Advertisement

Evidence of Meaningful Learning in the Topic of ‘Proportionality’ in Second Grade Secondary Education

  • Edurne Pozueta
  • Fermín M. González
Chapter

This chapter describes an experiment using concept maps to teach a mathematics topic. The main goal was to detect and evaluate signs of meaningful learning in the students through the analysis of their concept maps, in a setting in which second grade students worked through an innovative instructional module on the topic of mathematical proportionalities. The conceptually transparent instructional module was designed to include introductory, focus and round up activities following the LEAP (Learning about Ecology, Animals and Plants) Model developed at Cornell University (USA).

Keywords

Hierarchical Level Proportional Relationship Meaningful Learning Proportional Reasoning Rote Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The above research, which was carried out within the framework of the GONCA project, was made possible thanks to funding provided by the Government of Navarra Education Department (Grant 294/2001, 27 December).

References

  1. Afamasaga-Fuata’i, K. (2004). Concept maps and vee diagrams as tools for learning new mathematics topics. Concept maps: Theory, methodology, technology, CMC 2004 (pp. 13–20). Pamplona, Spain.Google Scholar
  2. Ausubel, D. P., Novak, J. D., & Hanesian, H. (1976). Psicología educativa. Un punto de vista.Google Scholar
  3. Azcárate, C., & Deulofeu, J. (1990). Funciones y gráficas. Madrid: Editorial Síntesis.Google Scholar
  4. Ben-Chaim, D., Fey, J. T., Fitzgerald, W. M., Benedetto, C., & Miller, J. (1998). Proportional reasoning among 7th grade students with different curricular experiences. Educational Studies in Mathematics, 36, 247–273.CrossRefGoogle Scholar
  5. Caldwell, W.H., Al-Rubaee, F., Lipkin, L., Caldwell, D. F., & Campese, M. (2006). Developing a concept mapping approach to mathematics achievement in middle school. In A. J. Cañas & J. D. Novak (Eds.), Concept maps: Theory, methodology, technology, CMC 2006 (pp. 170–176). San José, Costa Rica: Universidad de Costa Rica.Google Scholar
  6. Esteban, P. V., Vasco, E. D., & Bedoya, J. A. (2006). Los Mapas Conceptuales en las Fases de Aprendizaje del Modelo Educativo de Van Hiele. In A. J. Cañas & J. D. Novak (Eds.), Concept maps: Theory, methodology, technology, CMC 2006 (pp. 383–390). San José, Costa Rica: Universidad de Costa Rica.Google Scholar
  7. Fiol, M. L., & Fortuny, J. M. (1990). Proporcionalidad directa. La forma y el número. Madrid: Editorial Síntesis.Google Scholar
  8. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Reidel Publishing Company.Google Scholar
  9. González, F. M. (1997). Evidence of rote learning of science by Spanish university students. School Science and Mathematics, 97(8), 419–428.CrossRefGoogle Scholar
  10. González, F. M., & Cañas, A. (2003). GONCA Project: Meaningful learning using CMapTools. Advances in technology-based education: Toward a knowledge-based society (pp. 747–750). Badajoz, Spain.Google Scholar
  11. Guruceaga, A., & González, F. M. (2004). Aprendizaje significativo y Educación Ambiental: análisis de los resultados de una práctica fundamentada teóricamente. Enseñanza de las Ciencias, 22(1), 115–136.Google Scholar
  12. Guzmán, M., & Gil, D. (1993). Enseñanza de las Ciencias y la Matemática. Madrid: Editorial Popular S.A.Google Scholar
  13. Huerta, M. P. (2006). La evaluación de Mapas Conceptuales Multidimensionales de Matemáticas: Aspectos Metodológicos. In A. J. Cañas & J. D. Novak (Eds.), Concept maps: Theory, methodology, technology, CMC 2006 (pp. 319–326). San José, Costa Rica: Universidad de Costa Rica.Google Scholar
  14. Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. Numbers concepts and operations in the middle grades (pp. 93–118). NCTM. Reston, VA: Erlbaum.Google Scholar
  15. Nesher, P., & Sukenik, M. (1989). Intuitive and formal learning of ratio concepts. Proceedings of the 13th. annual conference of the international group for the psychology of mathema tics education (pp. 33–40). Paris, France.Google Scholar
  16. Novak, J. D. (1982). Teoría y práctica de la educación. Madrid: Alianza Editorial S.A.Google Scholar
  17. Novak, J. D. (1988). Constructivismo humano: un consenso emergente. Enseñanza de las Ciencias, 6(3), 213–223.Google Scholar
  18. Novak, J. D. (1998). Conocimiento y aprendizaje. Madrid: Alianza Editorial S.A.Google Scholar
  19. Perez, R. (2006). Mapas conceptuales y Aprendizaje de Matemáticas. Concept maps: Theory, methodology, technology, CMC 2006 (pp. 407–414). San José, Costa Rica: Universidad de Costa Rica.Google Scholar
  20. Piaget, I., & Inhelder, B. (1972). De la lógica del niño a la lógica del adolescente. Buenos Aires: Paidós.Google Scholar
  21. Rapetti, M. V. (2003, Noviembre). Proporcionalidad. Razones internas y razones externas. Suma, 44, 65–70.Google Scholar
  22. Rico, L. (2005). Competencias matemáticas e instrumentos de evaluación en el estudio PISA 2003. PISA 2003. Madrid: INECSE. Ministerio de Educación y Ciencia.Google Scholar
  23. Schmittau, J., & Vagliardo, J. J. (2006). Using concept mapping in the development of the concept of positional system. Concept maps: Theory, methodology, technology, CMC 2006 (pp. 590–597). San José, Costa Rica: Universidad de Costa Rica.Google Scholar
  24. Serradó, A., Cardeñoso, J. M., & Azcárate, P. (2004). Los mapas conceptuales y el desarrollo profesional del docente. Concept maps: Theory, methodology, technology, CMC 2004 (pp. 595–602). San José, Costa Rica: Universidad de Costa Rica.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Public University of NavarraPamplonaSpain

Personalised recommendations