Advertisement

Strategies for On-Line Decontamination of Carcasses

  • Oleksandr A. Byelashov
  • John N. Sofos
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Microbial food safety has been one of the most important challenges for the meat industry during the last two decades due to important foodborne outbreaks traced to contaminated products and associated costly product recalls from the market. Escherichia coli O157:H7 and other non-O157 Shiga toxin-producing (STEC) strains, as well as Salmonella serotypes, Campylobacter jejuni, Clostridium perfringens, Clostridium botulinum,Listeria monocytogenes, Staphylococcus aureus, Yersinia enterocolitica, Aeromonas hydrophila, and Bacillus cereusare important pathogenic contaminants of meat and poultry products (Sofos, 2004a). STEC, especially, have been of major concern for the beef industry for a number of years, since for almost two decades contaminated beef products have been major sources of foodborne E. coli O157:H7 infection (Rangel, Sparling, Crowe, Griffin, & Swerdlow, 2005).

In response to an outbreak (Bell et al., 1994) of E. coliO157:H7 infection traced to contaminated...

Keywords

Total Coliform Chlorine Dioxide Aerobic Plate Count Animal Carcass Total Aerobic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alakomi, H. L., Skytta, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., & Helander, I. M. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001–2005.Google Scholar
  2. Allanson, A., Curry, R., Unklesbay, N., Iannotti, E., & Ellersieck, M. (2000). Effect of soluble polylactic acid during refrigerated storage of ground meats inoculated with Escherichia coli O157:H7. Journal of Food Safety, 20(1), 13–25.Google Scholar
  3. Anderson, M. E., Huff, H. E., Naumann, H. D., Marshall, R. T., Damare, J. M., Pratt, M., et al. (1987). Evaluation of an automated beef carcass washing and sanitizing system under production conditions. Journal of Food Protection, 50(7), 562–566.Google Scholar
  4. Anderson, M. E., & Marshall, R. T. (1989). Interaction of concentration and temperature of acetic-acid solution on reduction of various species of microorganisms on beef surfaces. Journal of Food Protection, 52(5), 312–315.Google Scholar
  5. Anderson, M. E., Marshall, R. T., & Dickson, J. S. (1992). Efficacies of acetic, lactic and 2 mixed acids in reducing numbers of bacteria on surfaces of lean meat. Journal of Food Safety, 12(2), 139–147.Google Scholar
  6. Andrews, L. S., Keys, A. M., Martin, R. L., Grodner, R., & Park, D. L. (2002). Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine. Food Microbiology, 19(4), 261–267.Google Scholar
  7. Anonymous. (1997). Clean cattle policy, Department of Agriculture and Food, Dublin, Ireland. Department of Agriculture and Food, Dublin, Ireland.Google Scholar
  8. Bacon, R. T., Belk, K. E., Sofos, J. N., Clayton, R. P., Reagan, J. O., & Smith, G. C. (2000). Microbial populations on animal hides and beef carcasses at different stages of slaughter in plants employing multiple-sequential interventions for decontamination. Journal of Food Protection, 63(8), 1080–1086.Google Scholar
  9. Bacon, R. T., Sofos, J. N., Belk, K. E., & Smith, G. C. (2001). Commercial application of lactic acid to reduce bacterial populations on chilled carcasses, subprimal cuts and table surfaces during fabrication. Dairy, Food and Environmental Sanitation, 22, 674–682.Google Scholar
  10. Baird, B. E., Lucia, L. M., Acuff, G. R., Harris, K. B., & Savell, J. W. (2006). Beef hide antimicrobial interventions as a means of reducing bacterial contamination. Meat Science, 73(2), 245–248.Google Scholar
  11. Barkate, M. L., Acuff, G. R., Lucia, L. M., & Hale, D. S. (1993). Hot-Water decontamination of beef carcasses for reduction of initial bacterial numbers. Meat Science, 35(3), 397–401.Google Scholar
  12. Barkocy-Gallagher, G. A., Arthur, T. M., Rivera-Betancourt, M., Nou, X. W., Shackelford, S. D., Wheeler, T. L., et al. (2003). Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. Journal of Food Protection, 66(11), 1978–1986.Google Scholar
  13. Bell, B. P., Goldoft, M., Griffin, P. M., Davis, M. A., Gordon, D. C., Tarr, P. I., et al. (1994). A multistate outbreak of Escherichia coli O157:H7 associated bloody diarrhea and hemolytic uremic syndrome from hamburgers – The Washington experience. JAMA-Journal of the American Medical Association, 272(17), 1349–1353.Google Scholar
  14. Bell, K. Y., Cutter, C. N., & Sumner, S. S. (1997). Reduction of foodborne micro-organisms on beef carcass tissue using acetic acid, sodium bicarbonate, and hydrogen peroxide spray washes. Food Microbiology, 14(5), 439–448.Google Scholar
  15. Bell, R. G. (1997). Distribution and sources of microbial contamination on beef carcasses. Journal of Applied Microbiology, 82(3), 292–300.Google Scholar
  16. Beers, K., Rheingans, J., Chinault, K., Cook, P., Smith, B., & Waldroup. A. (2006). Microbial efficacy of commercial application of Cecure® CPC antimicrobial to ingesta-contaminated pre-chill broiler carcasses. Asian Network for Scientific Information, 5(8)698–703. Google Scholar
  17. Biss, M. E., & Hathaway, S. C. (1995). Microbiological and visible contamination of lamb carcasses according to preslaughter presentation status – Implications for HACCP. Journal of Food Protection, 58(7), 776–783.Google Scholar
  18. Biss, M. E., & Hathaway, S. C. (1996). Effect of pre-slaughter washing of lambs on the microbiological and visible contamination of the carcasses. Veterinary Record, 138(4), 82–86.Google Scholar
  19. Boorman, G. A., Dellarco, V., Dunnick, J. K., Chapin, R. E., Hunter, S., Hauchman, F., et al. (1999). Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environmental Health Perspectives, 107, 207–217.Google Scholar
  20. Bosilevac, J. M., Nou, X., Osborn, M. S., Allen, D. M., & Koohmaraie, M. (2005). Development and evaluation of an on-line hide decontamination procedure for use in a commercial beef processing plant. Journal of Food Protection, 68(2), 265–272.Google Scholar
  21. Bosilevac, J. M., Nou, X. W., Barkocy-Gallagher, G. A., Arthur, T. M., & Koohmaraie, M. (2006). Treatments using hot water instead of lactic acid reduce levels of aerobic bacteria and Enterobacteriaceae and reduce the prevalence of Escherichia coli O157:H7 on preevisceration beef carcasses. Journal of Food Protection, 69(8), 1808–1813.Google Scholar
  22. Bosilevac, J. M., Shackelford, S. D., Brichta, D. M., & Koohmaraie, M. (2005). Efficacy of ozonated and electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. Journal of Food Protection, 68(7), 1393–1398.Google Scholar
  23. Bowling, R. A., & Clayton, R. P. (1992). Method for de-hairing animals. U.S. Patent 5,149,295. Greely, CO: Monfort, Inc.Google Scholar
  24. Burfoot, D., Whyte, R., Tinker, D., Howell, M., Hall, K., Holah, J., et al. (2006). Importance of airborne contamination during dressing of beef and lamb carcasses. Journal of Food Protection, 69(12), 2828–2836.Google Scholar
  25. Byrne, B., Dunne, G., Lyng, J., & Bolton, D. J. (2007). The development of a clean sheep policy in compliance with the new Hygiene Regulation (EC) 853/2004 (Hygiene 2). Food Microbiology, 24(3), 301–304.Google Scholar
  26. Byrne, C. M., Bolton, D. J., Sheridan, J. J., McDowell, D. A., & Blair, I. S. (2000). The effects of preslaughter washing on the reduction of Escherichia coli O157:H7 transfer from cattle hides to carcasses during slaughter. Letters in Applied Microbiology, 30(2), 142–145.Google Scholar
  27. Cabedo, L., Sofos, J. N., & Smith, G. C. (1996). Removal of bacteria from beef tissue by spray washing after different times of exposure to fecal material. Journal of Food Protection, 59(12), 1284–1287.Google Scholar
  28. Calicioglu, M., Kaspar, C. W., Buege, D. R., & Luchansky, J. B. (2002). Effectiveness of spraying with Tween 20 and lactic acid in decontaminating inoculated Escherichia coli O157:H7 and indigenous Escherichia coli biotype I on beef. Journal of Food Protection, 65(1), 26–32.Google Scholar
  29. Castillo, A., Dickson, J. S., Clayton, R. P., Lucia, L. M., & Acuff, G. R. (1998). Chemical dehairing of bovine skin to reduce pathogenic bacteria and bacteria of fecal origin. Journal of Food Protection, 61(5), 623–625.Google Scholar
  30. Castillo, A., Lucia, L. M., Goodson, K. J., Savell, J. W., & Acuff, G. R. (1998a). Comparison of water wash, trimming, and combined hot water and lactic acid treatments for reducing bacteria of fecal origin on beef carcasses. Journal of Food Protection, 61(7), 823–828.Google Scholar
  31. Castillo, A., Lucia, L. M., Goodson, K. J., Savell, J. W., & Acuff, G. R. (1998b). Use of hot water for beef carcass decontamination. Journal of Food Protection, 61(1), 19–25.Google Scholar
  32. Castillo, A., Lucia, L. M., Kemp, G. K., & Acuff, G. R. (1999). Reduction of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces using acidified sodium chlorite. Journal of Food Protection, 62(6), 580–584.Google Scholar
  33. Castillo, A., Lucia, L. M., Mercado, I., & Acuff, G. R. (2001). In-plant evaluation of a lactic acid treatment for reduction of bacteria on chilled beef carcasses. Journal of Food Protection, 64(5), 738–740.Google Scholar
  34. Castillo, A., Lucia, L. M., Roberson, D. B., Stevenson, T. H., Mercado, I., & Acuff, G. R. (2001). Lactic acid sprays reduce bacterial pathogens on cold beef carcass surfaces and in subsequently produced ground beef. Journal of Food Protection, 64(1), 58–62.Google Scholar
  35. Cates, S., Viatoriatoriator, C. L., Karns, S. A., & Muth, M. K. (2006). Food safety practices and technologies used by U.S. poultry slaughter plants: Results of a national mail survey. Paper presented at the International Association for Food Protection 93rd Annual Meeting, Calgary, Alberta, Canada.Google Scholar
  36. Cates, S., Viatoriatoriator, C. L., Karns, S. A., & Muth, M. K. (2008). Food safety practices of meat slaughter plants: Findings from a national survey. Food Protection Trends, 28(1), 26–36.Google Scholar
  37. Cutter, C. N., & Dorsa, W. J. (1995). Chlorine dioxide spray washes for reducing fecal contamination on beef. Journal of Food Protection, 58(12), 1294–1296.Google Scholar
  38. Cutter, C. N., & Siragusa, G. R. (1994a). Decontamination of beef carcass tissue with nisin using a pilot-scale model carcass washer. Food Microbiology, 11(6), 481–489.Google Scholar
  39. Cutter, C. N., & Siragusa, G. R. (1994b). Efficacy of organic acids against Escherichia coli O157:H7 attached to beef carcass tissue using a pilot-scale model carcass washer. Journal of Food Protection, 57(2), 97–103.Google Scholar
  40. Cutter, C. N., & Siragusa, G. R. (1995). Application of chlorine to reduce populations of Escherichia coli on beef. Journal of Food Safety, 15(1), 67–75.Google Scholar
  41. Davey, K. R. (1989). Theoretical analysis of 2 hot water cabinet systems for decontamination of sides of beef. International Journal of Food Science and Technology, 24(3), 291–304.Google Scholar
  42. Davey, K. R., & Smith, M. G. (1989). A laboratory evaluation of a novel hot water cabinet for the decontamination of sides of beef. International Journal of Food Science and Technology, 24(3), 305–316.Google Scholar
  43. Delmore, R. J., Sofos, J. N., Schmidt, G. R., Belk, K. E., Lloyd, W. R., & Smith, G. C. (2000). Interventions to reduce microbiological contamination of beef variety meats. Journal of Food Protection, 63(1), 44–50.Google Scholar
  44. Dickson, J. S. (1991). Control of Salmonella Typhimurium, Listeria monocytogenes, and Escherichia coli O157:H7 on beef in a model spray chilling system. Journal of Food Science, 56(1), 191–193. Google Scholar
  45. Dickson, J. S. (1992). Acetic acid action on beef tissue surfaces contaminated with Salmonella Typhimurium. Journal of Food Science, 57(2), 297–301.Google Scholar
  46. Dickson, J. S. (1995). Susceptibility of preevisceration washed beef carcasses to contamination by Escherichia coli O157:H7 and Salmonella. Journal of Food Protection, 58(10), 1065–1068.Google Scholar
  47. Dormedy, E. S., Brashears, M. M., Cutter, C. N., & Burson, D. E. (2000). Validation of acid washes as critical control points in hazard analysis and critical control point systems. Journal of Food Protection, 63(12), 1676–1680.Google Scholar
  48. Dorsa, W. J., Cutter, C. N., & Siragusa, G. R. (1996). Effectiveness of a steam-vacuum sanitizer for reducing Escherichia coli O157:H7 inoculated to beef carcass surface tissue. Letters in Applied Microbiology, 23(1), 61–63.Google Scholar
  49. Dorsa, W. J., Cutter, C. N., & Siragusa, G. R. (1997a). Effects of acetic acid, lactic acid and trisodium phosphate on the microflora of refrigerated beef carcass surface tissue inoculated with Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes. Journal of Food Protection, 60(6), 619–624.Google Scholar
  50. Dorsa, W. J., Cutter, C. N., & Siragusa, G. R. (1997b). Effects of steam-vacuuming and hot water spray wash on the microflora of refrigerated beef carcass surface tissue inoculated with Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes. Journal of Food Protection, 60(2), 114–119.Google Scholar
  51. Dorsa, W. J., Cutter, C. N., Siragusa, G. R., & Koohmaraie, M. (1996). Microbial decontamination of beef and sheep carcasses by steam, hot water spray washes, and a steam-vacuum sanitizer. Journal of Food Protection, 59(2), 127–135.Google Scholar
  52. Edwards, J. R., & Fung, D. Y. C. (2006). Prevention and decontamination of Escherichia coli O157:H7 on raw beef carcasses in commercial beef abattoirs. Journal of Rapid Methods and Automation in Microbiology, 14(1), 1–95.Google Scholar
  53. Eker, B., & Yuksel, E. (2005). Solutions to corrosion caused by agricultural chemicals. Trakia Journal of Sciences, 3(7), 1–6.Google Scholar
  54. Eklund, T. (1985, January). The effect of sorbic acid and esters of para-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane-vesicles. Journal of General Microbiology, 131, 73–76.Google Scholar
  55. Ellerbroek, L. I., Wegener, J. F., & Arndt, G. (1993). Does spray washing of lamb carcasses alter bacterial surface contamination. Journal of Food Protection, 56(5), 432–436.Google Scholar
  56. Emswiler, B. S., Kotula, A. W., & Rough, D. K. (1976). Bactericidal effectiveness of 3 chlorine sources used in beef carcass washing. Journal of Animal Science, 42(6), 1445–1450.Google Scholar
  57. Fabrizio, K. A., & Cutter, C. N. (2004). Comparison of electrolyzed oxidizing water with other antimicrobial interventions to reduce pathogens on fresh pork. Meat Science, 68(3), 463–468.Google Scholar
  58. FDA (Food and Drug Administration). (1990). Irradiation in the production processing and handling of food. Approval of ionizing radiation treatments of poultry to eliminate foodborne pathogens. Federal Register, 55, 18538–18544.Google Scholar
  59. FDA (Food and Drug Administration). (2008). Direct food substances affirmed as generally recognized as safe. Federal Register, 21, 480–583.Google Scholar
  60. Gehring, A. G., Dudley, R. L., Mazenko, C. E., & Marmer, W. N. (2006). Rapid oxidative dehairing with magnesium peroxide and potassium peroxymonosulfate. Journal of the American Leather Chemists Association, 101(9), 324–329.Google Scholar
  61. Gill, C. O. (1995). Microbial contamination during slaughter. In A. Daves & R. Board (Eds.), The microbiology of meat and poultry (pp. 118–157). London: Blakie Academic and Professional.Google Scholar
  62. Gill, C. O., & Badoni, M. (2004). Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses. International Journal of Food Microbiology, 91(1), 43–50.Google Scholar
  63. Gill, C. O., Badoni, M., & Jones, T. (1996). Hygienic effects of trimming and washing operations in a beef-carcass-dressing process. Journal of Food Protection, 59(6), 666–669.Google Scholar
  64. Gill, C. O., Badoni, M., & McGinnes, J. C. (1999). Assessment of the adequacy of cleaning of equipment used for breaking beef carcasses. International Journal of Food Microbiology, 46(1), 1–8.Google Scholar
  65. Gill, C. O., & Baker, L. M. (1998). Trimming, vacuum cleaning or hot water-vacuum cleaning effects of lamb hindsaddles. Journal of Muscle Foods, 9(4), 391–401.Google Scholar
  66. Gill, C. O., Bedard, D., & Jones, T. (1997). The decontaminating performance of a commercial apparatus for pasteurizing polished pig carcasses. Food Microbiology, 14(1), 71–79.Google Scholar
  67. Gill, C. O., & Bryant, J. (1997). Decontamination of carcasses by vacuum hot water cleaning and steam pasteurizing during routine operations at a beef packing plant. Meat Science, 47(3–4), 267–276.Google Scholar
  68. Gill, C. O., Bryant, J., & Bedard, D. (1999). The effects of hot water pasteurizing treatments on the appearances and microbiological conditions of beef carcass sides. Food Microbiology, 16(3), 281–289.Google Scholar
  69. Gill, C. O., Bryant, J., & Landers, C. (2003). Identification of critical control points for control of microbiological contamination in processes leading to the production of ground beef at a packing plant. Food Microbiology, 20(6), 641–650.Google Scholar
  70. Gill, C. O., & Ginnis, M. C. (2003). Decontamination of cleaned personal equipment used during beef carcass processing. Food Protection Trends, 23(6), 474–479.Google Scholar
  71. Gill, C. O., Jones, T., & Badoni, M. (1998). The effects of hot water pasteurizing treatments on the microbiological conditions and appearances of pig and sheep carcasses. Food Research International, 31(4), 273–278.Google Scholar
  72. Gill, C. O., McGinnis, J. C., & Badoni, M. (1996). Assessment of the hygienic characteristics of a beef carcass dressing process. Journal of Food Protection, 59(2), 136–140.Google Scholar
  73. Gill, C. O., McGinnis, D. S., Bryant, J., & Chabot, B. (1995). Decontamination of commercial, polished pig carcasses with hot-water. Food Microbiology, 12(2), 143–149.Google Scholar
  74. Gorman, B. M., Morgan, J. B., Sofos, J. N., & Smith, G. C. (1995). Microbiological and visual effects of trimming and/or spray washing for removal of fecal material from beef. Journal of Food Protection, 58(9), 984–989.Google Scholar
  75. Gorman, B. M., Sofos, J. N., Morgan, J. B., Schmidt, G. R., & Smith, G. C. (1995). Evaluation of hand-trimming, various sanitizing agents, and hot-water spray-washing as decontamination interventions for beef brisket adipose-tissue. Journal of Food Protection, 58(8), 899–907.Google Scholar
  76. Goulter, R. M., Dykes, G. A., & Small, A. (2008). Decontamination of knives used in the meat industry: Effect of different water temperature and treatment time combinations on the reduction of bacterial numbers on knife surfaces. Journal of Food Protection, 71(7), 1338–1342.Google Scholar
  77. Graves Delmore, L. R. (1998). Evaluation of multiple decontamination treatments on beef carcass tissue (Doctoral dissertation, Colorado State University, Fort Collins, CO, 1998).Google Scholar
  78. Graves Delmore, L. R., Sofos, J. N., Reagan, J. O., & Smith, G. C. (1997). Hot-water rinsing and trimming washing of beef carcasses to reduce physical and microbiological contamination. Journal of Food Science, 62(2), 373–376.Google Scholar
  79. Graves Delmore, L. R., Sofos, J. N., Schmidt, G. R., & Smith, G. C. (1998). Decontamination of inoculated beef with sequential spraying treatments. Journal of Food Science, 63(5), 890–893.Google Scholar
  80. Greer, G. G., & Dilts, B. D. (1995). Lactic acid inhibition of the growth of spoilage bacteria and cold tolerant pathogens on pork. International Journal of Food Microbiology, 25(2), 141–151.Google Scholar
  81. Hamby, P. L., Savell, J. W., Acuff, G. R., Vanderzant, C., & Cross, H. R. (1987). Spray-chilling and carcass decontamination systems using lactic and acetic-acid. Meat Science, 21(1), 1–14.Google Scholar
  82. Hancock, D. D., Rice, D. H., Thomas, L. A., Dargatz, D. A., & Besser, T. E. (1997). Epidemiology of Escherichia coli O157 in feedlot cattle. Journal of Food Protection, 60(5), 462–465.Google Scholar
  83. Hardin, M. D., Acuff, G. R., Lucia, L. M., Oman, J. S., & Savell, J. W. (1995). Comparison of methods for decontamination from beef carcass surfaces. Journal of Food Protection, 58(4), 368–374.Google Scholar
  84. Heitter, E. F. (1975, 20–21 March). Chlor-chil. Proceedings of the meat industry research conference(pp. 31–32), Arlington, VA, USA.Google Scholar
  85. Hudson, W. R., Mead, G. C., & Hinton, M. H. (1998). Assessing abattoir hygiene with a marker organism. Veterinary Record, 142(20), 545–547.Google Scholar
  86. Ikeda, J. S., Samelis, J., Kendall, P. A., Smith, G. C., & Sofos, J. N. (2003). Acid adaptation does not promote survival or growth of Listeria monocytogenes on fresh beef following acid and nonacid decontamination treatments. Journal of Food Protection, 66(6), 985–992.Google Scholar
  87. Jay, J. M. (2005). Modern food microbiology. Gaithersburg: Aspen Publishers, Inc. Google Scholar
  88. Kalchayanand, N., Arthur, T. M., Bosilevac, J. M., Brichta-Harhay, D. M., Guerini, M. N., Wheeler, T. L., et al. (2008). Evaluation of various antimicrobial interventions for the reduction of Escherichia coli O157:H7 on bovine heads during processing. Journal of Food Protection, 71(3), 621–624.Google Scholar
  89. Kiermeier, A., Bobbitt, J., Vanderlinde, P., Higgs, G., Pointon, A., & Sumner, J. (2006). Use of routine beef carcases Escherichia coli monitoring data to investigate the relationship between hygiene status of incoming stock and processing efficacy. International Journal of Food Microbiology, 111(3), 263–269.Google Scholar
  90. King, D. A., Lucia, L. M., Castillo, A., Acuff, G. R., Harris, K. B., & Savell, J. W. (2005). Evaluation of peroxyacetic acid as a post-chilling intervention for control of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces. Meat Science, 69(3), 401–407. Google Scholar
  91. Kinsella, K. J., Sheridan, J. J., Rowe, T. A., Butler, F., Delgado, A., Quispe-Ramirez, A., et al. (2006). Impact of a novel spray-chilling system on surface microflora, water activity and weight loss during beef carcass chilling. Food Microbiology, 23(5), 483–490.Google Scholar
  92. Kochevar, S. L., Sofos, J. N., Bolin, R. R., Reagan, J. O., & Smith, G. C. (1997). Steam vacuuming as a pre-evisceration intervention to decontaminate beef carcasses. Journal of Food Protection, 60(2), 107–113.Google Scholar
  93. Koohmaraie, M., Arthur, T. M., Bosilevac, J. M., Guerini, M., Shackelford, S. D., & Wheeler, T. L. (2005). Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Science, 71(1), 79–91.Google Scholar
  94. Kotula, A. W., Lusby, W. R., Crouse, J. D., & Devries, B. (1974). Beef carcass washing to reduce bacterial-contamination. Journal of Animal Science, 39(4), 674–679.Google Scholar
  95. Kotula, K. L., Kotula, A. W., Rose, B. E., Pierson, C. J., & Camp, M. (1997). Reduction of aqueous chlorine by organic material. Journal of Food Protection, 60(3), 276–282.Google Scholar
  96. Koutsoumanis, K. P., Ashton, L. V., Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., et al. (2004). Effect of single or sequential hot water and lactic acid decontamination treatments on the survival and growth of Listeria monocytogenes and spoilage microflora during aerobic storage of fresh beef at 4, 10, and 25 degrees C. Journal of Food Protection, 67(12), 2703–2711.Google Scholar
  97. Leistner, L., & Gorris, L. G. M. (1995). Food preservation by hurdle technology. Trends in Food Science & Technology, 6(2), 41–46.Google Scholar
  98. Letellier, A., Messier, S., & Quessy, S. (1999). Prevalence of Salmonella spp., and Yersinia enterocolitica in finishing swine at Canadian abattoirs. Journal of Food Protection, 62(1), 22–25.Google Scholar
  99. Lim, K., & Mustapha, A. (2003). Reduction of Escherichia coli O157:H7 and Lactobacillus plantarum numbers on fresh beef by polylactic acid and vacuum packaging. Journal of Food Science, 68(4), 1422–1427.Google Scholar
  100. Mallikarjunan, P., & Mittal, G. S. (1995). Optimum conditions for beef carcass chilling. Meat Science, 39(2), 215–223.Google Scholar
  101. Marmer, W. N., & Dudley, R. L. (2004). The use of oxidative chemicals for the removal of hair from cattle hides in the beamhouse. Journal of the American Leather Chemists Association, 99(9), 386–393.Google Scholar
  102. Marmer, W. N., & Dudley, R. L. (2005a). Oxidative dehairing by sodium percarbonate. Journal of the American Leather Chemists Association, 100(11), 427–431.Google Scholar
  103. Marmer, W. N., & Dudley, R. L. (2005b). Rapid oxidative dehairing using alkaline hydrogen peroxide and potassium cyanate: Reuse of the dehairing reagents. Journal of the American Leather Chemists Association, 100(5), 165–173.Google Scholar
  104. McDowell, D. A., Sheridan, J. J., & Bolton, D. J. (2005). HACCP in slaughter operations. In J. N. Sofos (Ed.), Improving the safety of fresh meat (pp. 697–730). Boca Raton, FL: CRC Press.Google Scholar
  105. McEvoy, J. M., Doherty, A. M., Sheridan, J. J., Bailey, D. G., Blair, I. S., & McDowell, D. A. (2003). The effects of treating bovine hide with steam at subatmospheric pressure on bacterial numbers and leather quality. Letters in Applied Microbiology, 37(4), 344–348.Google Scholar
  106. McEvoy, J. M., Doherty, A. M., Sheridan, J. J., Blair, I. S., & McDowell, D. A. (2001). Use of steam condensing at subatmospheric pressures to reduce Escherichia coli O157:H7 numbers on bovine hide. Journal of Food Protection, 64(11), 1655–1660.Google Scholar
  107. Mies, P. D., Covington, B. R., Harris, K. B., Lucia, L. M., Acuff, G. R., & Savell, J. W. (2004). Decontamination of cattle hides prior to slaughter using washes with and without antimicrobial agents. Journal of Food Protection, 67(3), 579–582.Google Scholar
  108. Minihan, D., Whyte, P., O'Mahony, M., & Collins, J. D. (2003). The effect of commercial steam pasteurization on the levels of Enterobacteriaceae and Escherichia coli on naturally contaminated beef carcasses. Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health, 50(7), 352–356.Google Scholar
  109. Morris, C. A., Lucia, L. M., Savell, J. W., & Acuff, G. R. (1997). Trisodium phosphate treatment of pork carcasses. Journal of Food Science, 62(2), 402–405.Google Scholar
  110. Mulder, R., Vanderhulst, M. C., & Bolder, N. M. (1987). Salmonella decontamination of broiler carcasses with lactic-acid, l-cysteine, and hydrogen-peroxide. Poultry Science, 66(9), 1555–1557.Google Scholar
  111. NACMCF. (1993). Generic HACCP for raw beef. Food Microbiology, 10(6), 449–488.Google Scholar
  112. Neu, T. R. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews, 60(1), 151–166.Google Scholar
  113. Northcutt, J. K., Smith, D. P., Musgrove, M. T., Ingram, K. D., & Hinton, A. (2005). Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures. Poultry Science, 84(10), 1648–1652.Google Scholar
  114. Nou, X. W., Rivera-Betancourt, M., Bosilevac, J. M., Wheeler, T. L., Shackelford, S. D., Gwartney, B. L., et al. (2003). Effect of chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and Enterobacteriaceae on carcasses in a commercial beef processing plant. Journal of Food Protection, 66(11), 2005–2009.Google Scholar
  115. Nutsch, A. L., Phebus, R. K., Riemann, M. J., Schafer, D. E., Boyer, J. E., Wilson, R. C., et al. (1997). Evaluation of a steam pasteurization process in a commercial beef processing facility. Journal of Food Protection, 60(5), 485–492.Google Scholar
  116. Okolocha, E. C., & Ellerbroek, L. (2005). The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control, 16(3), 217–225.Google Scholar
  117. Phebus, R. K., Nutsch, A. L., Schafer, D. E., Wilson, R. C., Riemann, M. J., Leising, J. D., et al. (1997). Comparison of steam pasteurization and other methods for reduction of pathogens on surfaces of freshly slaughtered beef. Journal of Food Protection, 60(5), 476–484.Google Scholar
  118. Podolak, R. K., Zayas, J. F., Kastner, C. L., & Fung, D. Y. C. (1996). Reduction of bacterial populations on vacuum-packaged ground beef patties with fumaric and lactic acids. Journal of Food Protection, 59(10), 1037–1040.Google Scholar
  119. Prasai, R. K., Phebus, R. K., Zepeda, C. M., Kastner, C. L., Boyle, A. E., & Fung, D. Y. C. (1995). Effectiveness of trimming and/or washing on microbiological quality of beef carcasses. Journal of Food Protection, 58(10), 1114–1117.Google Scholar
  120. Rahkio, T. M., & Korkeala, H. J. (1997). Airborne bacteria and carcass contamination in slaughterhouses. Journal of Food Protection, 60(1), 38–42.Google Scholar
  121. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., & Swerdlow, D. L. (2005). Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerging Infectious Diseases, 11(4), 603–609.Google Scholar
  122. Ransom, J. R., Belk, K. E., Sofos, J. N., Stopforth, J. D., Scanga, J. A., & Smith, G. C. (2003). Comparison of intervention technologies for reducing Escherichia coli O157:H7 on beef cuts and trimmings. Food Protection Trends, 23(1), 24–34.Google Scholar
  123. Reagan, J. O., Acuff, G. R., Buege, D. R., Buyck, M. J., Dickson, J. S., Kastner, C. L., et al. (1996). Trimming and washing of beef carcasses as a method of improving the microbiological quality of meat. Journal of Food Protection, 59(7), 751–756.Google Scholar
  124. Reed, C. A. (1996). Foodborne illness prevention before slaughter? Yes! Journal of American Veterinary Medical Association, 208(9), 1366.Google Scholar
  125. Retzlaff, D., Phebus, R., Kastner, C., & Marsden, J. (2005). Establishment of minimum operational parameters for a high-volume static chamber steam pasteurization system (SPS 400-SC (TM)) for beef carcasses to support HACCP programs. Foodborne Pathogens and Disease, 2(2), 146–151.Google Scholar
  126. Retzlaff, D., Phebus, R., Nutsch, A., Riemann, J., Kastner, C., & Marsden, J. (2004). Effectiveness of a laboratory-scale vertical tower static chamber steam pasteurization unit against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua on prerigor beef tissue. Journal of Food Protection, 67(8), 1630–1633.Google Scholar
  127. Richardson, S. D. (2003). Disinfection by-products and other emerging contaminants in drinking water. Trac-Trends in Analytical Chemistry, 22(10), 666–684.Google Scholar
  128. Ridell, J., & Korkeala, H. (1993). Special treatment during slaughtering in Finland of cattle carrying an excessive load of dung – Meat hygienic aspects. Meat Science, 35(2), 223–228.Google Scholar
  129. Roberts, T. A. (1980). Contamination of meat – Effects of slaughter practices on the bacteriology of the red meat carcass. Royal Society of Health Journal, 100(1), 3–9.Google Scholar
  130. Rotterud, O. J., Helps, C. R., Hillman, T. J., Fisher, A. V., Harbour, D., Anil, H., et al. (2006). Hot boning of intact carcasses: A procedure to avoid central nervous system self-contamination in beef and beef products. Journal of Food Protection, 69(2), 405–411.Google Scholar
  131. Russell, J. B. (1992). Another explanation for the toxicity of fermentation acids at low pH – Anion accumulation versus uncoupling. Journal of Applied Bacteriology, 73(5), 363–370.Google Scholar
  132. Samelis, J., & Sofos, J. N. (2003). Strategies to control stress-adapted pathogens and provide safe foods. In A. E. Yousef & Juneja, V. K. (Eds.), Microbial adaptation to stress and safety of new-generation foods (pp. 303–351). Boca Raton, FL: CRC Press, Inc.Google Scholar
  133. Schnell, T. D., Sofos, J. N., Littlefield, V. G., Morgan, J. B., Gorman, B. M., Clayton, R. P., et al. (1995). Effects of postexsanguination dehairing on the microbial load and visual cleanliness of beef carcasses. Journal of Food Protection, 58(12), 1297–1302.Google Scholar
  134. Sen, A. C., Owusuyaw, J., Wheeler, W. B., & Wei, C. I. (1989). Reactions of aqueous chlorine and chlorine dioxide with tryptophan, N-methyltryptophan, and 3-indolelactic acid – Kinetic and mutagenicity studies. Journal of Food Science, 54(4), 1057–1060.Google Scholar
  135. Sheridan, J. J. (1998). Sources of contamination during slaughter and measures for control. Journal of Food Safety, 18(4), 321–339.Google Scholar
  136. Shin, J. H., Chang, S., & Kang, D. H. (2004). Application of antimicrobial ice for reduction of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes) on the surface of fish. Journal of Applied Microbiology, 97(5), 916–922.Google Scholar
  137. Siragusa, G. R. (1995). The effectiveness of carcass decontamination systems for controlling the presence of pathogens on the surfaces of meat animal carcasses. Journal of Food Safety, 15(3), 229–238.Google Scholar
  138. Small, A., Wells-Burr, B., & Buncic, S. (2005). An evaluation of selected methods for the decontamination of cattle hides prior to skinning. Meat Science, 69(2), 263–268.Google Scholar
  139. Smeltzer, T. I., Peel, B., Peel, B., & Collins, G. (1979). Role of equipment that has direct contact with the carcass in the spread of Salmonella in a beef abattoir. Australian Veterinary Journal, 55(6), 275–277.Google Scholar
  140. Smith, M. G., & Graham, A. (1978). Destruction of Escherichia coli and Salmonellae on mutton carcases by treatment with hot water. Meat Science, 2, 119–128.Google Scholar
  141. Smulders, F. J. M., & Woolthuis, C. H. J. (1985). Immediate and delayed microbiological effects of lactic-acid decontamination of calf carcasses – Influence on conventionally boned versus hot-boned and vacuum-packaged cuts. Journal of Food Protection, 48(10), 838–847.Google Scholar
  142. Sofos, J. N. (1994). Microbial growth and its control in meat, poultry and fish. In: A. M. Pearson & T. R. Dutson (Eds.), Quality attributes and their measurement in meat, poultry, and fish products (pp. 359–403). Glasgow: Blackie Academic and Professional.Google Scholar
  143. Sofos, J. N. (2002). Stress-adapted, cross-protected, resistant: A concern? Food Technology, 56(11), 22.Google Scholar
  144. Sofos, J. N. (2004a). Pathogens in animal products: Major biological hazards. In W. Pond & A. Bell (Eds.), Encyclopedia of animal science. New York: Marcel Dekker, Inc.Google Scholar
  145. Sofos, J. N. (2004b). Pathogens in animal products: Sources and control. In W. Pond & A. Bell (Eds.), Encyclopedia of animal science. New York: Marcel Dekker, Inc.Google Scholar
  146. Sofos, J. N. (2005). Improving the safety of fresh meat. Boca Raton, FL: CRC Press.Google Scholar
  147. Sofos, J. N. (2006). Salmonella interventions for beef. Paper presented at the 59th Reciprocal Meat Conference, Urbana-Champaign, IL. Retrieved from http://www.meatscience.org/Pubs/rmcarchv/2006/presentations/2006_Proceedings.pdf
  148. Sofos, J. N. (2008). Challenges to meat safety in the 21st century. Meat Science, 78(1–2), 3–13.Google Scholar
  149. Sofos, J. N., Belk, K. E., & Smith, G. C. (1999). Processes to reduce contamination with pathogenic microorganisms in meat. Proceedings 45th International Congress of Meat Science and Technology (Vol. 45(2), pp. 596–605), Yokohama, Japan.Google Scholar
  150. Sofos, J. N., & Smith, G. C. (1998). Nonacid meat decontamination technologies: Model studies and commercial applications. International Journal of Food Microbiology, 44(3), 171–188.Google Scholar
  151. Stevenson, K. E., Merkel, R. A., & Lee, H. C. (1978). Effects of chilling rate, carcass fatness and chlorine spray on microbiological quality and case-life of beef. Journal of Food Science, 43(3), 849–852.Google Scholar
  152. Stopforth, J. D., & Sofos, J. N. (2005). Carcass chilling. In J. N. Sofos (Ed.), Improving the safety of fresh meat. Boca Raton, FL: CRC Press.Google Scholar
  153. Stopforth, J. D., Yoon, Y., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., et al. (2004). Effect of simulated spray chilling with chemical solutions on acid-habituated and non-acid-habituated Escherichia coli O157:H7 cells attached to beef carcass tissue. Journal of Food Protection, 67(10), 2099–2106.Google Scholar
  154. Stratford, M., & Anslow, P. A. (1998). Evidence that sorbic acid does not inhibit yeast as a classic 'weak acid preservative'. Letters in Applied Microbiology, 27(4), 203–206.Google Scholar
  155. Svoboda, D. J., & Schwerdt, L. E. (1977). Chlorine dioxide spray process for chilling meat carcasses. US patent 4,021,585.Google Scholar
  156. Taormina, P. J., & Dorsa, W. J. (2007). Evaluation of hot-water and sanitizer dip treatments of knives contaminated with bacteria and meat residue. Journal of Food Protection, 70(3), 648–654.Google Scholar
  157. Tornberg, E. (1996). Biophysical aspects of meat tenderness. Meat Science, 43, S175–S191.Google Scholar
  158. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1992). Final rule: Irradiation of poultry products. Federal Register 57: 435888–43600.Google Scholar
  159. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1993). Immediate actions: Cattle clean meat program. Washington, DC: FSIS Correlation Packet, Interim guidelines for inspectors.Google Scholar
  160. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1994, December 23). Notice 50–94, Microbiological testing program for Escherichia coli O157:H7 in raw ground beef.Google Scholar
  161. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1995). Pathogen reduction: Hazard Analysis and Critical Control Point (HACCP) systems, Washington, DC. Federal Register, 60, 6794–6795.Google Scholar
  162. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1996a). Notice of policy change: Achieving the zero tolerance performance standard for beef carcasses by knife trimming and vacuuming with hot water or steam; use of acceptable carcass interventions for reducing carcass contamination without prior agency approval. Federal Register, 61, 15024–15027.Google Scholar
  163. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1996b). Pathogen reduction: Hazard Analysis and Critical Control Point (HACCP) systems; Final Rule. Federal Register, 61, 15024–15027.Google Scholar
  164. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1999a). Beef products contaminated with Escherichia coli O157:H7. Federal Register, 64, 2803–2805.Google Scholar
  165. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (1999b). Irradiation of meat food products; final rule. Federal Register, 64, 72150–72166.Google Scholar
  166. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (2001). Consumer protection standards: Raw products. Federal Register, 66, 656–657.Google Scholar
  167. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (2002). Guidance for minimizing the risk of Escherichia coli O157:H7 and Salmonella in beef slaughter operations. Retrieved from http://haccpalliance.org/alliance/BeefSlauterGuide.pdf.
  168. USDA-FSIS (U.S. Department of Agriculture Food Safety and Inspection Service). (2008). Safe and suitable ingredients used in the production of meat and poultry products. Retrieved from http://www.fsis.usda.gov/oppde/rdad/FSISDirectives/7120.1Amend14.pdf.
  169. Vali, L., Hamouda, A., Hoyle, D. V., Pearce, M. C., Whitaker, L. H. R., Jenkins, C., et al. (2007). Antibiotic resistance and molecular epidemiology of Escherichia coli O26, O103 and O145 shed by two cohorts of Scottish beef cattle. Journal of Antimicrobial Chemotherapy, 59(3), 403–410.Google Scholar
  170. Vosough-Ahmadi, B., Velthuis, A. G. J., Hogeveen, H., & Huirne, R. B. M. (2006). Simulating Escherichia coli O157: H7 transmission to assess effectiveness of interventions in Dutch dairy-beef slaughterhouses. Preventive Veterinary Medicine, 77(1–2), 15–30.Google Scholar
  171. Wei, C. I., Sen, A. C., Fukayama, M. F., Ghanbari, H. A., Wheeler, W. B., & Kirk, J. R. (1987). Reactions involving HOCl or ClO2 with fatty-acids under aqueous conditions and mutagenicity of reaction-products. Canadian Institute of Food Science and Technology Journal-Journal De L Institut Canadien De Science Et Technologie Alimentaires, 20(1), 19–24.Google Scholar
  172. Willson, R. C. (1994). Method and apparatus for steam pasteurization of meats. U.S. Patent 6291003.Google Scholar
  173. Yunhee, H., Ku, K., Kim, M., Won, M., Chung, K., & Bin Song, K. (2008). Survival of Escherichia coli O157:H7 and Salmonella Typhimurium inoculated on chicken by aqueous chlorine dioxide treatment. Journal of Microbiology and Biotechnology, 18(4), 742–745.Google Scholar
  174. Zeitoun, A. A. M., & Debevere, J. M. (1990). The effect of treatment with buffered lactic-acid on microbial decontamination and on shelf-life of poultry. International Journal of Food Microbiology, 11(3–4), 305–311.Google Scholar
  175. Zeitoun, A. A. M., & Debevere, J. M. (1992). Decontamination with lactic-acid sodium lactate buffer in combination with modified atmosphere packaging effects on the shelf-life of fresh poultry. International Journal of Food Microbiology, 16(2), 89–98.Google Scholar
  176. Zepeda, C. M. G., Kastner, C. L., Willard, B. L., Phebus, R. K., Schwenke, J. R., Fijal, B. A., et al. (1994). Gluconic acid as a fresh beef decontaminant. Journal of Food Protection, 57(11), 956–962.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA
  2. 2.Department of Animal SciencesCenter for Meat Safety & Quality and Food Safety Cluster, Colorado State UniversityFort CollinsUSA

Personalised recommendations