Advanced Decontamination Technologies: Irradiation

  • Eun Joo Lee
  • Dong U. Ahn
Part of the Food Microbiology and Food Safety book series (FMFS)


Bacterial food-borne illnesses account for an estimated 76 million cases, 325,000 hospitalizations, and 5,000 deaths each year in the United States (CDCP, 2005), and 5,300 food-borne outbreaks in Europe resulted in 5,330 hospitalizations and 24 deaths in 2005 (Aymerich, Picouet, & Monfort, 2008). Major food-borne pathogens of concern include Escherichia coli O157:H7, Campylobacterjejuni/coli, Salmonella spp., Listeria monocytogenes, Clostridium botulinum/perfringens, Staphylococcus aureus, Aeromonas hydrophylia, and Bacillus cereu, and spoilage microorganisms include Pseudomonas, Acinetobacter/Moraxella, Aeromonas, Alteromonas putrefaciens, Lactobacillus, and Brochothrix thermosphecta (Mead et al., 1999).

Meat is one of the major foods that cause food-borne illness in human and thus meat sanitation systems are required to use various intervention strategies to reduce or eliminate bacteria. Preharvest reduction of microorganisms in livestock and postharvest decontamination...


Lipid Oxidation Dimethyl Disulfide Vacuum Packaging Irradiate Food Food Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn, D. U. (2002). Production of volatiles from amino acid homopolymers by irradiation. Journal of Food Science, 67(7), 2565–2570.CrossRefGoogle Scholar
  2. Ahn, D. U., Jo, C., & Olson, D. G. (2000). Analysis of volatile components and the sensory characteristics of irradiated raw pork. Meat Science, 54, 209–215.CrossRefGoogle Scholar
  3. Ahn, D. U., Jo, C., Olson, D. G., & Nam, K. C. (2000). Quality characteristics of pork patties irradiated and stored in different packaging and storage conditions. Meat Science, 56, 203–209.CrossRefGoogle Scholar
  4. Ahn, D. U., & Lee, E. J. (2002). Production of off-odor volatiles from liposome-containing amino acid homopolymers by irradiation. Journal of Food Science, 67(7), 2659–2665.CrossRefGoogle Scholar
  5. Ahn, D. U., Lee, E. J., & Mendonca, A. (2006). Meat decontamination by irradiation. In Advanced technologies for meat processing. Boca Raton, FL: CRC Press, pp. 155–191.Google Scholar
  6. Ahn, D. U., Nam, K. C., Du, M., & Jo, C. (2001). Effect of irradiation and packaging conditions after cooking on the formation of cholesterol and lipid oxidation products in meats during storage. Meat Science, 57, 413–418.CrossRefGoogle Scholar
  7. Ahn, D. U., Olson, D. G., Jo, C., Chen, X., Wu, C., & Lee, J. I. (1998). Effect of muscle type, packaging, and irradiation on lipid oxidation, volatile production and color in raw pork patties. Meat Science, 49, 27–39.CrossRefGoogle Scholar
  8. Ahn, D. U., Olson, D. G., Jo, C., Love, J., & Jin, S. K. (1999). Volatiles production and lipid oxidation of irradiated cooked sausage with different packaging during storage. Journal of Food Science, 64(2), 226–229.CrossRefGoogle Scholar
  9. Ahn, D. U., Olson, D. G., Lee, J. I., Jo, C., Wu, C., & Chen, X. (1998). Packaging and irradiation effects on lipid oxidation and volatiles in pork patties. Journal of Food Science, 63(1), 15–19.CrossRefGoogle Scholar
  10. Ahn, D. U., Wolfe, F. H., Sim, J. S., & Kim, D. H. (1992). Packaging cooked turkey meat patties while hot reduces lipid oxidation. Journal of Food Science, 57, 1075–1077, 1115.CrossRefGoogle Scholar
  11. AMA (American Medical Association). (1993). Irradiation of food. Council on Scientific Affairs Report 4, Chicago, Ill.Google Scholar
  12. AMIF (American Meat Institute Foundation). (1993). Consumer awareness, knowledge, and acceptance of food irradiation. Washington, DC: American Meat Institute Foundation.Google Scholar
  13. Angelini, P., Merritt, C., Jr., Mendelshon, J. M., & King, F. J. (1975). Effect of irradiation on volatile constituents of stored haddok flesh. Journal of Food Science, 40, 197–199.CrossRefGoogle Scholar
  14. Anellis, A., Shattuck, E., Morin, M., Srisara, B., Qvale, S., Rowley, D. B., & Ross Jr., E. W. (1977). Cryogenic gamma irradiation of prototype pork and chicken and antagonistic effect between Clostridium botulinum types A and B. Applied and Environmental Microbiology, 34(6), 823–831.Google Scholar
  15. Aymerich, T., Picouet, P. A., & Monfort, J. M. (2008). Decontamination technologies for meat products. Meat Science, 78, 114 –129.CrossRefGoogle Scholar
  16. Brynjolfsson, A. (1989). Future radiation sources and identification of irradiated foods. Food Technology, 43(7), 84–89, 97.Google Scholar
  17. CAST. (1986). Ionizing energy in food processing and pest control: I. Wholesomeness of food treated with ionizing energy (Task Force Report No. 109, p. 50). Ames, IA: Council for Agriculture Science and Technology.Google Scholar
  18. CAST. (1989). Ionizing energy in food processing and pest control: II. Applications (Task Force Report No. 115, pp. 72–76). Ames, IA: Council for Agriculture Science and Technology.Google Scholar
  19. CDCP (Center for Disease Control and Prevention). (2005). Food-borne Illness.
  20. Champaign, J. R., & Nawar, W. W. (1969). The volatile components of irradiated beef and pork fats. Journal of Food Science, 34, 335–340.CrossRefGoogle Scholar
  21. Clavero, M. R., Monk, J. D., Beuchat, L. R., Doyle, M. P., & Brackett, R. E. (1994). Inactivation of Escherichia coli O157:H7, salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Applied and Environmental Microbiology, 60(6), 2069–2075.Google Scholar
  22. Cornforth, D. P., Vahabzadeh, F., Carpenter, C. E., & Bartholomew, D. T. R. (1986). Role of reduced hemochromes in pink color defect of cooked turkey rolls. Journal of Food Science, 51, 1132–1135.CrossRefGoogle Scholar
  23. Davies, M. J. (1996). Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Archives of Biochemistry and Biophysics, 336, 163–172.CrossRefGoogle Scholar
  24. Delincée, H., & Pool-Zobel, B. L. (1998). Genotoxic properties of 2-dodecylcyclo-butanone, a compound formed on irradiation of food containing fat. Radiation Physics and Chemistry, 52(1), 39–42.CrossRefGoogle Scholar
  25. Diehl, J. F. (1999). Safety of irradiated foods (2nd ed.). New York: Marcel Dekker, Inc.Google Scholar
  26. Dogbevi, M. K., Vachon, C., & Lacroix, M. (1999). Physicochemical and microbiological changes in irradiated fresh pork loins. Meat Science, 51, 349–354.CrossRefGoogle Scholar
  27. Dragnic, I. G., & Dragnic, Z. O. (1963). The radiation chemistry of water. New York: Academic Press.Google Scholar
  28. Ehioba, R. M., Kraft, A. A., Molins, R. A., Walker, H. W., Olson, D. G., Subbaraman, G., et al. (1988). Identification of microbial isolates from vacuum-packaged ground pork irradiated at 1 kGy. Journal of Food Science, 53, 278–279, 281.CrossRefGoogle Scholar
  29. El-Zawahry, Y. A., & Rowley, D. B. (1979). Radiation resistance and injury of Yersinia enterocolitica. Applied and Environmental Microbiology, 37(1), 50–54.Google Scholar
  30. Fan, X. (2005). Impact of ionizing radiation and thermal treatments on furan levels in fruit juice. Journal of Food Science, 70(7), e409–e414.CrossRefGoogle Scholar
  31. Fan, X., & Mastovska, K. (2006). Effectiveness of ionizing radiation in reducing furan and acrylamide levels in foods. Journal of Agriculture and Food Chemistry, 54, 8266–8270.CrossRefGoogle Scholar
  32. Fan, X., & Sommers, C. H. (2006). Effect of gamma radiation on furan formation in ready-to-eat products and their ingredients. Journal of Food Science, 71(7), c407–c412.CrossRefGoogle Scholar
  33. Fan, X., Sommers, C. H., Thayer, D. W., & Lehotay, S. J. (2002). Volatile sulfur compounds in irradiated precooked turkey breast analyzed with pulsed flame photometric detection. Journal of Agricultural and Food Chemistry, 50(15), 4257–4261.CrossRefGoogle Scholar
  34. Farkas, J. (2006). Irradiation for better foods. Trends in Food Science & Technology, 17(4), 148–152.Google Scholar
  35. Federal Register. (1999). Irradiation of meat and meat products. Federal Register, 4, 9089–9105.Google Scholar
  36. Fox, J. B., & Ackerman, S. A. (1968). Formation of nitric oxide myoglobin: Mechanisms of the reaction with various reductants. Journal of Food Science, 33, 364–370.CrossRefGoogle Scholar
  37. Fox, J. A., Hayes, D. J., & Shogren, J. F. (2002). Consumer preferences for food irradiation: How favorable and unfavorable descriptions affect preferences for irradiated pork in experimental auctions. Journal of Risk Uncertainty, 24(1), 75–95.CrossRefGoogle Scholar
  38. Frenzen, P. D., DeBess, E. E., Hechemy, K. E., Kassenborg, H., Kennedy, M., McCombs, K., et al. (2001). Consumer acceptance of irradiated meat and poultry in the United States. Journal of Food Protection, 64, 2020–2026.Google Scholar
  39. Fu, A. H., Sebranek, J. G., & Murano, E. A. (1995). Survival of Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli O157:H7 and quality changes after irradiation of beef steak and ground beef. Journal of Food Science, 60, 972–977.CrossRefGoogle Scholar
  40. Furuta, M., Dohmaru, T., Katayama, T., Toratoni, H., & Takeda, A. (1992). Detection of irradiated frozen meat and poultry using carbon monoxide gas as a probe. Journal of Agricultural and Food Chemistry, 40(7), 1099–1100.CrossRefGoogle Scholar
  41. Gadgil, P., & Smith, J. S. (2004). Mutagenicity and acute toxicity evaluation of 2-dodecylcyclobutanone. Journal of Food Science, 69(9), c713–c716.CrossRefGoogle Scholar
  42. Giddings, G. G. (1977). Symposium: The basis of quality in muscle foods, the basis of color in muscle foods. Journal of Food Science, 42, 288–294.CrossRefGoogle Scholar
  43. Giddings, G. G., & Markakis, P. (1972). Characterization of the red pigments produced from ferrimyoglobin by ionizing radiation. Journal of Food Science, 37, 361–364.CrossRefGoogle Scholar
  44. Godshall, M. A. (1997). How carbohydrate influence flavor. Food Technology, 51, 63–67.Google Scholar
  45. Grant, I. R., Nixon, C. R., & Patterson, M. F. (1993). Effect of low-dose irradiation on growth of and toxin production by Staphylococcus aureus and Bacillus cereus in roast beef and gravy. International Journal of Food Microbiology, 18(1), 25–36.Google Scholar
  46. Grant, I. R., & Patterson, M. F. (1991). Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork under temperature abuse conditions. International Journal of Food Science and Technology, 26, 521–533.Google Scholar
  47. Halliwell, B. J. M., & Gutteridge, C. A. (1989). Consideration of atomic structure and bonding. In B. Halliwell & J. M. C. Gutteridge (Eds.), Free radicals in biology and medicine (2nd ed., pp. 508–524). London: Clarendon Press.Google Scholar
  48. Hashim, I. B., Resurreccion, A. V. A., & MaWatters, K. H. (1995). Disruptive sensory analysis of irradiated frozen or refrigerated chicken. Journal of Food Science, 60, 664–666.CrossRefGoogle Scholar
  49. Hastings, J. W., Holzapfel, W. H., & Niemand, J. G. (1986). Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. Applied and Environmental Microbiology, 52, 898–901.Google Scholar
  50. Hayashi, T. (1991). Comparative effectiveness of gamma rays and electron beams in food irradiation. In S. Thorne (Ed.), Food irradiation (pp. 169–206). London: Elsevier Applied Science.Google Scholar
  51. Health Canada. (2003). Evaluation of the significance of 2-dodecylcyclobutanone and other alkylcyclobutanones. Ottawa,
  52. Heath, J. L., Owens, S. L., Tesch, S., & Hannah, K. W. (1990). Effect of high-energy electron irradiation of chicken on thiobarbituric acid values, shear values, odor, and cook yield. Poultry Science, 69, 313–319.Google Scholar
  53. Huber, W., Brasch, A., & Waly, A. (1953). Effect of processing conditions on organoleptic changes in foodstuffs sterilized with high intensity electrons. Food Technology, 7, 109–115.Google Scholar
  54. Huhtanen, C. N., Jenkins, R. K., & Thayer, D. W. (1989). Gamma radiation sensitivity of Listeria monocytogenes. Journal of Food Protection, 9, 610–613.Google Scholar
  55. IAEA. (1999). Facts about food irradiation. Accessed July 8, 1999, from International Atomic Energy Agency, Vienna, Austria
  56. IARC (International Agency for Research on Cancer). (1995). IARC monographs on the evaluation of carcinogenic risks to humans: Some industrial chemicals (IARC 60, pp. 389–433). Lyon, France: IARC.Google Scholar
  57. Jarrett, R. D., Sr. (1982). Isotope (gamma) radiation sources. In E. S. Josephson & M. S. Peterson (Eds.), Preservation of food by ionizing radiation (Vol. 1, pp. 137–163). Boca Raton, FL: CRC Press.Google Scholar
  58. Jo, C., & Ahn, D. U. (2000). Production of volatiles from irradiated oil emulsion systems prepared with amino acids and lipids. Journal of Food Science, 65(4), 612–616.CrossRefGoogle Scholar
  59. Josephson, E. S., & Peterson, M. S. (2000). Preservation of food by ionizing radiation (II) (pp. 102–103). Boca Raton, FL: CRC Press.Google Scholar
  60. Karel, M. (1989). The future of irradiation applications on earth and in space. Food Technology, 41(7), 95–97.Google Scholar
  61. Kawakishi, S., Okumura, J., & Namki, M. (1971). Gamma radiolysis of carbohydrate in aqueous solution. Food Irradiation, 6, 80–86.Google Scholar
  62. Lagunas-Solar, M. C. (1995). Radiation processing of food: An overview of scientific principles and current status. Journal of Food Protection, 58, 186–192.Google Scholar
  63. Lakritz, L., Carroll, R. J., Jenkins, R. K., & Maerker, G. (1987). Immediate effects of ionizing-radiation on the structure of unfrozen bovine muscle-tissue. Meat Science, 20, 107–117.CrossRefGoogle Scholar
  64. Lambert, A. D., Smith, J. P., & Dodds, K. L. (1992). Physical, chemical, and sensory changes in irradiated fresh pork packaged in modified atmosphere. Journal of Food Science, 57, 1294–1299.CrossRefGoogle Scholar
  65. Lee, E. J., & Ahn, D. U. (2003). Production of off-odor volatiles from fatty acids and oils by irradiation. Journal of Food Science, 68(1), 70–75.CrossRefGoogle Scholar
  66. Lee, E. J., & Ahn, D. U. (2004). Sources and mechanisms of carbon monoxide production by irradiation. Journal of Food Science, 69(6), c485–c490.CrossRefGoogle Scholar
  67. Lee, E. J., Love, J., & Ahn, D. U. (2003). Effect of antioxidants on the consumer acceptance of irradiated turkey meat. Journal of Food Science, 68(5), 1659–1663.CrossRefGoogle Scholar
  68. Lefebvre, N., Thibault, C., Charbonneau, R., & Piette, J. P. G. (1994). Improvement of shelf-life and wholesomeness of ground beef by irradiation 2: Chemical analysis and sensory evaluation. Meat Science, 36, 371–380.CrossRefGoogle Scholar
  69. LeTellier, P. R., & Nawar, W. W. (1972). 2-Alkylcyclobutanones from radiolysis of triglycerides. Lipids, 7, 75–76.CrossRefGoogle Scholar
  70. Lewis, S. J., Velasquez, A., Cuppett, S. L., & McKee, S. R. (2002). Effect of electron beam irradiation on poultry meat safety and quality. Poultry Science, 81, 896–903.Google Scholar
  71. Loaharanu, P. (1994). Status and prospects of food irradiation. Food Technology, 48(5), 124–130.Google Scholar
  72. Lubbers, S., Landy, P., & Voilley, A. (1998). Retention and release of aroma compounds in foods containing proteins. Food Technology, 52, 68–74, 208–214.Google Scholar
  73. Luchsinger, S. E., Kropf, D. H., Garcia-Zepeda, C. M., Hunt, M. C., Marsden, J. L., Rubio-Canas, E. J., et al. (1996). Color and oxidative rancidity of gamma and electron beam irradiated boneless pork chops. Journal of Food Science, 61(5), 1000–1005, 1093.CrossRefGoogle Scholar
  74. Luchsinger, S. E., Kropf, D. H., Garcia-Zepeda, C., Hunt, M. C., Stroda, S. L., Marsden, J. L., et al. (1997). Color and oxidative properties of irradiated ground beef patties. Journal of Muscle Foods, 8(4), 445–464.CrossRefGoogle Scholar
  75. Lusk, J. L., Fox, J. A., & McIlvain, C. L. (1999). Consumer acceptance of irradiated meat. Food Technology, 53, 56–59.Google Scholar
  76. Lynch, J. A., Macfie, H. J. H., & Mead, G. C. (1991). Effect of irradiation and packaging type on sensory quality of chill-stored turkey breast fillets. International Journal of Food Science and Technology, 26, 653–668.Google Scholar
  77. Maga, J. A. (1979). Furans in foods. CRC Critic Review in Food Science and Nutrition, 1, 355–400.CrossRefGoogle Scholar
  78. Mason, J. (1992). Food irradiation – Promising technology for public health (pp. 489–490). Public Health Report, 107.Google Scholar
  79. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food related illness and death in the United States. Emerging Infectious Diseases, 5(5), 607–625.CrossRefGoogle Scholar
  80. Merritt, C., Jr., Angelini, P., & Graham, R. A. (1978). Effect of radiation parameters on the formation of radiolysis products in meat and meat substances. Journal of Agricultural and Food Chemistry, 26, 29–36.CrossRefGoogle Scholar
  81. Merritt, C., Jr., Angelini, P., Wierbicki, E., & Shuts, G. W. (1975). Chemical changes associated with flavor in irradiated meat. Journal of Agricultural and Food Chemistry, 23, 1037–1043.CrossRefGoogle Scholar
  82. Millar, S. J., Moss, B. W., MacDougall, D. B., & Stevenson, M. H. (1995). The effect of ionizing radiation on the CIELAB color co-ordinates of chicken breast meat as measured by different instruments. International Journal of Food Science and Technology, 30, 663–674.Google Scholar
  83. Min, B., Nam, K. C., Cordray, J., & Ahn, D. U. (2008). Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. Journal of Food Science, 73(6), C 439–C446.Google Scholar
  84. Minsch, F. (1896). Münch Med Wochensch, 5, 101, 109, 202.Google Scholar
  85. Monk, J. D., Clavero, M. R. S., Beuchat, L. R., Doyle, M. P., & Brackett, R. E. (1994). Irradiation inactivation of Listeria monocytogenes and Staphylococcus aureus in low- and high-fat, frozen and refrigerated ground beef. Journal of Food Protection, 57, 969–974.Google Scholar
  86. Morehouse, K. M., Kiesel, M., & Ku, Y. (1993). Identification of meat treated with ionizing radiation by capillary gas-chromatographic determination of radiolytically produced hydrocarbons. Journal of Agricultural and Food Chemistry, 41, 758–763.CrossRefGoogle Scholar
  87. Morrissey, P. A., Brandon, S., Buckley, D. J., Sheehy, P. J. A., & Frigg, J. (1997). Tissue content of α-tocopherol and oxidative stability of broilers receiving dietary α-tocopheryl acetate supplementation for various periods pre-slaughter. British Poultry Science, 38, 84–88.CrossRefGoogle Scholar
  88. Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419, 448–449.CrossRefGoogle Scholar
  89. Nam, K. C., & Ahn, D. U. (2002a). Carbon monoxide-heme pigment complexes are responsible for the pink color in irradiated raw turkey breast meat. Meat Science, 60(1), 25–33.CrossRefGoogle Scholar
  90. Nam, K. C., & Ahn, D. U. (2002b). Mechanisms of pink color formation in irradiated precooked turkey breast. Journal of Food Science, 67(2), 600–607.CrossRefGoogle Scholar
  91. Nam, K. C., & Ahn, D. U. (2002c). Effect of double-packaging and acid combination on the quality of irradiated raw turkey patties. Journal of Food Science, 67(9), 3252–3257.CrossRefGoogle Scholar
  92. Nam, K. C., & Ahn, D. U. (2003a). Combination of aerobic and vacuum packaging to control color, lipid oxidation and off-odor volatiles of irradiated raw turkey breast. Meat Science, 63(3), 389–395.CrossRefGoogle Scholar
  93. Nam, K. C., & Ahn, D. U. (2003b). Effects of ascorbic acid and antioxidants on the color of irradiated beef patties. Journal of Food Science, 68(5), 1686–1690.CrossRefGoogle Scholar
  94. Nam, K. C., & Ahn, D. U. (2003c). Use of double-packaging and antioxidant combinations to improve color, lipid oxidation, and volatiles of irradiated raw and cooked turkey breast patties. Poultry Science, 82(5), 850–857.Google Scholar
  95. Nam, K. C., Ahn, D. U., Du, M., & Jo, C. (2001). Lipid oxidation, color, volatiles, and sensory characteristics of aerobically packaged and irradiated pork with different ultimate pH. Journal of Food Science, 66, 1225–1229.CrossRefGoogle Scholar
  96. Nam, K. C., Ko, K. Y., Min, B. R., Ismail, H., Lee, E. J., & Ahn, D. U. (2006). Influence of rosemary-tocopherol/packaging combination on the chemical quality and Listeria monocytogenes and Salmonella typhimurium survival in restructured pork loins following electron irradiation. Meat Science, 74(2), 380–387.CrossRefGoogle Scholar
  97. Nam, K. C., Min, B. R., Park, K. S., Lee, S. C., & Ahn, D. U. (2003). Effects of ascorbic acid and antioxidants on the lipid oxidation and volatiles of irradiated beef patties. Journal of Food Science, 68(5), 1680–1685.CrossRefGoogle Scholar
  98. Nanke, K. E., Sebranek, J. G., & Olson, D. G. (1998). Color characteristics of irradiated vacuum-packaged pork, beef, and turkey. Journal of Food Science, 63(6), 1001–1006.CrossRefGoogle Scholar
  99. Nanke, K. E., Sebranek, J. G., & Olson, D. G. (1999). Color characteristics of irradiated aerobically packaged pork, beef, and turkey. Journal of Food Science, 64, 272–276.CrossRefGoogle Scholar
  100. NAPPO (North American Plant Protection Organization). (1995). Proceedings of the North American Plant Protection Organization annual meeting colloquium on the application of irradiation technology as a quarantine treatment (pp. 62–65). Neapean, Ontario, Canada; NAPPO bulletin No. 13.Google Scholar
  101. Nawar, W. W. (1986). Volatiles from food irradiation. Food Review International, 2(1), 45–78.CrossRefGoogle Scholar
  102. Ndiaye, B., Jamet, G., Miesch, M., Hasselmann, C., & Marchioni, E., (1999). 2-Alkylbutanones as markers for irradiated foodstuffs. II. The CEN (European Committee for Standardization) method: Field of application and limit of utilization. Radiation Physics and Chemistry, 55, 437–445.CrossRefGoogle Scholar
  103. NTP (National Toxicology Program). (2004). Report on carcinogens (11th ed., Furan CAS No. 110-00-9). Research Triangle Park, NC: U.S. Dept. of Health and Human Services, Public Health Service,
  104. Olson, D. G. (1998a). Irradiation of food. Food Technology, 52, 56–62.Google Scholar
  105. Olson, D. G. (1998b). Irradiation processing. In E. Murano (Ed.), Food irradiation – A sourcebook. Meat and poultry irradiation short course (pp. 3–27). Ames, IA: Iowa State University Press.Google Scholar
  106. Patterson, M. (1988). Sensitivity of bacteria to irradiation on poultry meat under various atmospheres. Letters of Applied Microbiology, 7, 55–58.CrossRefGoogle Scholar
  107. Palumbo, S. A., Jenkins, R. K., Buchanan, R. L., & Thayer, D. W. (1986). Determination of irradiation D-values for Aeromonas hydrophila. Journal of food protection, 49(3), 189–191.Google Scholar
  108. Raul, F., Gosse, F., Delincée, H., Hartwig, A., Marchioni, E., Miesch, M., et al. (2002). Foodborne radiolytic compounds (2-alkycylobutanones) may promote experimental colon carcinogenesis. Nutrition and Cancer, 44(2), 189–191.CrossRefGoogle Scholar
  109. Satin, M. (2002). Use of irradiation for microbial decontamination of meat: Situation and perspectives. Meat Science, 62, 277–283.CrossRefGoogle Scholar
  110. Satterlee, L. D., Wilhelm, M. S., & Barnhart, H. M. (1971). Low dose gamma irradiation of bovine metmyoglobin. Journal of Food Science, 36(3), 549–551.CrossRefGoogle Scholar
  111. Schwartz, B. (1921). Effect of X-rays on Trichinae. Journal of Agricultural Research, 20, 845–849.Google Scholar
  112. Shahidi, F., & Pegg, R. B. (1994). Lipids in food flavors (ACS Symposium Series 558, pp. 256–279). Washington, DC: American Chemical Society.Google Scholar
  113. Shahidi, F., Pegg, R. B., & Shamsuzzaman, K. (1991). Color and oxidative stability of nitrite-free cured meat after gamma irradiation. Journal of Food Science, 56, 1450–1452.CrossRefGoogle Scholar
  114. Shamsuzzaman, K., & Lucht, L. (1993). Resistance of Clostridium sporogenes spores to radiation and heat in various nonaqueous suspension media. Journal of Food Protection, 56(1), 10–12.Google Scholar
  115. Sommers, C. H. (2004). Food irradiation is already here. Food Technology, 58(11), 22.Google Scholar
  116. Sommers, C. H., & Schiestl, R. H. (2004). 2-Dodecylcyclobutanone does not induce mutations in the Salmonella mutagenicity test or intrachromosomal recombinations in Sacccharomyces cerevisiae. Journal of Food Protection, 67, 1293–1298.Google Scholar
  117. Steccheni, M. I., Del Torre, M., Sarais, P. G., Fuochi, F., Tubaro, F., & Ursini, F. (1998). Carnosine increases the radiation resistance of Aeromonas hydrophila in minced turkey meat. Journal of Food Science, 61, 979–987.Google Scholar
  118. Stevenson, M. H. (1996). Validation of the cyclobutanone protocol for detection of irradiated lipid containing foods by interlaboratory trial. In C. H. McMurray, E. M. Stewart, R. Gray, & J. Pearce (Eds.), Detection methods for irradiated foods – Current status (pp. 269–284). Cambridge, UK: Royal Society of Chemistry.Google Scholar
  119. Stewart, E. M., Moore, S., Graham, W. D., McRoberts, W. C., & Hamilton, J. T. G. (2000). 2-Alkylcyclobutanones as markers for the detection of irradiated mango, papaya, camembert cheese and salmon meat. Journal of Science and Food Agriculture, 80, 121–130.CrossRefGoogle Scholar
  120. Stryer, L. (1981). Biochemistry (p. 54). New York: Freeman and Co.Google Scholar
  121. Swedish National Food Administration. (2002). Information about acrylamide in food. Uppsala, Sweden: Swedish NFA,
  122. Tappel, A. L. (1956). Regeneration and stability of oxymyoglobin in some gamma irradiated meats. Food Research, 21, 650–654.Google Scholar
  123. Tatum, J. H., Shaw, P. E., & Berry, R. E. (1969). Degradation products from ascorbic acid. Journal of Agriculture and Food Chemistry, 17, 38–40.CrossRefGoogle Scholar
  124. Taub, I. A., Karielian, R. A., & Halliday, J. W. (1978). Radiation chemistry of high protein food irradiated at low temperature. In Food preservation by irradiation (Vol. 1, pp. 371–384). Vienna: International Atomic Energy Agency.Google Scholar
  125. Taub, I. A., Karielian, R. A., Halliday, J. W., Walker, J. E., Angeline, P., & Merritt, C. (1979). Factors affecting radiolytic effects of food. Radiation Physics and Chemistry, 14, 639–653.Google Scholar
  126. Thakur, B. R., & Singh, R. K. (1994). Food irradiation: Chemistry and applications. Food Review International, 10, 437–473.CrossRefGoogle Scholar
  127. Thayer, D. W. (1995). Use of irradiation to kill enteric pathogens on meat and poultry. Journal of Food Safety, 15, 181–192.CrossRefGoogle Scholar
  128. Thayer, D. W., & Boyd, G. (1992). Gamma ray processing to destroy Staphylococcus aureus in mechanically deboned chicken meat. Journal of Food Science, 57(4), 848–851.Google Scholar
  129. Thayer, D. W., & Boyd, G. (1999). Irradiation and modified atmosphere packaging for the control of Listeria monocytogenes on turkey meat. Journal of Food Protection, 62, 1136–1142.Google Scholar
  130. Thayer, D. W., Songprasertchai, S., & Boyd, G. (1991). Effects of heat and ionizing radiation on Salmonella typhimurium in mechanically deboned chicken meat. Journal of Food Protection, 54, 718–724.Google Scholar
  131. Thayer, D. W., Boyd, G., & Jenkins, R. K. (1993). Low-dose gamma irradiation and refrigerated storage in vacuo affect microbial flora of fresh pork. Journal of Food Science, 58, 717–719, 733.CrossRefGoogle Scholar
  132. Thayer, D. W., Lachica, R. V., Huhtanen, C. N., & Wierbicki, E. (1986). Use of irradiation to ensure the microbiological safety of processed meats. Food Technology, 40(4), 159–162.Google Scholar
  133. Thomas, J. A. (1999). Oxidative stress, oxidant defense, and dietary constituents. In M. E. Shils, J. A. Olson, M. Shike, & A. C. Ross (Eds.), Modern nutrition in health and disease (pp. 751–760). Philadelphia: Lea and Febiger.Google Scholar
  134. Urbain, W. M. (1989). Food irradiation: The past fifty years as prologue to tomorrow. Food Technology, 43(7), 76, 92.Google Scholar
  135. USDA-FSIS. (1986). Irradiation of pork for control of Trichinella spiralis. Federal Register, 51, 1769–1771.Google Scholar
  136. USDA-FSIS. (1992). Irradiation of poultry products. Federal Register, 57, 43588–43600.Google Scholar
  137. USDA-FSIS. (1999). Meat and poultry irradiation proposal. USDA Food Safety and Inspection Service,
  138. Venugopal, V., Doke, S. N., & Thomas, P. (1999). Radiation processing to improve the quality of fishery products. Critical Review in Food Science and Nutrition, 39(5), 391–440.CrossRefGoogle Scholar
  139. Walter, R. H., & Fagerson, I. S. (1968). Volatile compounds from heated glucose. Journal of Food Science, 33, 294–297.CrossRefGoogle Scholar
  140. Wen, J., Morrissey, P. A., Buckley, D. J., & Sheehy, P. J. A. (1996). Oxidative stability and α-tocopherol retention in turkey burgers during refrigerated and frozen storage as influenced by dietary tocopheryl acetate. British Poultry Science, 37, 787–792.CrossRefGoogle Scholar
  141. WHO. (1981). Wholesomeness of irradiated foods (Technical Report Series, 659). Geneva: WHO.Google Scholar
  142. WHO. (1994). Food irradiation. In Safety and nutritional adequacy of irradiated food (pp. 5–13). Geneva: WHO.Google Scholar
  143. Winne, A. D., & Dirinck, P. (1996). Studies on vitamin E and meat quality. 2. Effect of feeding high vitamin E levels on chicken meat quality. Journal of the Science and Food Agriculture, 44, 1691–1696.CrossRefGoogle Scholar
  144. Woods, R. J., & Pikaev, A. K. (1994). Interaction of radiation with matter. Selected topics in radiation chemistry. In Applied radiation chemistry: Radiation processing (pp. 59–89, 165–210). New York: John Wiley and Sons.Google Scholar
  145. Xiong, Y. L., Decker, E. A., Robe, G. H., & Moody, W. G. (1993). Gelation of crude myofibrillar protein isolated from beef heart under antioxidant conditions. Journal of Food Science, 58, 1241–1244.CrossRefGoogle Scholar
  146. Yaylayan, V. A., & Stadler, R. H. (2005). Acrylamide formation in food: A mechanistic perspective. Journal of AOAC International, 88, 262–267.Google Scholar
  147. Yoon, K. S. (2003). Effect of gamma irradiation on the texture and microstructure of chicken breast meat. Meat Science, 63, 273–277.CrossRefGoogle Scholar
  148. Zhu, M. J., Mendonca, A., & Ahn, D. U. (2004). Effect of temperature abuse on the quality of irradiated pork loins. Meat Science, 67, 643–649.CrossRefGoogle Scholar
  149. Zhu, M. J., Mendonca, A., Ismail, H. A., Du, M., Lee, E. J., & Ahn, D. U. (2005). Impact of antimicrobial ingredients and irradiation on the survival of Listeria monocytogenes and quality of ready-to-eat turkey ham. Poultry Science, 84(4), 613–620.Google Scholar
  150. Zhu, M. J., Mendonca, A., Min, B., Lee, E. J., Nam, K. C., Park, K.,et al. (2004). Effects of electron beam irradiation and antimicrobials on the volatiles, color and texture of ready-to-eat turkey breast roll. Journal of Food Science, 69(5), C382–C387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Animal Science DepartmentIowa State UniversityAmesUSA

Personalised recommendations