Skip to main content

Advanced Decontamination Technologies: Irradiation

  • Chapter
  • First Online:
Safety of Meat and Processed Meat

Part of the book series: Food Microbiology and Food Safety ((FMFS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, D. U. (2002). Production of volatiles from amino acid homopolymers by irradiation. Journal of Food Science, 67(7), 2565–2570.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Jo, C., & Olson, D. G. (2000). Analysis of volatile components and the sensory characteristics of irradiated raw pork. Meat Science, 54, 209–215.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Jo, C., Olson, D. G., & Nam, K. C. (2000). Quality characteristics of pork patties irradiated and stored in different packaging and storage conditions. Meat Science, 56, 203–209.

    Article  CAS  Google Scholar 

  • Ahn, D. U., & Lee, E. J. (2002). Production of off-odor volatiles from liposome-containing amino acid homopolymers by irradiation. Journal of Food Science, 67(7), 2659–2665.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Lee, E. J., & Mendonca, A. (2006). Meat decontamination by irradiation. In Advanced technologies for meat processing. Boca Raton, FL: CRC Press, pp. 155–191.

    Google Scholar 

  • Ahn, D. U., Nam, K. C., Du, M., & Jo, C. (2001). Effect of irradiation and packaging conditions after cooking on the formation of cholesterol and lipid oxidation products in meats during storage. Meat Science, 57, 413–418.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Olson, D. G., Jo, C., Chen, X., Wu, C., & Lee, J. I. (1998). Effect of muscle type, packaging, and irradiation on lipid oxidation, volatile production and color in raw pork patties. Meat Science, 49, 27–39.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Olson, D. G., Jo, C., Love, J., & Jin, S. K. (1999). Volatiles production and lipid oxidation of irradiated cooked sausage with different packaging during storage. Journal of Food Science, 64(2), 226–229.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Olson, D. G., Lee, J. I., Jo, C., Wu, C., & Chen, X. (1998). Packaging and irradiation effects on lipid oxidation and volatiles in pork patties. Journal of Food Science, 63(1), 15–19.

    Article  CAS  Google Scholar 

  • Ahn, D. U., Wolfe, F. H., Sim, J. S., & Kim, D. H. (1992). Packaging cooked turkey meat patties while hot reduces lipid oxidation. Journal of Food Science, 57, 1075–1077, 1115.

    Article  Google Scholar 

  • AMA (American Medical Association). (1993). Irradiation of food. Council on Scientific Affairs Report 4, Chicago, Ill.

    Google Scholar 

  • AMIF (American Meat Institute Foundation). (1993). Consumer awareness, knowledge, and acceptance of food irradiation. Washington, DC: American Meat Institute Foundation.

    Google Scholar 

  • Angelini, P., Merritt, C., Jr., Mendelshon, J. M., & King, F. J. (1975). Effect of irradiation on volatile constituents of stored haddok flesh. Journal of Food Science, 40, 197–199.

    Article  CAS  Google Scholar 

  • Anellis, A., Shattuck, E., Morin, M., Srisara, B., Qvale, S., Rowley, D. B., & Ross Jr., E. W. (1977). Cryogenic gamma irradiation of prototype pork and chicken and antagonistic effect between Clostridium botulinum types A and B. Applied and Environmental Microbiology, 34(6), 823–831.

    Google Scholar 

  • Aymerich, T., Picouet, P. A., & Monfort, J. M. (2008). Decontamination technologies for meat products. Meat Science, 78, 114 –129.

    Article  Google Scholar 

  • Brynjolfsson, A. (1989). Future radiation sources and identification of irradiated foods. Food Technology, 43(7), 84–89, 97.

    Google Scholar 

  • CAST. (1986). Ionizing energy in food processing and pest control: I. Wholesomeness of food treated with ionizing energy (Task Force Report No. 109, p. 50). Ames, IA: Council for Agriculture Science and Technology.

    Google Scholar 

  • CAST. (1989). Ionizing energy in food processing and pest control: II. Applications (Task Force Report No. 115, pp. 72–76). Ames, IA: Council for Agriculture Science and Technology.

    Google Scholar 

  • CDCP (Center for Disease Control and Prevention). (2005). Food-borne Illness. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/foodborneinfections_g.htm

  • Champaign, J. R., & Nawar, W. W. (1969). The volatile components of irradiated beef and pork fats. Journal of Food Science, 34, 335–340.

    Article  Google Scholar 

  • Clavero, M. R., Monk, J. D., Beuchat, L. R., Doyle, M. P., & Brackett, R. E. (1994). Inactivation of Escherichia coli O157:H7, salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Applied and Environmental Microbiology, 60(6), 2069–2075.

    Google Scholar 

  • Cornforth, D. P., Vahabzadeh, F., Carpenter, C. E., & Bartholomew, D. T. R. (1986). Role of reduced hemochromes in pink color defect of cooked turkey rolls. Journal of Food Science, 51, 1132–1135.

    Article  CAS  Google Scholar 

  • Davies, M. J. (1996). Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Archives of Biochemistry and Biophysics, 336, 163–172.

    Article  CAS  Google Scholar 

  • Delincée, H., & Pool-Zobel, B. L. (1998). Genotoxic properties of 2-dodecylcyclo-butanone, a compound formed on irradiation of food containing fat. Radiation Physics and Chemistry, 52(1), 39–42.

    Article  Google Scholar 

  • Diehl, J. F. (1999). Safety of irradiated foods (2nd ed.). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Dogbevi, M. K., Vachon, C., & Lacroix, M. (1999). Physicochemical and microbiological changes in irradiated fresh pork loins. Meat Science, 51, 349–354.

    Article  Google Scholar 

  • Dragnic, I. G., & Dragnic, Z. O. (1963). The radiation chemistry of water. New York: Academic Press.

    Google Scholar 

  • Ehioba, R. M., Kraft, A. A., Molins, R. A., Walker, H. W., Olson, D. G., Subbaraman, G., et al. (1988). Identification of microbial isolates from vacuum-packaged ground pork irradiated at 1 kGy. Journal of Food Science, 53, 278–279, 281.

    Article  Google Scholar 

  • El-Zawahry, Y. A., & Rowley, D. B. (1979). Radiation resistance and injury of Yersinia enterocolitica. Applied and Environmental Microbiology, 37(1), 50–54.

    Google Scholar 

  • Fan, X. (2005). Impact of ionizing radiation and thermal treatments on furan levels in fruit juice. Journal of Food Science, 70(7), e409–e414.

    Article  CAS  Google Scholar 

  • Fan, X., & Mastovska, K. (2006). Effectiveness of ionizing radiation in reducing furan and acrylamide levels in foods. Journal of Agriculture and Food Chemistry, 54, 8266–8270.

    Article  CAS  Google Scholar 

  • Fan, X., & Sommers, C. H. (2006). Effect of gamma radiation on furan formation in ready-to-eat products and their ingredients. Journal of Food Science, 71(7), c407–c412.

    Article  CAS  Google Scholar 

  • Fan, X., Sommers, C. H., Thayer, D. W., & Lehotay, S. J. (2002). Volatile sulfur compounds in irradiated precooked turkey breast analyzed with pulsed flame photometric detection. Journal of Agricultural and Food Chemistry, 50(15), 4257–4261.

    Article  CAS  Google Scholar 

  • Farkas, J. (2006). Irradiation for better foods. Trends in Food Science & Technology, 17(4), 148–152.

    Google Scholar 

  • Federal Register. (1999). Irradiation of meat and meat products. Federal Register, 4, 9089–9105.

    Google Scholar 

  • Fox, J. B., & Ackerman, S. A. (1968). Formation of nitric oxide myoglobin: Mechanisms of the reaction with various reductants. Journal of Food Science, 33, 364–370.

    Article  CAS  Google Scholar 

  • Fox, J. A., Hayes, D. J., & Shogren, J. F. (2002). Consumer preferences for food irradiation: How favorable and unfavorable descriptions affect preferences for irradiated pork in experimental auctions. Journal of Risk Uncertainty, 24(1), 75–95.

    Article  Google Scholar 

  • Frenzen, P. D., DeBess, E. E., Hechemy, K. E., Kassenborg, H., Kennedy, M., McCombs, K., et al. (2001). Consumer acceptance of irradiated meat and poultry in the United States. Journal of Food Protection, 64, 2020–2026.

    CAS  Google Scholar 

  • Fu, A. H., Sebranek, J. G., & Murano, E. A. (1995). Survival of Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli O157:H7 and quality changes after irradiation of beef steak and ground beef. Journal of Food Science, 60, 972–977.

    Article  CAS  Google Scholar 

  • Furuta, M., Dohmaru, T., Katayama, T., Toratoni, H., & Takeda, A. (1992). Detection of irradiated frozen meat and poultry using carbon monoxide gas as a probe. Journal of Agricultural and Food Chemistry, 40(7), 1099–1100.

    Article  CAS  Google Scholar 

  • Gadgil, P., & Smith, J. S. (2004). Mutagenicity and acute toxicity evaluation of 2-dodecylcyclobutanone. Journal of Food Science, 69(9), c713–c716.

    Article  CAS  Google Scholar 

  • Giddings, G. G. (1977). Symposium: The basis of quality in muscle foods, the basis of color in muscle foods. Journal of Food Science, 42, 288–294.

    Article  CAS  Google Scholar 

  • Giddings, G. G., & Markakis, P. (1972). Characterization of the red pigments produced from ferrimyoglobin by ionizing radiation. Journal of Food Science, 37, 361–364.

    Article  CAS  Google Scholar 

  • Godshall, M. A. (1997). How carbohydrate influence flavor. Food Technology, 51, 63–67.

    CAS  Google Scholar 

  • Grant, I. R., Nixon, C. R., & Patterson, M. F. (1993). Effect of low-dose irradiation on growth of and toxin production by Staphylococcus aureus and Bacillus cereus in roast beef and gravy. International Journal of Food Microbiology, 18(1), 25–36.

    Google Scholar 

  • Grant, I. R., & Patterson, M. F. (1991). Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork under temperature abuse conditions. International Journal of Food Science and Technology, 26, 521–533.

    Google Scholar 

  • Halliwell, B. J. M., & Gutteridge, C. A. (1989). Consideration of atomic structure and bonding. In B. Halliwell & J. M. C. Gutteridge (Eds.), Free radicals in biology and medicine (2nd ed., pp. 508–524). London: Clarendon Press.

    Google Scholar 

  • Hashim, I. B., Resurreccion, A. V. A., & MaWatters, K. H. (1995). Disruptive sensory analysis of irradiated frozen or refrigerated chicken. Journal of Food Science, 60, 664–666.

    Article  CAS  Google Scholar 

  • Hastings, J. W., Holzapfel, W. H., & Niemand, J. G. (1986). Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. Applied and Environmental Microbiology, 52, 898–901.

    CAS  Google Scholar 

  • Hayashi, T. (1991). Comparative effectiveness of gamma rays and electron beams in food irradiation. In S. Thorne (Ed.), Food irradiation (pp. 169–206). London: Elsevier Applied Science.

    Google Scholar 

  • Health Canada. (2003). Evaluation of the significance of 2-dodecylcyclobutanone and other alkylcyclobutanones. Ottawa, www.hc-sc.gc.ca/food-aliment/fpi-ipa/e_cyclobutanone.html

  • Heath, J. L., Owens, S. L., Tesch, S., & Hannah, K. W. (1990). Effect of high-energy electron irradiation of chicken on thiobarbituric acid values, shear values, odor, and cook yield. Poultry Science, 69, 313–319.

    CAS  Google Scholar 

  • Huber, W., Brasch, A., & Waly, A. (1953). Effect of processing conditions on organoleptic changes in foodstuffs sterilized with high intensity electrons. Food Technology, 7, 109–115.

    CAS  Google Scholar 

  • Huhtanen, C. N., Jenkins, R. K., & Thayer, D. W. (1989). Gamma radiation sensitivity of Listeria monocytogenes. Journal of Food Protection, 9, 610–613.

    Google Scholar 

  • IAEA. (1999). Facts about food irradiation. Accessed July 8, 1999, from International Atomic Energy Agency, Vienna, Austria http://www.iaea.or.at/worldatom/inforesource/other/food.

  • IARC (International Agency for Research on Cancer). (1995). IARC monographs on the evaluation of carcinogenic risks to humans: Some industrial chemicals (IARC 60, pp. 389–433). Lyon, France: IARC.

    Google Scholar 

  • Jarrett, R. D., Sr. (1982). Isotope (gamma) radiation sources. In E. S. Josephson & M. S. Peterson (Eds.), Preservation of food by ionizing radiation (Vol. 1, pp. 137–163). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Jo, C., & Ahn, D. U. (2000). Production of volatiles from irradiated oil emulsion systems prepared with amino acids and lipids. Journal of Food Science, 65(4), 612–616.

    Article  CAS  Google Scholar 

  • Josephson, E. S., & Peterson, M. S. (2000). Preservation of food by ionizing radiation (II) (pp. 102–103). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Karel, M. (1989). The future of irradiation applications on earth and in space. Food Technology, 41(7), 95–97.

    Google Scholar 

  • Kawakishi, S., Okumura, J., & Namki, M. (1971). Gamma radiolysis of carbohydrate in aqueous solution. Food Irradiation, 6, 80–86.

    Google Scholar 

  • Lagunas-Solar, M. C. (1995). Radiation processing of food: An overview of scientific principles and current status. Journal of Food Protection, 58, 186–192.

    Google Scholar 

  • Lakritz, L., Carroll, R. J., Jenkins, R. K., & Maerker, G. (1987). Immediate effects of ionizing-radiation on the structure of unfrozen bovine muscle-tissue. Meat Science, 20, 107–117.

    Article  CAS  Google Scholar 

  • Lambert, A. D., Smith, J. P., & Dodds, K. L. (1992). Physical, chemical, and sensory changes in irradiated fresh pork packaged in modified atmosphere. Journal of Food Science, 57, 1294–1299.

    Article  CAS  Google Scholar 

  • Lee, E. J., & Ahn, D. U. (2003). Production of off-odor volatiles from fatty acids and oils by irradiation. Journal of Food Science, 68(1), 70–75.

    Article  CAS  Google Scholar 

  • Lee, E. J., & Ahn, D. U. (2004). Sources and mechanisms of carbon monoxide production by irradiation. Journal of Food Science, 69(6), c485–c490.

    Article  CAS  Google Scholar 

  • Lee, E. J., Love, J., & Ahn, D. U. (2003). Effect of antioxidants on the consumer acceptance of irradiated turkey meat. Journal of Food Science, 68(5), 1659–1663.

    Article  CAS  Google Scholar 

  • Lefebvre, N., Thibault, C., Charbonneau, R., & Piette, J. P. G. (1994). Improvement of shelf-life and wholesomeness of ground beef by irradiation 2: Chemical analysis and sensory evaluation. Meat Science, 36, 371–380.

    Article  CAS  Google Scholar 

  • LeTellier, P. R., & Nawar, W. W. (1972). 2-Alkylcyclobutanones from radiolysis of triglycerides. Lipids, 7, 75–76.

    Article  CAS  Google Scholar 

  • Lewis, S. J., Velasquez, A., Cuppett, S. L., & McKee, S. R. (2002). Effect of electron beam irradiation on poultry meat safety and quality. Poultry Science, 81, 896–903.

    CAS  Google Scholar 

  • Loaharanu, P. (1994). Status and prospects of food irradiation. Food Technology, 48(5), 124–130.

    Google Scholar 

  • Lubbers, S., Landy, P., & Voilley, A. (1998). Retention and release of aroma compounds in foods containing proteins. Food Technology, 52, 68–74, 208–214.

    Google Scholar 

  • Luchsinger, S. E., Kropf, D. H., Garcia-Zepeda, C. M., Hunt, M. C., Marsden, J. L., Rubio-Canas, E. J., et al. (1996). Color and oxidative rancidity of gamma and electron beam irradiated boneless pork chops. Journal of Food Science, 61(5), 1000–1005, 1093.

    Article  Google Scholar 

  • Luchsinger, S. E., Kropf, D. H., Garcia-Zepeda, C., Hunt, M. C., Stroda, S. L., Marsden, J. L., et al. (1997). Color and oxidative properties of irradiated ground beef patties. Journal of Muscle Foods, 8(4), 445–464.

    Article  Google Scholar 

  • Lusk, J. L., Fox, J. A., & McIlvain, C. L. (1999). Consumer acceptance of irradiated meat. Food Technology, 53, 56–59.

    Google Scholar 

  • Lynch, J. A., Macfie, H. J. H., & Mead, G. C. (1991). Effect of irradiation and packaging type on sensory quality of chill-stored turkey breast fillets. International Journal of Food Science and Technology, 26, 653–668.

    Google Scholar 

  • Maga, J. A. (1979). Furans in foods. CRC Critic Review in Food Science and Nutrition, 1, 355–400.

    Article  Google Scholar 

  • Mason, J. (1992). Food irradiation – Promising technology for public health (pp. 489–490). Public Health Report, 107.

    Google Scholar 

  • Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food related illness and death in the United States. Emerging Infectious Diseases, 5(5), 607–625.

    Article  CAS  Google Scholar 

  • Merritt, C., Jr., Angelini, P., & Graham, R. A. (1978). Effect of radiation parameters on the formation of radiolysis products in meat and meat substances. Journal of Agricultural and Food Chemistry, 26, 29–36.

    Article  CAS  Google Scholar 

  • Merritt, C., Jr., Angelini, P., Wierbicki, E., & Shuts, G. W. (1975). Chemical changes associated with flavor in irradiated meat. Journal of Agricultural and Food Chemistry, 23, 1037–1043.

    Article  CAS  Google Scholar 

  • Millar, S. J., Moss, B. W., MacDougall, D. B., & Stevenson, M. H. (1995). The effect of ionizing radiation on the CIELAB color co-ordinates of chicken breast meat as measured by different instruments. International Journal of Food Science and Technology, 30, 663–674.

    CAS  Google Scholar 

  • Min, B., Nam, K. C., Cordray, J., & Ahn, D. U. (2008). Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. Journal of Food Science, 73(6), C 439–C446.

    Google Scholar 

  • Minsch, F. (1896). Münch Med Wochensch, 5, 101, 109, 202.

    Google Scholar 

  • Monk, J. D., Clavero, M. R. S., Beuchat, L. R., Doyle, M. P., & Brackett, R. E. (1994). Irradiation inactivation of Listeria monocytogenes and Staphylococcus aureus in low- and high-fat, frozen and refrigerated ground beef. Journal of Food Protection, 57, 969–974.

    Google Scholar 

  • Morehouse, K. M., Kiesel, M., & Ku, Y. (1993). Identification of meat treated with ionizing radiation by capillary gas-chromatographic determination of radiolytically produced hydrocarbons. Journal of Agricultural and Food Chemistry, 41, 758–763.

    Article  CAS  Google Scholar 

  • Morrissey, P. A., Brandon, S., Buckley, D. J., Sheehy, P. J. A., & Frigg, J. (1997). Tissue content of α-tocopherol and oxidative stability of broilers receiving dietary α-tocopheryl acetate supplementation for various periods pre-slaughter. British Poultry Science, 38, 84–88.

    Article  CAS  Google Scholar 

  • Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419, 448–449.

    Article  CAS  Google Scholar 

  • Nam, K. C., & Ahn, D. U. (2002a). Carbon monoxide-heme pigment complexes are responsible for the pink color in irradiated raw turkey breast meat. Meat Science, 60(1), 25–33.

    Article  CAS  Google Scholar 

  • Nam, K. C., & Ahn, D. U. (2002b). Mechanisms of pink color formation in irradiated precooked turkey breast. Journal of Food Science, 67(2), 600–607.

    Article  CAS  Google Scholar 

  • Nam, K. C., & Ahn, D. U. (2002c). Effect of double-packaging and acid combination on the quality of irradiated raw turkey patties. Journal of Food Science, 67(9), 3252–3257.

    Article  CAS  Google Scholar 

  • Nam, K. C., & Ahn, D. U. (2003a). Combination of aerobic and vacuum packaging to control color, lipid oxidation and off-odor volatiles of irradiated raw turkey breast. Meat Science, 63(3), 389–395.

    Article  CAS  Google Scholar 

  • Nam, K. C., & Ahn, D. U. (2003b). Effects of ascorbic acid and antioxidants on the color of irradiated beef patties. Journal of Food Science, 68(5), 1686–1690.

    Article  CAS  Google Scholar 

  • Nam, K. C., & Ahn, D. U. (2003c). Use of double-packaging and antioxidant combinations to improve color, lipid oxidation, and volatiles of irradiated raw and cooked turkey breast patties. Poultry Science, 82(5), 850–857.

    CAS  Google Scholar 

  • Nam, K. C., Ahn, D. U., Du, M., & Jo, C. (2001). Lipid oxidation, color, volatiles, and sensory characteristics of aerobically packaged and irradiated pork with different ultimate pH. Journal of Food Science, 66, 1225–1229.

    Article  CAS  Google Scholar 

  • Nam, K. C., Ko, K. Y., Min, B. R., Ismail, H., Lee, E. J., & Ahn, D. U. (2006). Influence of rosemary-tocopherol/packaging combination on the chemical quality and Listeria monocytogenes and Salmonella typhimurium survival in restructured pork loins following electron irradiation. Meat Science, 74(2), 380–387.

    Article  CAS  Google Scholar 

  • Nam, K. C., Min, B. R., Park, K. S., Lee, S. C., & Ahn, D. U. (2003). Effects of ascorbic acid and antioxidants on the lipid oxidation and volatiles of irradiated beef patties. Journal of Food Science, 68(5), 1680–1685.

    Article  CAS  Google Scholar 

  • Nanke, K. E., Sebranek, J. G., & Olson, D. G. (1998). Color characteristics of irradiated vacuum-packaged pork, beef, and turkey. Journal of Food Science, 63(6), 1001–1006.

    Article  CAS  Google Scholar 

  • Nanke, K. E., Sebranek, J. G., & Olson, D. G. (1999). Color characteristics of irradiated aerobically packaged pork, beef, and turkey. Journal of Food Science, 64, 272–276.

    Article  CAS  Google Scholar 

  • NAPPO (North American Plant Protection Organization). (1995). Proceedings of the North American Plant Protection Organization annual meeting colloquium on the application of irradiation technology as a quarantine treatment (pp. 62–65). Neapean, Ontario, Canada; NAPPO bulletin No. 13.

    Google Scholar 

  • Nawar, W. W. (1986). Volatiles from food irradiation. Food Review International, 2(1), 45–78.

    Article  CAS  Google Scholar 

  • Ndiaye, B., Jamet, G., Miesch, M., Hasselmann, C., & Marchioni, E., (1999). 2-Alkylbutanones as markers for irradiated foodstuffs. II. The CEN (European Committee for Standardization) method: Field of application and limit of utilization. Radiation Physics and Chemistry, 55, 437–445.

    Article  CAS  Google Scholar 

  • NTP (National Toxicology Program). (2004). Report on carcinogens (11th ed., Furan CAS No. 110-00-9). Research Triangle Park, NC: U.S. Dept. of Health and Human Services, Public Health Service, http://ehp.niehs.nih.gov/roc/eleventh/profiles/s090fura.pdf

  • Olson, D. G. (1998a). Irradiation of food. Food Technology, 52, 56–62.

    Google Scholar 

  • Olson, D. G. (1998b). Irradiation processing. In E. Murano (Ed.), Food irradiation – A sourcebook. Meat and poultry irradiation short course (pp. 3–27). Ames, IA: Iowa State University Press.

    Google Scholar 

  • Patterson, M. (1988). Sensitivity of bacteria to irradiation on poultry meat under various atmospheres. Letters of Applied Microbiology, 7, 55–58.

    Article  Google Scholar 

  • Palumbo, S. A., Jenkins, R. K., Buchanan, R. L., & Thayer, D. W. (1986). Determination of irradiation D-values for Aeromonas hydrophila. Journal of food protection, 49(3), 189–191.

    Google Scholar 

  • Raul, F., Gosse, F., Delincée, H., Hartwig, A., Marchioni, E., Miesch, M., et al. (2002). Foodborne radiolytic compounds (2-alkycylobutanones) may promote experimental colon carcinogenesis. Nutrition and Cancer, 44(2), 189–191.

    Article  Google Scholar 

  • Satin, M. (2002). Use of irradiation for microbial decontamination of meat: Situation and perspectives. Meat Science, 62, 277–283.

    Article  Google Scholar 

  • Satterlee, L. D., Wilhelm, M. S., & Barnhart, H. M. (1971). Low dose gamma irradiation of bovine metmyoglobin. Journal of Food Science, 36(3), 549–551.

    Article  CAS  Google Scholar 

  • Schwartz, B. (1921). Effect of X-rays on Trichinae. Journal of Agricultural Research, 20, 845–849.

    Google Scholar 

  • Shahidi, F., & Pegg, R. B. (1994). Lipids in food flavors (ACS Symposium Series 558, pp. 256–279). Washington, DC: American Chemical Society.

    Google Scholar 

  • Shahidi, F., Pegg, R. B., & Shamsuzzaman, K. (1991). Color and oxidative stability of nitrite-free cured meat after gamma irradiation. Journal of Food Science, 56, 1450–1452.

    Article  CAS  Google Scholar 

  • Shamsuzzaman, K., & Lucht, L. (1993). Resistance of Clostridium sporogenes spores to radiation and heat in various nonaqueous suspension media. Journal of Food Protection, 56(1), 10–12.

    Google Scholar 

  • Sommers, C. H. (2004). Food irradiation is already here. Food Technology, 58(11), 22.

    Google Scholar 

  • Sommers, C. H., & Schiestl, R. H. (2004). 2-Dodecylcyclobutanone does not induce mutations in the Salmonella mutagenicity test or intrachromosomal recombinations in Sacccharomyces cerevisiae. Journal of Food Protection, 67, 1293–1298.

    CAS  Google Scholar 

  • Steccheni, M. I., Del Torre, M., Sarais, P. G., Fuochi, F., Tubaro, F., & Ursini, F. (1998). Carnosine increases the radiation resistance of Aeromonas hydrophila in minced turkey meat. Journal of Food Science, 61, 979–987.

    Google Scholar 

  • Stevenson, M. H. (1996). Validation of the cyclobutanone protocol for detection of irradiated lipid containing foods by interlaboratory trial. In C. H. McMurray, E. M. Stewart, R. Gray, & J. Pearce (Eds.), Detection methods for irradiated foods – Current status (pp. 269–284). Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Stewart, E. M., Moore, S., Graham, W. D., McRoberts, W. C., & Hamilton, J. T. G. (2000). 2-Alkylcyclobutanones as markers for the detection of irradiated mango, papaya, camembert cheese and salmon meat. Journal of Science and Food Agriculture, 80, 121–130.

    Article  CAS  Google Scholar 

  • Stryer, L. (1981). Biochemistry (p. 54). New York: Freeman and Co.

    Google Scholar 

  • Swedish National Food Administration. (2002). Information about acrylamide in food. Uppsala, Sweden: Swedish NFA, http://192.71.90.8/engakrylanalysresultat.htm

  • Tappel, A. L. (1956). Regeneration and stability of oxymyoglobin in some gamma irradiated meats. Food Research, 21, 650–654.

    CAS  Google Scholar 

  • Tatum, J. H., Shaw, P. E., & Berry, R. E. (1969). Degradation products from ascorbic acid. Journal of Agriculture and Food Chemistry, 17, 38–40.

    Article  CAS  Google Scholar 

  • Taub, I. A., Karielian, R. A., & Halliday, J. W. (1978). Radiation chemistry of high protein food irradiated at low temperature. In Food preservation by irradiation (Vol. 1, pp. 371–384). Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Taub, I. A., Karielian, R. A., Halliday, J. W., Walker, J. E., Angeline, P., & Merritt, C. (1979). Factors affecting radiolytic effects of food. Radiation Physics and Chemistry, 14, 639–653.

    CAS  Google Scholar 

  • Thakur, B. R., & Singh, R. K. (1994). Food irradiation: Chemistry and applications. Food Review International, 10, 437–473.

    Article  CAS  Google Scholar 

  • Thayer, D. W. (1995). Use of irradiation to kill enteric pathogens on meat and poultry. Journal of Food Safety, 15, 181–192.

    Article  Google Scholar 

  • Thayer, D. W., & Boyd, G. (1992). Gamma ray processing to destroy Staphylococcus aureus in mechanically deboned chicken meat. Journal of Food Science, 57(4), 848–851.

    Google Scholar 

  • Thayer, D. W., & Boyd, G. (1999). Irradiation and modified atmosphere packaging for the control of Listeria monocytogenes on turkey meat. Journal of Food Protection, 62, 1136–1142.

    CAS  Google Scholar 

  • Thayer, D. W., Songprasertchai, S., & Boyd, G. (1991). Effects of heat and ionizing radiation on Salmonella typhimurium in mechanically deboned chicken meat. Journal of Food Protection, 54, 718–724.

    Google Scholar 

  • Thayer, D. W., Boyd, G., & Jenkins, R. K. (1993). Low-dose gamma irradiation and refrigerated storage in vacuo affect microbial flora of fresh pork. Journal of Food Science, 58, 717–719, 733.

    Article  Google Scholar 

  • Thayer, D. W., Lachica, R. V., Huhtanen, C. N., & Wierbicki, E. (1986). Use of irradiation to ensure the microbiological safety of processed meats. Food Technology, 40(4), 159–162.

    Google Scholar 

  • Thomas, J. A. (1999). Oxidative stress, oxidant defense, and dietary constituents. In M. E. Shils, J. A. Olson, M. Shike, & A. C. Ross (Eds.), Modern nutrition in health and disease (pp. 751–760). Philadelphia: Lea and Febiger.

    Google Scholar 

  • Urbain, W. M. (1989). Food irradiation: The past fifty years as prologue to tomorrow. Food Technology, 43(7), 76, 92.

    Google Scholar 

  • USDA-FSIS. (1986). Irradiation of pork for control of Trichinella spiralis. Federal Register, 51, 1769–1771.

    Google Scholar 

  • USDA-FSIS. (1992). Irradiation of poultry products. Federal Register, 57, 43588–43600.

    Google Scholar 

  • USDA-FSIS. (1999). Meat and poultry irradiation proposal. USDA Food Safety and Inspection Service, www.fsis.usda.gov/oa/background/irradprop.htm

  • Venugopal, V., Doke, S. N., & Thomas, P. (1999). Radiation processing to improve the quality of fishery products. Critical Review in Food Science and Nutrition, 39(5), 391–440.

    Article  CAS  Google Scholar 

  • Walter, R. H., & Fagerson, I. S. (1968). Volatile compounds from heated glucose. Journal of Food Science, 33, 294–297.

    Article  CAS  Google Scholar 

  • Wen, J., Morrissey, P. A., Buckley, D. J., & Sheehy, P. J. A. (1996). Oxidative stability and α-tocopherol retention in turkey burgers during refrigerated and frozen storage as influenced by dietary tocopheryl acetate. British Poultry Science, 37, 787–792.

    Article  CAS  Google Scholar 

  • WHO. (1981). Wholesomeness of irradiated foods (Technical Report Series, 659). Geneva: WHO.

    Google Scholar 

  • WHO. (1994). Food irradiation. In Safety and nutritional adequacy of irradiated food (pp. 5–13). Geneva: WHO.

    Google Scholar 

  • Winne, A. D., & Dirinck, P. (1996). Studies on vitamin E and meat quality. 2. Effect of feeding high vitamin E levels on chicken meat quality. Journal of the Science and Food Agriculture, 44, 1691–1696.

    Article  Google Scholar 

  • Woods, R. J., & Pikaev, A. K. (1994). Interaction of radiation with matter. Selected topics in radiation chemistry. In Applied radiation chemistry: Radiation processing (pp. 59–89, 165–210). New York: John Wiley and Sons.

    Google Scholar 

  • Xiong, Y. L., Decker, E. A., Robe, G. H., & Moody, W. G. (1993). Gelation of crude myofibrillar protein isolated from beef heart under antioxidant conditions. Journal of Food Science, 58, 1241–1244.

    Article  CAS  Google Scholar 

  • Yaylayan, V. A., & Stadler, R. H. (2005). Acrylamide formation in food: A mechanistic perspective. Journal of AOAC International, 88, 262–267.

    CAS  Google Scholar 

  • Yoon, K. S. (2003). Effect of gamma irradiation on the texture and microstructure of chicken breast meat. Meat Science, 63, 273–277.

    Article  Google Scholar 

  • Zhu, M. J., Mendonca, A., & Ahn, D. U. (2004). Effect of temperature abuse on the quality of irradiated pork loins. Meat Science, 67, 643–649.

    Article  Google Scholar 

  • Zhu, M. J., Mendonca, A., Ismail, H. A., Du, M., Lee, E. J., & Ahn, D. U. (2005). Impact of antimicrobial ingredients and irradiation on the survival of Listeria monocytogenes and quality of ready-to-eat turkey ham. Poultry Science, 84(4), 613–620.

    CAS  Google Scholar 

  • Zhu, M. J., Mendonca, A., Min, B., Lee, E. J., Nam, K. C., Park, K.,et al. (2004). Effects of electron beam irradiation and antimicrobials on the volatiles, color and texture of ready-to-eat turkey breast roll. Journal of Food Science, 69(5), C382–C387.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong U. Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, E.J., Ahn, D.U. (2009). Advanced Decontamination Technologies: Irradiation. In: Toldrá, F. (eds) Safety of Meat and Processed Meat. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89026-5_8

Download citation

Publish with us

Policies and ethics