Advertisement

Control of Thermal Meat Processing

  • Carl L. Griffis
  • Tareq M. Osaili
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Thermal Processing

The recent growth of the market for ready-to-eat (RTE) meat and poultry products has led to serious concern over foodborne illnesses due to the presence of pathogens, particularly Salmonella spp, Listeria monocytogenes and Escherichia coli O157:H7 in meat and poultry products. Emphasis has been placed on thermal processing since heat treatment is still considered the primary means of eliminating foodborne pathogens from raw meat and poultry products (Juneja, Eblen, & Ransom, 2001). Inadequate time/temperature exposure during cooking is a contributing factor in food poisoning outbreaks. Optimal heat treatment is required not only to destroy pathogenic microorganisms in meat and poultry products but also to maintain desirable food quality and product yield.1

Thermal destruction of pathogens is a time–temperature-dependent process. The time–temperature relationship of the thermal inactivation of pathogens has long been expressed with the concept of decimal reduction...

Keywords

Thermal Resistance Thermal Inactivation Foodborne Pathogen Sodium Lactate Poultry Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed, N. M., Conner, D. E., & Huffman, D. L. (1995). Heat-resistance of Escherichia coli O157:H7 in meat and poultry as affected by product composition. Journal of Food Science, 60, 606–610.CrossRefGoogle Scholar
  2. Bolton, D. J., McMahon, C. M., Doherty, A. M., Sheridan, J. J., McDowell, D. A., Blair, I. S., et al. (2000). Thermal inactivation of Listeria monocytogenes and Yersinia enterocolitica in minced beef under laboratory conditions and in sous-vide prepared minced and solid beef cooked in a commercial retort. Journal of Applied Microbiology, 88, 626–632.Google Scholar
  3. Boyle, D. L., Sofos, J. N., & Schmidt, G. R. (1990). Thermal destruction of Listeria monocytogenes in a meat slurry and in ground beef. Journal of Food Science, 55, 327–329.CrossRefGoogle Scholar
  4. Byrne, C. M., Bolton, D. J., Sheridan, J. J., Blair, I. S., & McDowell, D. A. (2002). The effect of commercial production and product formulation stresses on the heat resistance of Escherichia coli O157:H7 (NCTC 12900) in beef burgers. International Journal of Food Microbiology, 79, 183–192.CrossRefGoogle Scholar
  5. Cagri, A., Ustunol, Z., & Ryser, E. (2002). Inhibition of three pathogens on bologna and summer sausage using antimicrobial edible films. Journal of Food Science, 67, 2317–2324.CrossRefGoogle Scholar
  6. Carlson, T. R., Marks, B. P., Booren, A. M., Ryser, E. T., & Orta-Ramirez, A. (2005). Effect of water activity on thermal inactivation of Salmonella in ground turkey. Journal of Food Science, 70, M363–M366.CrossRefGoogle Scholar
  7. Center for Disease Control. (1998). Multi-state outbreak of listeriosis. Morbidity Mortality Weekly Report, 47, 1085–1086.Google Scholar
  8. Cygnarowicz-Provost, M., Whiting, R. C., & Craig, J. C. (1994). Steam surface pasteurization of beef frankfurters. Journal of Food Science, 59, 1–5.Google Scholar
  9. Doherty, A. M., McMahn, C. M. M., Sheridan, J. J., Blair, I. S., McDowell, D. A., & Hegarty, T. (1998). Thermal resistance of Yersinia enterocolitica and Listeria monocytogenes in meat and potato substrate. Journal of Food Safety, 18, 69–83.CrossRefGoogle Scholar
  10. Fain, A. R., Jr., Line, J. E., Maron, A. B., Martin, L. M., Lechowich, R. V., Carosella, J. M., & Brown, W. L. (1991). Lethality of heat to Listeria monocytogenes Scott A: D-value and z-value determinations in ground beef and turkey. Journal of Food Protection, 54, 756–761.Google Scholar
  11. Farber, J. M., & Brown, B. E. (1990). Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Applied and Environmental Microbiology, 56, 1584–1587.Google Scholar
  12. Farber, J. M., Huges, A., Holley, R., & Brown, B. (1989). Thermal resistance of Listeria monocytogenes in sausage meat. Acta Microbiologica Hungarica, 36, 273–275.Google Scholar
  13. Gaze, J. E., Brown, G. D., Gaskell, D. E., & Banks, J. G. (1989). Heat resistance of Listeria monocytogenes in homogenates of chicken, beef steak and carrot. Food Microbiology, 6, 251–259.Google Scholar
  14. Gill, V. S., Thippareddi, H., Phebus, R. K., Mardsen, J. L., & Kastner, C. L. (2001). Validation of a steam-based post-process pasteurization system for control of Listeria monocytogenes in ready-to-eat deli meats. The Food Safety Consortium Annual Meeting, Ames, IA, 16–18 September.Google Scholar
  15. Goodfellow, S. J., & Brown, W. L. (1978). Fate of Salmonella inoculated into beef for cooking. Journal of Food Protection, 41, 598–605.Google Scholar
  16. Heldman, D. R., & Hartel, R. W. (1997). Thermal processing principle. In Principles of food processing (1st ed.). New York: Chapman and Hall, International Thomason Publishing.Google Scholar
  17. Huang, L., & Juneja, V. K. (2003). Thermal inactivation of Escherichia coli O157:H7 in ground beef supplemented with sodium lactate. Journal of Food Protection, 66, 664–667.Google Scholar
  18. Hussemann, D. L., & Buyske, J. K. (1954). Thermal-death-time-temperature relationship of Salmonella Typhimurium in chicken muscle. Food Research, 19, 351–356Google Scholar
  19. Ibarra, J. G., Tao, Y., Walker, J., & Griffis, C. (1999). Internal temperature of cooked chicken meat through infrared imaging and time series analysis. Transactions of the ASAE, 42, 1383–1390Google Scholar
  20. Juneja, V. K. (2003). Comparative heat inactivation study of indigenous microflora in beef with that of Listeria monocytogenes, salmonella serotypes and Escherichia coli O157:H7. Letters of Applied Microbiology, 37, 292–298.CrossRefGoogle Scholar
  21. Juneja, V. K., & Eblen, B. S. (1999). Predictive thermal inactivation model for Listeria monocytogenes with temperature, pH, NaCl, and sodium pyrophosphate as controlling factors. Journal of Food Protection, 62, 986–993.Google Scholar
  22. Juneja, V. K., & Eblen, B. S. (2000). Heat inactivation of salmonella typhimurium DT104 in beef as affected by fat content. Letters of Applied Microbiology, 30, 461–467.CrossRefGoogle Scholar
  23. Juneja, V. K., Eblen, B. S., & Marks, H. M. (2001). Modeling non-liner survival curves to calculate thermal inactivation of salmonella in poultry of different fat level. International Journal of Food Microbiology, 70, 37–51.CrossRefGoogle Scholar
  24. Juneja, V. K., Eblen, B. S., & Ransom, G. M. (2001). Thermal inactivation of salmonella spp in chicken broth, beef, pork, turkey, and chicken: Determination of D- and z-values. Journal of Food Science, 66, 146–152.CrossRefGoogle Scholar
  25. Juneja, V. K., Klein, P. G., & Marmer, B. S. (1998). Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef. Journal of Applied Microbiology, 84, 677–684.CrossRefGoogle Scholar
  26. Juneja, V. K., Snyder, O. P., & Marmer, B. S. (1997). Thermal destruction of Escherichia coli O157:H7 in beef and Chicken: Determination of D- and z-values. International Journal of Food Microbiology, 35, 231–237.CrossRefGoogle Scholar
  27. Kim, K-T., Murano, E. A., & Olson, D. G. (1994). Heating and storage conditions affect survival and recovery of Listeria monocytogenes in ground pork. Journal of Food science, 59, 30–32, 59.CrossRefGoogle Scholar
  28. Kormendy, I., & Kormendy, L. (1997). Consideration for calculation heat inactivation processes when semilogarithmic thermal inactivation model are non-Linear. Journal of Food Engineering, 34, 33–40.CrossRefGoogle Scholar
  29. Kotrola, J. S., & Conner, D. E. (1997). Heat inactivation of Escherichia coli O157:H7 in turkey meat as affected by sodium chloride, sodium lactate, polyphosphate, and fat content. Journal of Food Protection, 60, 898–902.Google Scholar
  30. Kotrola, J. S., Conner, D. E., & Mikel, W. B. (1997). Thermal inactivation of Escherichia coli O157:H7 in cooked turkey products. Journal of Food Science, 66,146–152.Google Scholar
  31. Line, J. E, Fain, A. R., Moran, A. B., Martin, L. M., Lechowich, R. V., Carosella, J. M., et al. (1991). Lethality of hest to Escherichia coli O157:H7: D-value and z-value determinations in ground beef. Journal of Food Protection, 54, 762–766.Google Scholar
  32. Lou, Y., & Yousef, A. E. (1996). Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. Journal of Food Protection, 59, 465–471.Google Scholar
  33. Luchansky, J. B., Cocoma, G., & Call, J. E. (2006). Hot water postprocess pasteurization of cook-in-bag turkey breast treated with and without potassium lactate and sodium diacetate and acidified sodium chlorite for control of Listeria monocytogenes. Journal of Food Protection, 69, 39–46.Google Scholar
  34. Ma, L., & Tao, Y. (2005). An infrared and laser range imaging system for non-invasive estimation of internal temperatures in chicken breasts during cooking. Transactions of the ASAE, 48, 681–690.Google Scholar
  35. Mackey, B. M., & Derrick, C. M. (1987). The effect of prior heat shock on the thermoresistance of Salmonella thompson in foods. Letters in Applied Microbiology, 5, 115–118.CrossRefGoogle Scholar
  36. Mackey, B. M., Prichet, C., Norris, A., & Mead, G. C. (1990). Heat resistance of Listeria strain differences and effects of meat type and curing salts. Letters in Applied Microbiology, 10, 251–255.Google Scholar
  37. Mangalassary, S., Dawson, P. L. Rieck, J., & Han, I. Y. (2004). Thickness and compositional effects on surface heating tare of bologna during in-package pasteurization. Poultry Science, 83, 1456–1461.Google Scholar
  38. Maurer, J. L., Ryser, E. T., Booren, A. M., & Smith, D. M. (2000). Triose phosphate isomerase as an endogenous time-temperature integrated to verify thermal inactivation of Salmonella in turkey meat. Abstract 51C-22. Institution of Food Technology Annual Meeting, Dallas, TX, June 10–14.Google Scholar
  39. Mazzotta, A S. (2000). D-z-values of salmonella in ground chicken breast meat. Journal of Food Safety, 20, 217–223.CrossRefGoogle Scholar
  40. Mazzotta, A. S., & Gombas, D. E. (2001). Heat resistances of an out break strain of Listeria monocytogenes in hotdog batter. Journal of Food Protection, 64, 321–334.Google Scholar
  41. McCormick, K., Han, I. Y., Acton, J. C., Sheldon, B. W., & Dawson, P. L. (2003). D- and z-values for Listeria monocytogenes and Salmonella Typhimurium in packaged low-fat ready-to-eat turkey bologna subjected to a surface pasteurization treatment. Poultry Science, 82, 1337–1342.Google Scholar
  42. Miller, A. J., Bayles, D. O., & Eblen, B. S. (2000). Cold shock induction of thermal sensitivity in Listeria monocytogenes. Applied and Environmental Microbiology, 66, 4345–4350.CrossRefGoogle Scholar
  43. Moats, W. A. (1971). Kinetics of thermal death time of bacteria. Journal of Bacteriology, 105, 165–171.Google Scholar
  44. Muriana, P. M., Quimby, W., Davidson, C. A., & Grooms, J. (2002). Postpackage pasteurization of ready-to-eat deli meats by submersion heating for reduction of Listeria monocytogenes. Journal of Food Protection, 65, 963–969.Google Scholar
  45. Murphy, R. Y., Marks, B. P., Johnson, E. R., & Johnson, M. G. (1999). Inactivation of Salmonella and Listeria in ground chicken breast meat during thermal processing. Journal of Food Protection, 62, 980–985.Google Scholar
  46. Murphy, R. Y., Beard, B. L., Martin, E. M., Duncan, L. K., & Marcy, J. A. (2004). Comparative study of thermal inactivation of Escherichia coli O157:H7, Salmonella and Listeria monocytogenes in ground pork. Journal of Food Science, 69, 97–101.Google Scholar
  47. Murphy, R. Y., Beard, B. L., Martin, E. M., Keener, A. E, & Osaili, T. (2004). Predicting process Lethality of Escherichia coli O157:H7, Salmonella and Listeria monocytogenes in ground, formulated, and formed beef/turkey links cooked in an air impingement oven. Food Microbiology, 21, 493–499.CrossRefGoogle Scholar
  48. Murphy, R. Y., & Berrang, M. E. (2002). Thermal lethality of Salmonella Senftenberg and Listeria innocua on fully cooked and vacuum packaged chicken breast strips during hot water pasteurization. Journal of Food Protection, 65, 1561–1564.Google Scholar
  49. Murphy, R. Y., Davidson, M. A., & Marcy, J. A. (2004). Process lethality prediction for Escherichia coli O157:H7 in raw franks during cooking and fully cooked franks during post-cook pasteurization. Journal of Food Science, 69, 112–116.Google Scholar
  50. Murphy, R. Y., Driscoll, K. H., Arnold, M. E., Marcy, J. A., & Wolfe, R. E. (2003). Lethality of heat to Listeria monocytogenes in fully cooked and vacuum packaged chicken leg quarters during steam pasteurization. Journal of Food Science, 68, 2780–2783.CrossRefGoogle Scholar
  51. Murphy, R. Y., Duncan, L. K., Beard, B. L., & Driscoll, K. H. (2003). D and z values of Salmonella, Listeria innocua, and Listeria monocytogenes in fully cooked poultry products. Journal of Food Science, 68, 1443–1447.CrossRefGoogle Scholar
  52. Murphy, R. Y., Duncan, L. K., Berrang, M. E., Marcy, J. A., & Wolfe, R. E. (2002). Thermal inactivation D- and z-values of Salmonella, Listeria innocua in fully cooked and vacuum packaged chicken breast meat during postcook heat treatment. Poultry Science, 81, 1578–1583.Google Scholar
  53. Murphy, R. Y., Duncan, L. K., Driscoll, K. H., Marcy, J. A., & Beard, B. L. (2003). Thermal inactivation of Listeria monocytogenes on ready-to-eat turkey breast meat products during postcook in-package pasteurization with hot water. Journal of Food Protection, 9, 1618–1622.Google Scholar
  54. Murphy, R. Y., Duncan, L. K., Johnson, E. R., & Davis, M. D. (2001). Process lethality and product yield for chicken patties processed in a pilot-scale air-steam impingement oven. Journal of Food protection, 10, 1549–1555.Google Scholar
  55. Murphy, R. Y., Duncan, L. K., Johnson, E. R., Davis, M. D, & Smith, J. N. (2002). Thermal inactivation D- and z-values of Salmonella serotypes and Listeria innocua in chicken patties, chicken tenders, franks, beef patties, and blended beef and turkey patties. Journal of Food Protection, 65, 53–60.Google Scholar
  56. Murphy, R. Y., Duncan, L. K., Johnson, E. R., Davis, M. D., Wolfe, R. E., & Brown, H. G. (2001). Thermal lethality of Salmonella Senftenberg and Listeria innouca in fully cooked and packaged chicken breast strips during steam pasteurization. Journal of Food Protection, 64, 2083–2087.Google Scholar
  57. Murphy, R. Y., Duncan, L. K., Marcy, J. A., Berrang, M. E., & Driscoll, K. H. (2002). Effect of packaging-film thickness on thermal inactivation of Salmonella and Listeria innocua in fully cooked chicken breast meat. Journal of Food Science, 67, 3435–3440.CrossRefGoogle Scholar
  58. Murphy, R. Y., Hanson, R. E., Feze, N., Johnson, N. R., Scott, L. L., & Duncan, L. K. (2005). Eradicating Listeria monocytogenes from fully cooked franks by using an integrated pasteurization-packaging system. Journal of Food Protection, 68, 507–511.Google Scholar
  59. Murphy, R. Y., Hanson, R. E., Johnson, N. R., Chappa, K., & Berrang, M. E. (2006). Combining organic acid treatment with steam pasteurization to eliminate Listeria monocytogenes on fully cooked frankfurters. Journal of Food Protection, 69, 47–52.Google Scholar
  60. Murphy, R. Y., Johnson, E. R., Duncan, L. K., Davis, M. D., Johnson, M. G., & Marcy, J. A. (2001) Thermal inactivation of Salmonella spp. and Listeria innocua in the chicken breast patties processed in a pilot-scale air-convection oven. Journal of Food Science, 66, 734–741.CrossRefGoogle Scholar
  61. Murphy, R. Y., Johnson, E. R., Marks, B. P., Johnson, M. G., & Marcy, J. A. (2001) Thermal inactivation of Salmonella senftenberg and Listeria innocua in ground chicken breast patties processed in an air convection oven. Poultry Science, 80, 515–521.Google Scholar
  62. Murphy, R. Y., Marks, B. P., Johnson, E. R., & Johnson, M. G. (2000). Thermal inactivation kinetics of Salmonella and Listeria in ground chicken breast meat and liquid medium. Journal of Food Science, 65, 706–710.CrossRefGoogle Scholar
  63. Murphy, R. Y., Martin, E. M., Duncan, L. K., Beard, B. L., & Marcy, J. A. (2004). Thermal process validation for Escherichia coli, Salmonella and Listeria monocytogenes in ground turkey and beef products. Journal of Food Protection, 67, 1394–1402.Google Scholar
  64. Murphy, R. Y., Osaili, T., Duncan, L. K., & Marcy, J. A. (2004a). Effect of sodium lactate on thermal inactivation of Listeria monocytogenes and Salmonella in ground chicken thigh and leg meat. Journal of Food Protection, 67, 1403–1407.Google Scholar
  65. Murphy, R. Y., Osaili, T., Duncan, L. K., & Marcy, J. A. (2004b). Thermal inactivation of, salmonella and Listeria monocytogenes in ground chicken thigh/leg meat and skin. Poultry Science, 83, 1218–1225.Google Scholar
  66. Orta-Ramirez, A. (2002). Thermal inactivation of pathogens and verification of adequate cooking in meat and poultry products. Advanced Food and Nutrition Research, 44, 147–194.CrossRefGoogle Scholar
  67. Orta-Ramirez, A, Price, J. F., Hsu, Y. C., Veeramuthu, G. J., Cherry-Merritt, J. S., & Smith, D. M. (1997). Thermal inactivation of Escherichia coli O157:H7, Salmonella senftenberg and enzymes with potential as time-temperature indicators in ground beef. Journal of Food Protection, 60, 471–475.Google Scholar
  68. Osaili, T., Griffis, C. L., Martin, E. M., Beard, B. L., Keener, A., & Marcy, J. A. (2006). Thermal inactivation studies of Escherichia coli O157:H7, Salmonella and Listeria monocytogenes in ready-to-eat chicken-fried beef patties. Journal of Food Protection, 69, 1080–1086.Google Scholar
  69. Osaili, T., Griffis, C. L., Martin, E. M., Beard, B. L., Keener, A, & Marcy, J. A. (2007). Thermal inactivation of Escherichia coli O157:H7, salmonella and Listeria monocytogenes in breaded pork patties. Journal of Food Science, 72, 56–61.CrossRefGoogle Scholar
  70. Osaili, T. M., Griffis, C. L., Martin, E. M., Gbur, E. E., & Marcy, J. A. (2006). Modeling cooking time to inactivate Salmonella in chicken leg quarters cooked in an air–steam impingement oven. Journal of Food Science, 71, M146–M149CrossRefGoogle Scholar
  71. Quintavalla, S., Larini, S., Mutti, P., & Barbuti, S. (2001). Evaluation of the thermal resistance of different Salmonella serotypes in pork meat containing curing additives. International Journal of Food Microbiology, 67, 107–114CrossRefGoogle Scholar
  72. Schoeni, J. L., Brunner, K., & Doyle, M. P. (1991). Rates of thermal inactivation of Listeria monocytogenes in beef and fermented beaker sausage. Journal of Food Protection, 54, 334–337.Google Scholar
  73. Senhaji, A. F., & Lincon, M. J. (1977). The protective effect of fat on the heat resistance of bacteria (I). Journal of Food Technology, 12, 203–216CrossRefGoogle Scholar
  74. Smith, S. E., Maurer, J. L., Orta-Ramirez, A., Ryser, E. T., & Smith, D. M. (2001). Thermal inactivation of Salmonella spp, Salmonella typhimurium DT104, and Escherichia coli O157:H7 in ground beef. Journal of Food Science, 66, 1164–1168.CrossRefGoogle Scholar
  75. United States Department of Agriculture, Food Safety and Inspection Service. (1999). Performance standards for the production of certain meat and poultry products. Federal Register, 64, 732–749, Washington, DC.Google Scholar
  76. United States Department of Agriculture, Food Safety Inspection Service. (2003). Control of Listeria monocytogenes in ready-to-eat meat and poultry products. Federal Register, 68, 34207–34254, Washington, DC.Google Scholar
  77. Veeramuthu, G. J., Price, J. F., Davis, C. E., Booren, A. M., & Smith, D. M. (1998). Thermal inactivation of Escherichia coli O157:H7, Salmonella Senftenberg, and enzymes with potential as time-temperature indicators in ground turkey thigh meat. Journal of Food Protection, 61, 171–175.Google Scholar
  78. Wesche, A. M., Marks, B. P., & Ryser, E. T. (2005). Thermal resistance of heat, cold, and starvation-injured Salmonella in irradiated comminuted turkey. Journal of Food Protection, 68, 942–948.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carl L. Griffis
  • Tareq M. Osaili

There are no affiliations available

Personalised recommendations