Dynamic-Clamp pp 347-382 | Cite as

Dynamic Clamp with High-Resistance Electrodes Using Active Electrode Compensation In Vitro and In Vivo

  • Romain Brette
  • Zuzanna Piwkowska
  • Cyril Monier
  • José Francisco
  • Gómez González
  • Yves Frégnac
  • Thierry Bal
  • Alain Destexhe
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 1)


The active electrode compensation (AEC) consists of an online correction of the recorded membrane potential based on a computational model of the electrode. This technique may be particularly useful for situations where high-frequency components (such as noise) must be injected. This is particularly important for dynamic-clamp applications because of the real-time feedback between injected current and recorded voltage, since any artifact is amplified and may cause instabilities. We show here that such problems are greatly limited by the AEC, and this technique enables dynamic-clamp injection at high feedback frequencies (>10 kHz) and in demanding conditions. We illustrate AEC with applications such as injection of conductance noise in vivo and in vitro.


Kernel Estimation Membrane Resistance Feedback Delay Electrode Response Electrode Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by CNRS, ANR (HR-CORTEX grant), ACI, HFSP, the European Community (FACETS grant FP6 15879) and the FRM. More information is available at˜brette and


  1. Anderson, J.S., Carandini, M., and Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84:909–26.PubMedGoogle Scholar
  2. Borg-Graham, L. J., Monier, C., and Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373.PubMedCrossRefGoogle Scholar
  3. Brennecke, R., and Lindemann, B. (1971). A chopped-current clamp for current injection and recording of membrane polarization with single electrodes of changing resistance. TI–TJ Life Sci 1:53–58.Google Scholar
  4. Brennecke, R., and Lindemann, B. (1974a). Theory of a membrane-voltage clamp with discontinuous feedback through a pulsed current clamp. Rev Sci Instrum 45:184–188.Google Scholar
  5. Brennecke, R., and Lindemann, B. (1974b). Design of a fast voltage clamp for biological membranes, using discontinuous feedback. Rev Sci Instrum 45:656–661.Google Scholar
  6. Brette, R., Piwkowska, Z., Rudolph, M., Bal, T., and Destexhe, A. (2007). A non-parametric electrode model for intracellular recording. In Proceedings of CNS 2006 (Edinburgh, UK). Neurocomputing 70 (10–12):1597–1601.CrossRefGoogle Scholar
  7. Brette, R., Piwkowska, Z., Rudolph-Lilith, M., Bal, T., and Destexhe, A. (2007). High-resolution intracellular recordings using a real-time computational model of the electrode. ARXIV preprint.
  8. Brette, R., Piwkowska, Z., Monier, C., Rudolph-Lilith, M., Fournier, J., Levy, M., Frégnac, Y., Bal, T., and Destexhe, A. (2008). High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron 59(3):379–391.Google Scholar
  9. Contreras, D., Destexhe, A., and Steriade M. (1997). Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol 78(1):335–350.PubMedGoogle Scholar
  10. Crochet, S., Fuentealba, P., Cisse, Y., Timofeev, I., and Steriade, M. (2006). Synaptic plasticity in local cortical network in vivo and its modulation by the level of neuronal activity. Cereb Cortex 16:618–631.PubMedCrossRefGoogle Scholar
  11. Destexhe, A., Contreras, D., and Steriade, M. (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79(2):999–1016.PubMedGoogle Scholar
  12. Destexhe, A., and Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–47.PubMedGoogle Scholar
  13. Destexhe, A., Rudolph, M., Fellous, J. M., and Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24.PubMedCrossRefGoogle Scholar
  14. Finkel, A. S., and Redman, S. (1984). Theory and operation of a single microelectrode voltage clamp. J Neurosci Methods 11:101–127.PubMedCrossRefGoogle Scholar
  15. Haider, B., Duque, A., Hasenstaub, A. R., Yu, Y., and McCormick, D. A. (2007). Enhancement of visual responsiveness by spontaneous local network activity in vivo. J Neurophysiol 97:4186–4202.PubMedCrossRefGoogle Scholar
  16. Harsch, A., and Robinson, H. P. (2000). Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J Neurosci 20(16):6181–6192.PubMedGoogle Scholar
  17. Higley, M. J., and Contreras, D. (2007). Cellular mechanisms of suppressive interactions between somatosensory responses in vivo. J Neurophysiol 97:647–658.PubMedCrossRefGoogle Scholar
  18. Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment. Neural Comput 9:1179–1209.PubMedCrossRefGoogle Scholar
  19. Hirsch, J. A., Alonso, J. M., Reid, R. C., and Martinez, L. M. (1998) Synaptic integration in striate cortical simple cells. J Neurosci 18:9517–9528.PubMedGoogle Scholar
  20. Mainen, Z. F., and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science 268(5216):1503–1506.PubMedCrossRefGoogle Scholar
  21. Margrie, T.W., Brecht, M., and Sakmann, B. (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444(4):491–498.PubMedCrossRefGoogle Scholar
  22. Mokeichev, A., Okun, M., Barak, O., Katz, Y., Ben-Shahar, O., and Lampl, I. (2007). Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron 53:413–425.PubMedCrossRefGoogle Scholar
  23. Monier, C., Fournier, J., and Frégnac, Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J Neurosci Methods, 169(2):323–365.Google Scholar
  24. Paz, J. T., Chavez, M., Saillet, S., Deniau, J. M., and Charpier, S. (2007). Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci 27:929–941.PubMedCrossRefGoogle Scholar
  25. Pei, X., Volgushev, M., Vidyasagar, T. R., and Creutzfeldt, O. D. (1991). Whole-cell recording and conductance measurements in cat visual cortex in vivo. NeuroReport 2:485–488.PubMedCrossRefGoogle Scholar
  26. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1993). Numerical Recipes in C: The Art of Scientific Computing (Cambridge; New York, Cambridge University Press).Google Scholar
  27. Prinz, A. A., Abbott, L. F., and Marder, E. (2004). The dynamic clamp comes of age. Trends Neurosci 27:218–224.PubMedCrossRefGoogle Scholar
  28. Purves, R. D. (1981). Microelectrode methods for intracellular recording and ionophoresis (London ; New York, Academic Press).Google Scholar
  29. Robinson, H. P., and Kawai, N. (1993). Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165.PubMedCrossRefGoogle Scholar
  30. Sharp, A. A., O'Neil, M. B., Abbott, L. F., and Marder, E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–394.PubMedCrossRefGoogle Scholar
  31. Shu, Y., Hasenstaub, A., Badoual, M., Bal, T., and McCormick, D. A. (2003). Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23:10388–10401.PubMedGoogle Scholar
  32. Steriade, M., Timofeev, I., and Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. J Neurophysiol 85:1969–1985.PubMedGoogle Scholar
  33. Stuart, G., and Spruston, N. (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18(10):3501–10.PubMedGoogle Scholar
  34. Tateno, T., Robinson, H.P. (2006) Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics. J Neurophysiol 95(4):2650–2663.PubMedCrossRefGoogle Scholar
  35. Thomas, M. V. (1977). Microelectrode amplifier with improved method of input-capacitance neutralization. Med Biol Eng Comput 15:450–454.PubMedCrossRefGoogle Scholar
  36. Thomson, A. M., and Deuchars, J. (1997). Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7:510–522.PubMedCrossRefGoogle Scholar
  37. Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.PubMedCrossRefGoogle Scholar
  38. Wilent, W. B., and Contreras, D. (2005a). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci 8:1364–1370.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Romain Brette
    • 1
  • Zuzanna Piwkowska
  • Cyril Monier
  • José Francisco
  • Gómez González
  • Yves Frégnac
  • Thierry Bal
  • Alain Destexhe
  1. 1.Equipe Audition (ENS/CNRS)Département d’Études Cognitives, Ecole Normale SupérieureFrance

Personalised recommendations