogle Scholar
  31. Sun X, Wang H-S (2005) Role of the transient outward current (Ito) in shaping canine ventricular action potential – a dynamic clamp study. J Physiol 564:411–419PubMedCrossRefGoogle Scholar
  32. Tan RC, Joyner RW (1990) Electrotonic influences on action potentials from isolated ventricular cells. Circ Res 67:1071–1081PubMedGoogle Scholar
  33. Varghese A, TenBroek EM, Coles J Jr, Sigg DC (2006) Endogenous channels in HEK cells and potential roles in HCN ionic current measurements. Prog Biophys Mol Biol 90:26–37PubMedCrossRefGoogle Scholar
  34. Verkerk AO, Wilders R, van Borren MMGJ, Peters RJC, Broekhuis E, Lam KY, Coronel R, de Bakker JMT, Tan HL (2007) Pacemaker current (If) in the human sinoatrial node. Eur Heart J 28:2472–2478PubMedCrossRefGoogle Scholar
  35. Wagner MB, Kumar R, Joyner RW, Wang Y (2004) Induced automaticity in isolated rat atrial cells by incorporation of a stretch-activated conductance. Pflügers Arch 447:819–829PubMedCrossRefGoogle Scholar
  36. Wang Y, Cheng J, Joyner RW, Wagner MB, Hill JA (2006) Remodeling of early-phase repolarization: a mechanism of abnormal impulse conduction in heart failure. Circulation 113:1849–1856PubMedCrossRefGoogle Scholar
  37. Wilders R, Jongsma HJ, van Ginneken ACG (1991) Pacemaker activity of the rabbit sinoatrial node: a comparison of mathematical models. Biophys J 60:1202–1216PubMedCrossRefGoogle Scholar
  38. Wilders R (2005) ‘Dynamic clamp’ in cardiac electrophysiology. J Physiol 566:641PubMedCrossRefGoogle Scholar
  39. Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576:349–359PubMedCrossRefGoogle Scholar
  40. Wilders R (2007) Computer modelling of the sinoatrial node. Med Biol Eng Comput 45:189–207PubMedCrossRefGoogle Scholar
  41. Yu SP, Kerchner GA (1998) Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J Neurosci Res 52:612–617PubMedCrossRefGoogle Scholar
  42. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Arie O. Verkerk
  • Jan G. Zegers
  • Antoni C.G. van Ginneken
  • Ronald Wilders
    • 1
  1. 1.Department of PhysiologyAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations