Advertisement

Mycotoxins in Meat and Processed Meat Products

  • Jean-Denis Bailly
  • Philippe Guerre
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Mycotoxins are toxic substances elaborated by fungi. They constitute a heterogeneous group of secondary metabolites with diverse potent pharmacological and toxic effects in humans and animals. More than 300 secondary metabolites have been identified but around 30 are of real concern for human and animal health (for review, see Bennett & Klich, 2003). These molecules are produced during mould development on plants in the field or during storage period. They can be found as natural contaminants of many vegetal foods or feeds, mainly cereals, but also fruits, nuts, grains, forage as well as compound foods intended for human or animal consumption. Most important mycotoxins are produced by moulds belonging to Aspergillus, Penicillium and Fusarium genus (Bhatnagar, Yu, & Ehrlich, 2002; Conkova, Laciakova, Kovac, & Seidel, 2003; Pitt, 2002). These molecules are usually classified depending on the fungal species that produce them (Table 4.1).
Table 4.1

Mycotoxins and producing...

Keywords

Meat Product Edible Part Meat Processing Cyclopiazonic Acid Balkan Endemic Nephropathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abarca, M. L., Accensi, F., Bragulat, M. R., Castella, G., & Cabanes, F. J. (2003). Aspergillus carbonarius as the main source of ochratoxin A contamination in dried vine fruits from the Spanish market. Journal of Food Protection, 66, 504–506.Google Scholar
  2. Abarca, M. L., Bragulat, M. R., Castella, G., & Cabanes, F. J. (1994). Ochratoxin A production by strains of Aspergillus niger var niger. Applied Environmental Microbiology, 60, 2650–2652.Google Scholar
  3. Abouzied, M. M., Horvath, A. D., Podlesny, P. M., Regina, N. P., Metodiev, V. D., Kamenova-Tozeva, R. M., et al. (2002). Ochratoxin A concentration in food and feed from a region with Balkan endemic nephropathy. Food Additives & Contaminants, 19, 755–764.Google Scholar
  4. Abramson, D., Mills, J. T., Marquardt, R. R., & Frohlich, A. A. (1997). Mycotoxins in fungal contaminated samples of animal feed from western Canada. Canadian Journal of Veterinary Research, 61, 49–52.Google Scholar
  5. Abramson, D., Usleber, E., & Martlbauer, E. (1999). Rapid determination of citrinin in corn by fluorescence liquid chromatography and enzyme immunoassay. Journal of the Association of Official Analytical Chemists International, 82, 1353–1356.Google Scholar
  6. Abramson, D., Usleber, E., & Martlbauer, E. (2001). Immunochemical methods for citrinin. Methods in Molecular Biology, 157, 195–204.Google Scholar
  7. Afolabi, C. G., Bandyopadhyay, R., Leslie, J. F., & Ekpo, E. J. (2006). Effect of sorting on incidence and occurrence of fumonisins and Fusarium verticilloides on maize from Nigeria. Journal of Food Protection, 69, 2019–2023.Google Scholar
  8. Allcroft, R., & Carnaghan, R. B. A. (1963). Groundnut toxicity: An examination for toxin in human food products from animals fed toxic groundnut meal. Veterinary Research, 75, 259–263.Google Scholar
  9. Andersen, S. J. (1995). Compositional changes in surface mycoflora during ripening of naturally fermented sausages. Journal of Food Protection, 58, 426–429.Google Scholar
  10. Anthony, M., Janardhanan, K. K., & Shukla, Y. (2003). Potential risk of acute hepatotoxicity of kodo poisoning due to exposure to cyclopiazonic acid. Journal of Ethnopharmacology, 87, 211–214.Google Scholar
  11. Aziz, N. H., & Youssef, Y. A. (1991). Occurrence of aflatoxins and aflatoxin-producing moulds in fresh and processed meat in Egypt. Food Additives and Contaminants, 8, 321–331.Google Scholar
  12. Bailey, G. S., Price, R. L., Par, D., & Hendricks, J. D. (1994). Effect of ammoniation of aflatoxin B1 contaminated cottonseed feedstock on the aflatoxin M1 content of cows milk and hepatocarcinogenicity in the trout assay. Food Chemical Toxicology, 32, 707–715.Google Scholar
  13. Bailly, J. D., Benard, G., Jouglar, J. Y., Durand, S., & Guerre, P. (2001). Toxicity of Fusarium moniliforme culture material containing known levels of fumonisin B1 in ducks. Toxicology, 163, 11–22.Google Scholar
  14. Bailly, J. D., Querin, A., Bailly, S., Benard, G., & Guerre, P. (2002). Citrinin production and stability in cheese. Journal of Food Protection, 65, 1317–1321.Google Scholar
  15. Bailly, J. D., Raymond, I., Le Bars, P., Guyomard, Y., Abadie, J., Le Bars, J., et al. (1996). Leuco-encéphalomalacie des equides; cas rapportés au CNITV. Revue de Médecine Vétérinaire, 147, 787–796.Google Scholar
  16. Bailly, J. D., Tabuc, C., Querin, A., & Guerre, P. (2005). Production and stability of patulin, ochratoxin A, citrinin and cyclopiazonic acid on dry cured ham. Journal of Food Protection, 68, 1516–1520.Google Scholar
  17. Baldwin, R. S., Williams, R. D., & Terry, M. K. (1983). Zeranol: A review of the metabolism, toxicology, and analytical methods for detection of tissue residues. Regulatory Toxicology and. Pharmacology, 3, 9–25.Google Scholar
  18. Battacone, G., Nudda, A., Cannas, A., Cappio Borlino, A., Bomboi, G., & Pulina, G. (2003). Excretion of aflatoxin M1 in milk of dairy ewes treated with different doses of aflatoxin B1. Journal of Dairy Science, 86, 2667–2675.Google Scholar
  19. Battacone, G., Nudda, A., Palomba, M., Pascale, M., Nicolussi, P., & Pulina, G. (2005). Transfer of aflatoxin B1 from feed to milk and from milk to curd and whey in dairy sheep fed artificially contaminated concentrates. Journal of Dairy Science, 88, 3063–3069.Google Scholar
  20. Battilani, P. (2005). Monitoraggio della contaminazione da micotossine in mais. Informatore Agrario, 61, 47–49.Google Scholar
  21. Battilani, P., Giorni, P., Bertuzzi, T., Formenti, S., & Pietri, A. (2006). Black Aspergilli and ochratoxin A in grapes in Italy. International Journal of Food Microbiology, 111, S53–S60.Google Scholar
  22. Battilani, P., Magan, N., & Logrieco, A. (2006). European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 111, S2–S4.Google Scholar
  23. Battilani, P., Pietri, A., Giorni, P., Formenti, S., Bertuzzi, T., Toscani, T., et al. (2007). Penicillium populations in dry cured ham manufacturing plants. Journal of Food Protection, 70, 975.Google Scholar
  24. Bayman, P., Baker, J. L., Doster, M. A., Michailides, T. J., & Mahoney, N. E. (2002). Ochratoxin production by the Aspergillus ochraceus group and Aspergillus alliaceus. Applied & Environmental Microbiology, 68, 2326–2329.Google Scholar
  25. Bean, G. A., Jarvis, B. B., & Aboul-Nasr, M. B. (1992). A biological assay for the detection of Myrothecium spp. Produced macrocyclic trichothecenes. Mycopathologia, 119, 175–180.Google Scholar
  26. Beaver, R. W., Wilson, D. M., James, M. A., Haydon, K. D., Colvin, B. M., Sangster, L. T., et al. (1990). Distribution of aflatoxins in tissues of growing pigs fed an aflatoxin-contaminated diet amended with a high affinity aluminosilicate sorbent. Veterinary & Human Toxicology, 32, 16–18.Google Scholar
  27. Becker, B. A., Pace, L., Rottinghaus, G. E., Shelby, R., Misfeldt, M., & Ross, P. F. (1995). Effects of feeding fumonisin B1 in lacting sows and their suckling pigs. American Journal of Veterinary Research, 56, 1253–1258.Google Scholar
  28. Belli, N., Ramos, A. J., Coronas, I., Sanchis, V., & Marin, S. (2005). Aspergillus carbonarius growth and ochratoxin A production on a synthetic grape medium in relation to environmental factors. Journal of Applied Microbiology, 98, 839–844.Google Scholar
  29. Bendele, A. M., Carlton, W. W., Krogh, P., & Lillehoj, E. B. (1985). Ochratoxin A carcinogenesis in the (C57BL/6 J X C3H)F1 mouse. Journal of the National Cancer Institute, 75, 733–742.Google Scholar
  30. Bennett, J. W., & Klich, M. (2003). Mycotoxins, Clinical Microbiology Reviews, 16, 497–516.Google Scholar
  31. Berek, L., Petri, I. B., Mesterhazy, A., Teren, J., & Molnar, J. (2001). Effects of mycotoxins on human immune functions in vitro. Toxicology In Vitro, 15, 25–30.Google Scholar
  32. Bermudez, A. J., Ledoux, D. R., & Rottinghaus, G. E. (1995). Effects of Fusarium moniliforme culture material containing known levels of fumonisin B1 in ducklings. Avian Disease, 39, 879–886.Google Scholar
  33. Bhatnagar, D., Yu, J., & Ehrlich, K. C. (2002). Toxins of filamentous fungi. Chemical Immunology, 81, 167–206.Google Scholar
  34. Biehl, M. L., Prelusky, D. B., Koritz, G. D., Hartin, K. E., Buck, W. B., & Trenholm, H. L. (1993).Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicology & Applied Pharmacology, 121, 152–159.Google Scholar
  35. Bintvihok, A., Thiengnin, S., Doi, K., & Kumagai, S. (2002). Residues of aflatoxins in the liver, muscle and eggs of domestic fowls. Journal of Veterinary Medical Science, 64, 1037–1039.Google Scholar
  36. Blanc, P. J., Loret, M. O., & Goma, G. (1995). Production of citrinin by various species of Monascus. Biotechnology Letters, 17, 291–294.Google Scholar
  37. Bogs, C., Battilani, P., & Geisen, R. (2006). Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. International Journal of Food Microbiology, 107, 39.Google Scholar
  38. Boudra, H., Barnouin, J., Dragaccci, S., & Morgavi, D. P. (2007). Aflatoxin M1 and ochratoxin A in raw bulk milk from French dairy herds. Journal of Dairy Science, 90, 3197–3201.Google Scholar
  39. Brown, T. P., Rottinghaus, G. E., & Williams, M. E. (1992). Fumonisin mycotoxicosis in broilers: Performance and pathology. Avian Disease, 36, 450–454.Google Scholar
  40. Bucheli, P., & Taniwaki, M. H. (2002). Research on the origin and on the impact of post harvest handling and manufacturing on the presence of ochratoxin A in coffee. Food Additives & Contaminants, 19, 655–665.Google Scholar
  41. Bullerman, L. B., Hartman, P. A., & Ayres, J. C. (1969). Aflatoxin production in meats. II. Aged salamis and aged country cured hams. Applied Microbiology, 18, 718–722.Google Scholar
  42. Cairns-Fuller, V., Aldred, D., & Magan, N. (2005). Water, temperature and gas composition interaction affect growth and ochratoxin A production isolates of Penicillium verrucusum on wheat grain. Journal of Applied Microbiology, 99, 1215–1221.Google Scholar
  43. Castegnaro, M., Canadas, D., Vrabcheva, T., Petkova-Bocharova, T., Chernozemsky, I. N., & Pfohl-Lezkowicz, A. (2006). Balkan endemic nephropathy: Role of ochratoxin A through biomarkers. Molecular Nutrition & Food Research, 50, 519–529.Google Scholar
  44. Cavret, S., & Lecoeur, S. (2005). Fusariotoxin transfer in animal. Food & Chemical Toxicology, 44, 444–453.Google Scholar
  45. Cawood, M. E., Gelderblom, W. C., Alberts, J. F., & Snyman, S. D. (1994). Interaction of 14C-labelled fumonisin B mycotoxins with primary rat hepatocyte cultures. Food & Chemical Toxicoogy, 32, 627–632.Google Scholar
  46. Chi, M. S., Robison, T. S., Mirocha, C. J., Behrens, J. C., & Shimoda, W. (1978). Excretion and tissue distribution of radioactivity from tritium-labeled T-2 toxin in chicks. Toxicology & Applied Pharmacology, 45, 391–402.Google Scholar
  47. Cole, R. J. (1986). Etiology of Turkey X disease in retrospect: A case for the involvment of cyclopiazonic acid. Mycotoxin Research, 2, 3–7.Google Scholar
  48. Conkova, E., Laciakova, A., Kovac, G., & Seidel, H. (2003). Fusarial toxins and their role in animal diseases. Veterinary Journal, 165, 214–220.Google Scholar
  49. Conseil Superieur d’Hygiène Publique de France (CSHPF). (1999). Les mycotoxines dans l’alimentation: évaluation et gestion du risque, éds, Tec&Doc.Google Scholar
  50. Coppock, R. W., Swanson, S. P., Gelberg, H. B., Koritz, G. D., Hoffman, W. E., Buck, W. B., et al. (1985). Preliminary study of the pharmacokinetics and toxicopathy of deoxynivalenol (vomitoxin) in swine. American Journal of Veterinary Research, 46, 169–174.Google Scholar
  51. Creppy, E. E. (1999). Human ochratoxicosis. Journal of Toxicology Toxin Reviews, 18, 277–293.Google Scholar
  52. Creppy, E. E., Kane, A., Dirheimer, G., Lafarge-Frayssinet, C., Mousset, S., & Frayssinet, C. (1985). Genotoxicity of ochratoxin A in mice: DNA single strand break evaluation in spleen, live rand kidney. Toxicology Letters, 28, 29–35.Google Scholar
  53. Cullen, J. M., & Newberne, P. M. (1994). Acute hepatotoxicity of aflatoxins. In D. L. Eaton & J. D. Groopman (Eds.), Toxicology of aflatoxins (pp. 3–26). San Diego, California: Academic press.Google Scholar
  54. Curtui, V., Usleber, E., Dietrich, R., Lepschy, J., & Martlbauer, E. (1998). A survey on the occurrence of mycotoxins in wheat and maize from western Romania. Mycopathologia, 143, 97–103.Google Scholar
  55. Cvetnik, Z., & Pepeljnjak, S. (1995). Aflatoxin producing potential of Aspergillus flavus and Aspergillus parasiticus isolated from samples of smoked-dried meat. Nahrung, 39, 302–307.Google Scholar
  56. Dailey, R. E., Reese, R. E., & Brouwer, E. A. (1980). Metabolism of (14C)zearalenone in laying hens. Journal of Agriculture & Food Chemistry, 28, 286–291.Google Scholar
  57. Dänicke, S., Gadeken, D., Ueberschar, K. H., Meyer, U., & Scholz, H. (2002). Effects of Fusarium toxin contaminated wheat and of a detoxifying agent on performance of growing bulls, on nutrient digestibility in wethers and on the carry over of zearalenone. Archiv für Tierernahrung, 56, 245–261.Google Scholar
  58. Dänicke, S., Ueberschaar, K. H., Halle, I., Matthes, S., Valenta, H., & Flachowsky, G. (2002). Effect of addition of a detoxifying agent to laying hen diets containing uncontaminated or Fusarium toxin-contaminated maize on performance of hens and on carryover of zearalenone. Poultry Science, 81, 1671–1680.Google Scholar
  59. Dänicke, S., Valenta, H., & Döll, S. (2004). On the toxicokinetics and the metabolism of deoxynivalenol (DON) in the pig. Archives Animal Nutrition, 58, 169–180.Google Scholar
  60. Dänicke, S., Valenta, H., Ueberschar, K. H., & Matthes, S. (2007). On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolysing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. British Poultry Science, 48, 39–48.Google Scholar
  61. De Iongh, H., Berthuis, R. K., Vles, R. O., Barrett, C. B., & Ord, W. O. (1962). Investigation of the factor in groundnut meal responsible for « turkey X disease ». Biochimica Biophysica acta, 65, 548–551.Google Scholar
  62. Desai, K., Sullards, M. C., Allegood, J., Wang, E., Schmelz, E. M., Harti, M., et al. (2002). Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochimica Biophysica Acta, 1585, 188–192.Google Scholar
  63. Detroy, R. W., Lillehoj, E. B., & Ciegler, A. (1971). Aflatoxin and related compounds. In A. Ciegler, S. Kadis, & S. J. Ajl (Eds.), Microbial toxins, vol VI: Fungal toxins (pp. 3–176). New York: Academic press.Google Scholar
  64. Diaz, D. E., Hopkins, B. A., Leonard, L. M., Hagler, W. M., & Whitlow, L. W. (2000). Effect of fumonisin on lactating dairy cattle. Journal of Dairy Science, 83, 1171.Google Scholar
  65. Diener, U. L., Cole, R. J., Sanders, T. H., Payne, G. A., Lee, L. S., & Klich, M. A. (1987). Epidemiology of aflatoxin formation by Aspergillus flavus. Annual Review Phytopathology, 25, 249–270.Google Scholar
  66. Dragacci, S., Grosso, F., Bire, R., Fremy, J. M., & Coulon, S. (1999). A french monitoring programme for determining ochratoxin A occurrence in pig kidneys. Natural Toxins, 7, 167–173.Google Scholar
  67. Eaton, D. L., & Ramsdel, H. S. (1992). Species and related differences in aflatoxin biotransformation. In D. Bhatnagar, E. B. Lillehoj, & D. K. Arora (Eds.), Handbook of applied mycology, vol 5: Mycotoxins in ecological systems (pp. 157–182). New York: Marcel Dekker Inc.Google Scholar
  68. Edwards, S. G. (2004). Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicology Letters, 153, 29–35.Google Scholar
  69. El-Banna, A. A., Hamilton, R. M., Scott, P. M., & Trenholm, H. L. (1983). Nontransmission of deoxynivalenol (vomitoxin) to eggs and meat in chickens fed deoxynivalenol-contaminated diets. Journal of Agriculture & Food Chemistry, 31, 1381–1384.Google Scholar
  70. El Kady, I., El Maraghy, S., & Zorhi, A. N. (1994). Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products. Microbiology Research, 149, 297–307.Google Scholar
  71. Elling, F. (1983). Feeding experiments with ochratoxin A contamined barley for bacon pigs. 4. Renal lesions. Acta Agriculturae Scandinavica, 33, 153.Google Scholar
  72. Eriksen, G. S., & Petterson, H. (2004). Toxicological evaluation of trichothecenes in animal feed. Animal Feed Science & Technology, 114, 205–239.Google Scholar
  73. Escher, F. E., Koehler, P. E., & Ayres, J. C. (1973). Production of ochratoxins A and B on country cured ham. Applied Microbiology, 26, 27.Google Scholar
  74. European Union. (2001). Commission Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs, L77, 1.Google Scholar
  75. European Union. (2006). Recommandation (576/2005), La présence de déoxynivalénol, de zéaralénone, d’ochratoxine A, des toxines T-2 et HT-2 et des fumonisines dans les produits destinés à l’alimentation animale. Official Journal of European Union, L 229, 7.Google Scholar
  76. European Union. (2007). Règlement n° 1126/2007, fixation de teneur maximales pour certains contaminants dans les denrées alimentaires en ce qui concerne les toxines du Fusarium dans le maïs et les produits à base de maïs.Google Scholar
  77. FAO. (2004). Worldwide regulations for mycotoxins in food and feed in 2003. FAO food and nutrition papers, Rome, Italy, 81.Google Scholar
  78. Fazekas, B., Tar, A., & Kovacs, M. (2005). Aflatoxin and ochratoxin A content of spices in Hungary. Food Additives & Contaminants, 22, 856–863.Google Scholar
  79. Fodor, J., Balogh, K., Weber, M., Miklos M., Kametler L., Posa, R., et al. (2008). Absorption, distribution and elimination of fumonisin B1 metabolites in weaned piglets. Food Additives & Contaminants, 25, 88–96.Google Scholar
  80. Fremy, J. M., & Quillardet, P. (1985). The “carry-over” of Aflatoxin into milk of cows fed ammoniated rations: Use of an HPLC method and a genotoxicity test for determining milk safety. Food Additives & Contaminants, 2(3), 201.Google Scholar
  81. Frobish, R. A., Bradley, B. D., Wagner, D. D., Long-Bradley, P. E., & Hairston, H. (1986). Aflatoxin residues in milk of dairy cows after ingestion of naturally contaminated grain. Journal of Food Protection, 49, 781–785.Google Scholar
  82. Fuchs, R., & Peraica, M. (2005). Ochratoxin A in human diseases. Food Additives & Contaminants, 22, 53–57.Google Scholar
  83. Gallagher, E. P., & Eaton, D. L. (1995). In vitro biotransformation of aflatoxin B1 (AFB1) in channel catfish liver. Toxicology & Applied Pharmacology, 132, 82–90.Google Scholar
  84. Galtier, P., & Alvinerie, M. (1976). In vitro transformation of ochratoxin A by animal microbial floras. Annales de Recherche. Vétérinaire, 7, 91–98.Google Scholar
  85. Garren, L., Galendo, D., Wild, C. P., & Castegnaro, M. (2001). The induction and persistence of altered sphingolipid biosynthesis in rats treated with fumonisin B1. Food Additives & Contaminants, 18, 850–856.Google Scholar
  86. Gaumy, J. L., Bailly, J. D., Benard, G., & Guerre, P. (2001). Zearalénone: Origine et effets chez les animaux d’élevage. Revue de Médecine Vétérinaire, 152, 123–136.Google Scholar
  87. Gelderblom, W. C., Abel, S., Smuts, C. M., Marnewick, J., Marasas, W. F., Lemmer, E. R., et al. (2001). Fumonisin-induced hepatocarcinogenesis: Mechanisms related to cancer initiation and promotion. Environmental Health Perspectives, 109, 291–300.Google Scholar
  88. Gelderblom, W. C., Jaskiewicz, K., Marasas, W. F., Thiel, P. G., Horak, R. M., Vleggaar, R., et al. (1988). Fumonisin-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied & Environmental Microbiology, 54, 1806–1811.Google Scholar
  89. Gelderblom, W. C. A., Semple, E., Marasas, W. F., & Farber, E. (1992). The cancer initiating potential of the fumonisin B1 mycotoxins. Carcinogenesis, 13, 433–437.Google Scholar
  90. Giorni, P., Magan, N., Pietri, A., Bertuzzi, T., & Battilani, P. (2007). Studies on Aspergillus section flavi isolated from maize in northern Italy. International Journal of Food Microbiology, 113, 330–338.Google Scholar
  91. Giroir, L. E., Ivie, G. W., & Huff, W. E. (1991). Comparative fate of the tritiated trichothecene mycotoxin, T-2 toxin, in chickens and ducks. Poultry Science, 70, 1138–1143.Google Scholar
  92. Goel, S., Schumacher, J., Lenz, S. D., & Kemppainen, B. W. (1996). Effects of Fusarium moniliforme isolates on tissue and serum sphingolipid concentrations in horses. Veterinary & Human Toxicology, 38, 265–270.Google Scholar
  93. Goyarts, T., Danicke, S., Valenta, H., & Ueberschaar, K. H. (2007). Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contamined wheat to pigs. Food Additives & Contaminants, 24, 369–380.Google Scholar
  94. Gregory, J. F., Goldstein, S. L., & Edds, G. T. (1983). Metabolite distribution and rate of residue clearance in turkeys fed a diet containing aflatoxin B1. Food Chemistry & Toxicology, 21, 463–467.Google Scholar
  95. Guengerich, F. P., Johnson, W. W., Shimada, T., Ueng, Y. F., Yamasaki, H., & Langouët, S. (1998). Activation and detoxication of aflatoxin B1. Mutation Research, 402, 121–128.Google Scholar
  96. Guergue, J., & Ramirez, C. (1977). Incidence of aflatoxin potential contamination in Spanish sausages. Annanles de la Nutrition et de l’Alimentation, 31, 485–488.Google Scholar
  97. Hajjaji, A., El Otmani, M., Bouya, D., Bouseta, A., Mathieu, F., Collin, S., et al. (2006). Occurrence of mycotoxins (ochratoxin A, deoxynivalenol) and toxigenic fungi in Moroccan wheat grains: Impact of ecological factors on the growth and ochratoxin A production. Molecular Nutrition & Food Research, 50, 494–499.Google Scholar
  98. Hanika, C., Carlton, W. W., & Tuite, J. (1983). Citrinin mycotoxicosis in the rabbit. Food Chemistry & Toxicology, 21, 487–493.Google Scholar
  99. Harrison, L. R., Colvin, B. M., Greene, J. T., Newman, L. E., & Cole, J. R. (1990). Pulmonary edema and hydrothorax in swine produced by fumonisin B1 a toxic metabolite of Fusarium moniliforme. Journal of Veterinary Diagnosis & Investigation, 2, 217–221.Google Scholar
  100. Harvey, R. B., Edrington, T. S., Kubena, L. F., Elissalde, M. H., Casper, H. H., Rottinghaus, G. E., et al. (1996). Effects of dietary fumonisin B1-containing culture material, deoxynivalenol-contaminated wheat, or their combination on growing barrows. American Journal of Veterinary Research, 57, 1790–1794.Google Scholar
  101. Hawkins, L. K., Windham, G. L., & Williams, W. P. (2005). Effect of different postharvest drying temperature on Aspergillus flavus survival and aflatoxin content in five maize hybrids. Journal of Food Protection, 68, 1521–1524.Google Scholar
  102. He, P., Young, L. G., & Forsberg, C. (1992). Microbial transformation of deoxynivalenol (vomitoxin). Applied & Environmental Microbiology, 58, 3857–3863.Google Scholar
  103. Hendricks, K. (1999). Fumonisins and neural tube defects in south Texas. Epidemiology, 10, 198.Google Scholar
  104. Hendricks, K. A., Simpson, J. C., & Larsen, R. D. (1999). Neural tube defects along the Texas-Mexico border, 1993–1995. American Journal of Epidemiology, 149L, 1119–1127.Google Scholar
  105. Hirano, K., Adachi, Y., Bintvihok, A., Ishibashi, S., & Kumazawa, N. H. (1992). An improved method for extraction and cleanup of aflatoxin B1 from liver. Journal of Veterinary Medicine & Science, 54, 567.Google Scholar
  106. Höhler, D., Sudekum, K. H., Wolffram, S., Frolich, A. A., & Marquardt, R. R. (1999). Metabolism and excretion of ochratoxin A fed to sheep. Journal of Animal Science, 77, 1217–1223.Google Scholar
  107. Hult, K., Hokby, E., Hagglund, U., Gatenbeck, S., Rutqvist, L., & Sellvey, G. (1979). Ochratoxin A in pig blood: Method of analysis and use as a tool for feed studies. Applied & Environmental Microbiology, 38, 772–776.Google Scholar
  108. Hult, K., Teiling, A., & Gatenberg, S. (1976). Degradation of ochratoxin A by a ruminant. Applied & Environmental Microbiology, 32, 443–444.Google Scholar
  109. IARC. (1993). Some naturally occurring substances, food items and constituents, heterocyclic aromatic amines and mycotoxins. Monographs on the evaluation of carcinogenic risks to humans (Vol. 56, pp. 245–395). Lyon: World health organization.Google Scholar
  110. Ismail, M. A., & Zaky, Z. M. (1999). Evaluation of the mycological status of luncheon meat with special reference to aflatoxigenic moulds and aflatoxin residues. Mycopathologia, 146, 147–154.Google Scholar
  111. JECFA. (1990). Ochratoxin A. WHO food additive, Geneva, 35.Google Scholar
  112. JECFA. (1999). Evaluation of certain food additives and contaminants. Forty-nine report. WHO Technical Report Series, Geneva, 40.Google Scholar
  113. JECFA. (2000). Safety evaluation of certain food additives. Fifty-third Report. WHO Food Additives Series 44.Google Scholar
  114. JECFA. (2001). Safety evaluation of certain mycotoxins in food. Fifty-six report. WHO Technical Report Series, Geneva, 47.Google Scholar
  115. Jimenez, M., Manez, M., & Hernandez, E. (1996). Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. International Journal of Food Microbiology, 29, 417–421.Google Scholar
  116. Joffe, A. Z. (1978). Fusarium poae and Fusarium sporotrichioides as a principal causal agents of alimentary toxic aleukia. In T. D. Wyllie & L. G. Morehouse (Eds.), Mycotoxic fungi, mycotoxins, mycotoxicoses (Vol. 3, p. 21). New York: Marcel Dekker.Google Scholar
  117. Jorgensen, K. (1998). Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Additives & Contaminants, 15, 550–554.Google Scholar
  118. Jorgensen, K. (2005). Occurrence of ochratoxin A in commodities and processed food: A review of E.U. occurrence data. Food Additives & Contaminants, 22, 26–30.Google Scholar
  119. Kaaya, A. N., & Kyamuhangire, W. (2006). The effect of storage time and agroecological zone on mould incidence and aflatoxin contamination of maize from traders in Uganda. International Journal of Food Microbiology, 110, 217–223.Google Scholar
  120. Kallela, K., & Vasenius, L. (1982). The effects of ruman fluid on the content of zearalenone in animal fodder. Nordisk Veterinaer Medicin, 34, 336–339.Google Scholar
  121. Kiermeier, F. (1973). Aflatoxin residues in fluid milk. Pure Applied Chemistry, 35, 271.Google Scholar
  122. Kiessling, K. H., & Petterson, H. (1978). Metabolism of zearalenone in rat liver. Acta Pharmacologica & Toxicologica (Copenh.), 43, 285–290.Google Scholar
  123. Kim, E. K., Shon, D. H., Chung, S. H., & Kim, Y. B. (2002). Survey for fumonisin B1 in Korean corn-based food products. Food Additives & Contaminants, 19, 459–464.Google Scholar
  124. Kirby, L. K., Nelson, T. S., Halley, J. T., & Beasley, J. N. (1987). Citrinin toxicity in young chicks. Poultry Science, 66, 966–968.Google Scholar
  125. Klich, M. A., & Pitt, J. I. (1968). Differentiation of Aspergillus flavus from Aspergillus parasiticus and other closely related species. Transaction of the British Mycological Society, 91, 99.Google Scholar
  126. Kogika, M. M., Hagikawa, M. K., & Mirandola, R. M. (1993). Experimental citrinin nephrotoxicosis in dogs: Renal function evaluation. Veterinary & Human Toxicology, 35, 136–140.Google Scholar
  127. Kollarczik, B., Garels, M., & Hanelt, M. (1994). In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Natural Toxins, 2, 105–110.Google Scholar
  128. Krogh, P. (1977). Ochratoxin A residues in tissues of slaughter pigs with nephropathy, Nord Veterinaer. Medicin, 29, 402–405.Google Scholar
  129. Krogh, P. (1991). Porcine nephropathy associated with ochratoxin A. In J. E. Smith & R. S. Anderson (Eds.), Mycotoxins and animal foods (p. 627). Boca Raton: CRC press, Inc.Google Scholar
  130. Kuiper-Goodman, T., Scott, P. M., & Watanabe, H. (1987). Risk assessment of the mycotoxin zearalenone. Regulatory Toxicology & Pharmacology, 7, 253–306.Google Scholar
  131. Kumagai, S. (1989). Intestinal absorption and excretion of aflatoxin in rats. Toxicology & Applied Pharmacology, 97, 88–97.Google Scholar
  132. Kumagai, S., & Aibara, K. (1982). Intestinal absorption and secretion of ochratoxin A in the rat. Toxicology and Applied Pharmacology, 64, 94–102.Google Scholar
  133. Lalitha Rao, L. B., & Husain, A. (1985). Presence of cyclopiazonic acid in kodo millet causing « kodua poisoning » in man and its production by associated fungi. Mycopathologia, 89, 177–180.Google Scholar
  134. Le Bars, J. (1979). Cyclopiazonic acid production by Penicillium camemberti Thom and natural occurrence of this mycotoxin in cheese. Applied Environmental Microbiology, 38, 1052–1055.Google Scholar
  135. Le Bars, J. (1990). Detection and occurrence of cyclopiazonic acid in cheeses. Journal of Environmental Pathology Toxicology & Oncology, 10, 136–137.Google Scholar
  136. Le Bars, J., & Le Bars, P. (1998). Strategy for safe use of fungi and fungal derivatives in food processing. Revue de Médecine Vétérinaire, 149, 493–500.Google Scholar
  137. Le Bars, J., Le Bars, P., Dupuy, J., & Boudra, H. (1994). Biotic and abiotic factors in fumonisin B1 production and stability. Journal of the Association of Official Analytical Chemists International, 77, 517–521.Google Scholar
  138. Leblanc, J. C. (2004). Etude de l’alimentation totale en France: Mycotoxines, mineraux et aliments traces. INRA (ed.), Paris.Google Scholar
  139. Leblanc, J. C., Tard, A., Volatier, J. L., & Verger, P. (2005). Estimated dietary exposure to principal food mycotoxins from the first French total diet study. Food Additives & Contaminants, 22, 652–672.Google Scholar
  140. Ledoux, D. R., Brown, T. P., Weibking, T. S., & Rottinghaus, G. E. (1992). Fumonisin toxicity in broiler chicks. Journal of Veterinary Diagnosis & Investigation, 4, 330–333.Google Scholar
  141. Leistner, L. (1990). Mould-fermented foods: Recent developments. Food Biotechnology, 4, 433–441.Google Scholar
  142. Li, F. Q., Li, Y. W., Luo, X. Y., & Yoshizawa, T. (2002). Fusarium toxins in wheat from an area in Henan Province, PR China, with a previous human red mould intoxication episode. Food Additives & Contaminants, 19, 163–167.Google Scholar
  143. Llorens, A. (2004). Influence of the interactions among ecological variables in the characterization of zearalenone producing isolates of Fusarium spp. Systematic & Applied Microbiology, 27, 253–260.Google Scholar
  144. Logrieco, A., Mule, G.., Moretti, A., & Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology, 108, 597–609.Google Scholar
  145. Lomax, L. G., Cole, R. J., & Dorner, J. W. (1984). The toxicity of cyclopiazonic acid in weaned pigs. Veterinary Pathology, 21, 418–424.Google Scholar
  146. Lopez-Diaz, T. M., Santos, J. A., Garcia-Lopez, M. L., & Otero, A. (2001). Surface mycoflora of a spanish fermented meat sausage and toxigenicity of Penicillium isolates. International Journal of Food Microbiology, 68, 69–74.Google Scholar
  147. Lutsky, I. N., Mor, N., Yagen, B., & Joffe, A. Z. (1978). The role of T-2 toxin in experimental alimentary toxic aleukia: A toxicity study in cats. Toxicology & Applied Pharmacology, 43, 111–124.Google Scholar
  148. MacDonald, S., Prickett, T. J., Wildey, K. B., & Chan, D. (2004). Survey of ochratoxin A and deoxynivalenol in stored grains from the 1999 harvest in UK. Food Additives & Contaminants, 21, 172–181.Google Scholar
  149. Madden, U. A., & Stahr, H. M. (1992). Effect of soil on aflatoxin tissue retention in chicks added to aflatoxin-contamined poultry rations. Veterinary & Human Toxicology, 34, 521–523.Google Scholar
  150. Magan, N., & Aldred, D. (2005). Conditions of formation of ochratoxin A in drying, transport, and in different commodities. Food Additives & Contaminants, 22, 10–16.Google Scholar
  151. Malekinejad, H., Colenbrander, B., & Fink-Gremmels, J. (2006). Hydroxysteroid dehydrogenases in bovine and porcine granulosa cells convert zearalenone into its hydroxylated metabolites alpha-zearalenol and beta-zearalenol. Veterinary Research Communications, 30, 445–453.Google Scholar
  152. Manning, R. O., Brown, T. P., Wyatt, R. D., & Fletcher, O. J. (1985). The individual and combined effects of citrinin and ochratoxin A in broiler chicks. Avian Diseases, 29, 986–997.Google Scholar
  153. Marasas, W., Kellerman, T. S., Gelderblom, W. C., Coetzer, J. A., Thiel, P. G., & van der Lugt, J. J. (1988). Leucoencephalomalacia in a horse induced by fumonisine B1 isolated from Fusarium moniliforme. Onderstepoort Journal of Veterinary Research, 55, 197–203.Google Scholar
  154. Marasas, W. F. (1995). Fumonisins: Their implications for human and animal health. Natural Toxins, 3, 193–198.Google Scholar
  155. Marasas, W. F., Riley, R. T., Hendricks, K. A., Stevens, V. L., Sadler, T. W., Gelineau-van Waes, J., et al. (2004). Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. Journal of Nutrition, 134, 711–716.Google Scholar
  156. Marin, M. L., Murtha, J., Dong, W., & Pestka, J. J. (1996). Effects of mycotoxins on cytokine production and proliferation in EL-4 thymona cells. Journal of Toxicology & Environmental Health, 48, 379–396.Google Scholar
  157. Marin, S., Magan, N., Ramos, A. J., & Sanchis, V. (2004). Fumonisin-producing strains of Fusarium: A review of their ecophysiology. Journal of Food Protection, 67, 1792–1805.Google Scholar
  158. Marquardt, R. R., & Frohlich, A. A. (1992). A review of recent advances in understanding ochratoxicosis. Journal of Animal Science, 70, 3968–3988.Google Scholar
  159. Martin, A., Jurado, M., Rodriguez, M., Nunez, F., & Cordoba, J. J. (2004). Characterization of molds from dry-cured meat products and their metabolites by micellar electrokinetic capillary electrophoresis and random amplified polymorphic DNA PCR. Journal of Food Protection, 67, 2234–2239.Google Scholar
  160. Martinez, A. J., Weng, C. Y., & Park, D. L. (1994). Distribution of ammonia/aflatoxin reaction products in corn following exposure to ammonia decontamination procedure. Food Additives & Contaminants, 11, 659–667.Google Scholar
  161. Martinez-Larranaga, M. R., Anadon, A., Diaz, M. J., Fernandez-Cruz, M. L., Martinez, M. A., Frejo, M. T., et al. (1999). Toxicokinetics and oral bioavailability of fumonisin B1. Veterinary & Human Toxicology, 41, 357–362.Google Scholar
  162. Martins, M. L., & Martins, H. M. (1999). Natural and in vitro coproduction of cyclopiazonic acid and aflatoxins. Journal of Food Protection, 62, 292–294.Google Scholar
  163. Meisner, H., & Meisner, P. (1981). Ochratoxin A, an inhibitor of renal phosphoenolpyruvate carboxylase. Archives of Biochemistry & Biophysic, 208, 146–153.Google Scholar
  164. Merrill, A. H., Jr., Sullards, M. C., Wang, E., Voss, K. A., & Riley, R. T. (2001). Spingholipid metabolism: Roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives, 109, 283–289.Google Scholar
  165. Meyer, K., Mohr, K., Bauer, J., Horn, P., & Kovacs, M. (2003). Residue formation of fumonisin B1 in porcine tissues. Food Additives & Contaminants, 20, 639–647.Google Scholar
  166. Milano, G. D., & Lopez, T. A. (1991). Influence of temperature on zearalenone production by regional strains of Fusarium graminearum ans Fusarium oxysporum in culture. International Journal of Food Microbiology, 13, 329–333.Google Scholar
  167. Miller, D. M., Wilson, D. M., Wyatt, R. D., McKinney, J. K., Crowell, W. A., & Stuart, B. P. (1982). High performance liquid chromatographic determination and clearance time of aflatoxin residues in swine tissues. Journal of the Association of Official Analytical Chemists, 65, 1–4.Google Scholar
  168. Miller, J. D. (2002). Aspects of the ecology of Fusarium toxins in cereals. Advances in Experimental Medicine & Biology, 504, 19–27.Google Scholar
  169. Mirocha, C. J., Pathre, S. V., & Robinson, T. S. (1981). Comparative metabolism of zearalenone and transmission into bovine milk. Food & Cosmetic Toxicology, 19, 25–30.Google Scholar
  170. Mirocha, C. J., Robison, T. S., Pawlosky, R. J., & Allen, N. K. (1982). Distribution and residue determination of (3H)zearalenone in broilers. Toxicology &. Applied Pharmacology, 66, 77–87.Google Scholar
  171. Missmer, S. A., Suarez, L., Felkner, M., & Wang, A. H. (2006). Exposure to Fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environmental Health Perspectives, 114, 237–241.Google Scholar
  172. Molto, G., Samar, M. M., Resnik, S., Martinez, E. J., & Pacin, A. (2000). Occurrence of trichothecenes in Argentinean beer: A preliminary exposure assessment. Food Additives & Contaminants, 17, 809–813.Google Scholar
  173. Molto, G. A., Gonzalez, H. H., Resnik, S. L., & Pereyra Gonzalez, A. (1997). Production of trichothecenes and zearalenone by isolates of Fusarium spp. From Argentinian maize. Food Additives & Contaminants, 14, 263–268.Google Scholar
  174. Montani, M. L., Vaamonde, G., Resnik, S. L., & Buera, P. (1988). Influence of water activity and temperature on the accumulation of zearalenone in corn. International Journal of Food Microbiology, 6, 1–8.Google Scholar
  175. Nelson, P. E., Desjardins, A. E., & Plattner, R. D. (1993). Fumonisins, mycotoxins produced by Fusarium species: Biology, chemistry and significance. Annual Reviews of Phytopathology, 31, 233–252.Google Scholar
  176. Nesbitt, B. F., O’Kelly, J., Sargeant, K., & Sheridan, A. (1962). Aspergillus flavus and turkey X disease. Toxic metabolites of Aspergillus flavus. Nature, 195, 1062–1063.Google Scholar
  177. Newberne, P. M., & Butler, W. H. (1969). Acute and chronic effect of aflatoxin B1 on the liver of domestic animals: A review. Cancer Research, 29, 236–250.Google Scholar
  178. Nishie, K., Cole, R. J., & Dorner, J. W. (1985). Toxicity and neuropharmacology of cyclopiazonic acid. Food & Chemical Toxicology, 23, 831–839.Google Scholar
  179. Nishie, K., Cole, R. J., & Dorner, J. W. (1986). Effects of cyclopiazonic acid on the contractility of organs with smooth muscles, and on frog ventricles. Research Communications in Chemical Pathology & Pharmacology, 53, 23–37.Google Scholar
  180. Norred, W. P., Plattner, R. D., & Chamberlain, W. J. (1993). Distribution and excretion of (14C)fumonisin B1 in male Sprague-Dawley rats. Natural Toxins, 1, 341–346.Google Scholar
  181. Norred, W. P., Porter, J. K., Dorner, J. W., & Cole, R. J. (1988). Occurrence of the mycotoxin cyclopiazonic acid in meat after oral administration to chickens. Journal of Agriculture & Food Chemistry, 36, 113–116.Google Scholar
  182. Northolt, M. D., & van Egmond, H. P. (1981). Limits of water activity and temperature for the production of some mycotoxins. 4th meeting mycotoxins in animal disease, Pepin, GA//Patterson, DSP//Gray, DE, 106–108.Google Scholar
  183. Obrecht-Pflumio, S., & Dirheimer, G. (2001). Horseraddish peroxydase mediates DNA and deoxyguanosine 3-monophosphate adduct formation in the presence of ochratoxin A. Archives in Toxicology, 75, 583–590.Google Scholar
  184. Obst, A., Lepschy, J., Beck, R., Bauer, G., & Bechtel, A. (2000). The risk of toxins by Fusarium graminearum in wheat – interactions between weather and agronomic factors. Mycotoxin Research, 16, 16–20.Google Scholar
  185. Olsen, M., Malmlof, K., Pettersson, H., Sandholm, K., & Kiessling, K. H. (1985). Plasma and urinary levels of zearalenone and alpha-zearalenol in a prepubertal gilt fed zearalenone. Acta Pharmacologica Toxicologica (Copenh.), 56, 239–243.Google Scholar
  186. Olsen, M., Petterson, H., & Kiessling, K. H. (1981). Reduction of zearalenone in female rat liver by 3 alpha-hydroxysteroid dehydrogenase. Acta Pharmacologica Toxicologica (Copenh.), 48, 157–161.Google Scholar
  187. Olsen, M., Pettersson, H., Sandholm, K., Visconti, A., & Kiessling, K. H. (1987). Metabolism of zearalenone by sow intestinal mucosa in vitro. Food Chemistry & Toxicology, 25, 681–683.Google Scholar
  188. Oswald, I. P., Desautels, C., Laffite, J., Fournut, S., Peres, S. Y., Odin, M., et al. (2003). Mycotoxin fumonisin B1 increases intestinal colonization by pathogenic Escherichia coli in pigs. Applied Environmental Microbiology, 69, 5870–5874.Google Scholar
  189. Osweiller, G. D., Kehrli, M. E., Stabel, J. R., Thurston, J. R., Ross, P. F., & Wilson, T. M. (1993). Effects of fumonisin-contaminated corn screenings on growth and health of feeder calves. Journal of Animal Science, 71, 459–466.Google Scholar
  190. Pan, D., Bonsignore, F., Rivas, F., Perera, G., & Bettucci, L. (2007). Deoxynivalenol in barley samples from Uruguay. International Journal of Food Microbiology, 114, 149–152.Google Scholar
  191. Papadopoulou-Bouraoui, A., Vrabcheva, T., Valzacchi, S., Stroka, J., & Anklam, E. (2004). Screening survey of deoxynivalenol in beer from the European market by an enzyme-linked immunosorbent assay. Food Additives & Contaminants, 21, 607–617.Google Scholar
  192. Pardo, E., Marin, S., Ramos, A. J., & Sanchis, V. (2005). Effect of water activity and temperature on mycelial growth and ochratoxin A production by isolates of Aspergillus ochraceus on irradiated green coffee beans. Journal of Food Protection, 68, 133–136.Google Scholar
  193. Pardo, E., Marin, S., Ramos, A. J., & Sanchis, V. (2006). Ecophysiology of ochratoxigenic Aspergillus ochraceus and Penicillium verrucosum isolates; Predictive models for fungal spoilage prevention: A review. Food Additives & Contaminants, 23, 398–410.Google Scholar
  194. Pardo, E., Marin, S., Sanchis, V., & Ramos, A. J. (2004). Prediction of fungal growth and ochratoxin A production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water activity. International Journal of Food Microbiology, 95, 79–88.Google Scholar
  195. Park, D. L. (2002). Effect of processing on aflatoxin. Advance in Experimental Medicine & Biology, 54, 173–179.Google Scholar
  196. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) is small grain cereals: A review. Plant Pathology, 44, 207–238.Google Scholar
  197. Paterson, D. S. P. (1977). Metabolism of aflatoxin and other mycotoxins in relation to their toxicity and the accumulation of residues in animal tissues. Pure Applied. Chemistry, 49, 1723–1731.Google Scholar
  198. Peers, F. G., & Linsell, M. P. (1973). Dietary aflatoxins and human liver cancer: A population study based in Kenya. British Journal of Cancer, 27, 473–484.Google Scholar
  199. Pestka, J. J., & Smolinski, A. T. (2005). Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology & Environmental Health B Critical Reviews, 8, 39–69.Google Scholar
  200. Pfohl-Leszkowicz, A., Chakor, K., Creppy, E. E., & Dirheimer, G. (1991). DNA adduct formation in mice treated with ochratoxin A. IARC Scientific Publications, 115, 245–253.Google Scholar
  201. Pfohl-Leszkowicz, A., Grosse, Y., Kane, A., Creppy, E. E., & Dirheimer, G. (1993). Differential DNA adduct formation and disappearance in three mouse tissues after treatment with the mycotoxin ochratoxin A. Mutation Research, 289, 265–273.Google Scholar
  202. Pfohl-Lezkowicz, A., Petkova-Bocharova, T., Chernozemsky, I. N., & Castegnaro, M. (2002). Balkan endemic nephropathy and associated urinary tract tumors: A review on aetiological causes and the potential role of mycotoxins. Food Additives & Contaminants, 19, 282–302.Google Scholar
  203. Phillips, R. D., Berndt, W. O., & Hayes, A. W. (1979). Distribution and excretion of (14C)citrinin in rats. Toxicology, 12, 285–298.Google Scholar
  204. Pieters, M. N., Freijer, J., Baars, B. J., Fioler, D. C., van Klaveren, J., & Slob, W. (2002). Risk assessment of deoxynivalenol in food: Concentration limits, exposure and effects. Advances in Experimental Medicine & Biology, 504, 235–248.Google Scholar
  205. Pietri, A., Bertuzzi, T., Gualla, A., & Piva, G. (2006). Occurrence of ochratoxin A in raw ham muscle and in pork products from northern Italy. Journal of Food Science, 18, 99–106.Google Scholar
  206. Pitt, J. I. (1987). Penicillium viridicatum, penicillium verrucosum, and production of ochratoxin A. Applied Environmental Microbiology, 53, 266–269.Google Scholar
  207. Pitt, J. I. (2002). Biology and ecology of toxigenic Penicillium species. Advances in Experimental Medicine & Biology, 504, 29–41.Google Scholar
  208. Pitt, J. I., & Hocking, A. D. (1977). Influence of solute and hydrogen ion concentration on the water relations of some xerophilic fungi. Journal of General Microbiology, 101, 35–40.Google Scholar
  209. Plestina, R., Ceovic, S., Gatenbeck, S., Habazin-Novak, V., Hult, K., Hokby, E., et al. (1982). Human exposure to ochratoxin A in areas of Yugoslavia with endemic nephropathy. Journal of Environmental Pathology Toxicology & Oncology, 10, 145–148.Google Scholar
  210. Pollmann, D. S., Koch, B. A., Seitz, L. M., Mohr, H. E., & Kennedy, G. A. (1985). Deoxynivalenol-contamined wheat in swine diets. Journal of Animal Science, 60, 239–247.Google Scholar
  211. Prelusky, D. B., Hamilton, R. M., Trenholm, H. L., & Miller, J. D. (1986). Tissue distribution and excretion of radioactivity following administration of 14C-labeled deoxynivalenol to white leghorn hens. Fundamental & Applied Toxicology, 7, 635–645.Google Scholar
  212. Prelusky, D. B., Hartin, K. E., Trenholm, H. L., & Miller, J. D. (1988). Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine. Fundamental & Applied Toxicology, 10, 276–286.Google Scholar
  213. Prelusky, D. B., Savard, M. E., & Trenholm, H. L. (1995). Pilot study on the plasma pharmacokinetics of fumonisin B1 in cows following a single dose by oral gavage or intravenous administration. Natural Toxins, 3, 389.Google Scholar
  214. Prelusky, D. B., & Trenholm, H. L. (1992). Nonaccumulation of residues in swine tissue following extended consumption of deoxynivalenol-contaminated diets. Journal of Food Science, 57, 801–802.Google Scholar
  215. Prelusky, D. B., Trenholm, H. L., Rotter, B. A., Miller, J. D., Savard, M. E., Yeung, J. M., et al. (1996). Biological fate of fumonisin B1 in food-producing animals. Advances in Experimental Medicine & Biology, 392, 265–278.Google Scholar
  216. Prelusky, D. B., Trenholm, H. L., & Savard, M. E. (1994). Pharmacokinetic fate of 14C-labelled fumonisin B1 in swine. Natural Toxins, 2, 73.Google Scholar
  217. Qureshi, M. A., Brake, J., Hamilton, P. B., Hagler, W. M., & Nesheim, S. (1998). Dietary exposure of broiler breeders to aflatoxin results in immune dysfunction in progeny chicks. Poultry Science, 77, 812–819.Google Scholar
  218. Rahimtula, A. D., Bereziat, J. C., Bussacchini-Griot, V., & Bartsch, H. (1988). Lipid peroxidation as a possible cause of ochratoxin A toxicity. Biochemical Pharmacology, 37, 4469–4477.Google Scholar
  219. Rapper, K. B., & Fennel, D. I. (1965). The genus Aspergillus. Baltimore, MD: Williams & Wilkins.Google Scholar
  220. Refai, M. K., Niazi, Z. M., Aziz, N. H., & Khafaga, N. E. (2003). Incidence of aflatoxin B1 in the Egyptian cured meat basterma and control by gamma-irradiation. Nahrung, 47, 377–382.Google Scholar
  221. Rheeder, J. P., Prasanna, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied Environmental Microbiology, 68, 2102–2105.Google Scholar
  222. Ribeiro, S. M., Chagas, G. M., Campello, A. P., & Klüppel, M. L. (1997). Mechanism of citrinin induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochemistry & Function, 15, 203–209.Google Scholar
  223. Richard, J. L., Meerdink, G., Maragos, C. M., Tumbleson, M., Bordson, G., Rice, L. G., et al., (1996). Absence of detectable fumonisins in the milk of cows fed Fusarium proliferatum (Matsushima) Nirenberg culture material. Mycopathologia, 133, 123–126.Google Scholar
  224. Richard, J. L., Stubblefield, R. D., Lyon, R. L., Peden, W. M., Thurston, J. R., & Rimler, R. B. (1986). Distribution and clearance of aflatoxins B1 and M1 in turkeys fed diets containing 50 or 150 ppb aflatoxin from naturally contaminated corn. Avian Diseases, 30, 788–793.Google Scholar
  225. Riley, R. T., Wang, E., Schroeder, J. J., Smith, E. R., Plattner, R. D., Abbas, H., et al. (1996). Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Natural Toxins, 4, 3–15.Google Scholar
  226. Ringot, D., Chango, A., Schneider, Y. J., & Larondelle, Y. (2006). Toxicokinetics and toxicodynamics of ochratoxin A an update. Chemical & Biological Interactions, 159, 18–46.Google Scholar
  227. Rocha, O., Ansari, K., & Doohan, F. M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Additives & Contaminants, 22, 369–378.Google Scholar
  228. Rojas, F. J., Jodral, M., Gosalvez, F., & Pozo, R. (1991). Mycoflora and toxigenic Aspergillus flavus in Spanish dry cured ham. International Journal of Food Microbiology, 13, 249–255.Google Scholar
  229. Romero, S. M., Comerio, R. M., Larumbe, G., Ritieni, A., Vaamonde, G., & Fernandez Pinto, V. (2005). Toxigenic fungi isolated from dried vine fruits in Argentina. International Journal of Food Microbiology, 104, 43–49.Google Scholar
  230. Rotter, B. A., Prelusky, D. B., & Pestka, J. J. (1996). Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology & Environmental Health, 48, 1–34.Google Scholar
  231. Ryu, D., & Bullerman, L. B. (1999). Effect of cycling temperatures on the population of deoxynivalenol and zearalenone by Fusarium graminearum NRRL 5883. Journal of Food Protection, 62, 1451–1455.Google Scholar
  232. Ryu, D., Jackson, L. S., & Bullerman, L. B. (2002). Effects of processing on zearalenone. Advances in Experimental Medicine & Biology, 504, 205–216.Google Scholar
  233. Sabater-Vilar, M., Maas, R. F. M., & Fink-Gremmels, J. (1999). Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutation Research, 444, 7–11.Google Scholar
  234. Sanchis, V., & Magan, N. (2004). Environmental conditions affecting mycotoxins. In N. Magan & M. Olsen (Eds.), Mycotoxins in food: Detection and control (p. 174). Oxford: Woodhead Publishing Ltd.Google Scholar
  235. Sangare-Tigori, B., Dem, A. A., Kouadio, H. J., Betbeder, A. M., Danos, D. S., Moukha, S., et al. (2006). Preliminary survey of ochratoxin A in millet maize, rice and peanuts in Cote d’Ivoire from 1998 to 2002. Human Experimental Toxicology, 25, 211–216.Google Scholar
  236. Schothorst, R. C., & Van Egmond, H. P. (2004). Report from SCOOP task 3.2.10 collection of Fusarium toxins in food and assessment of dietary intake by the population of EU member states; subtask: Trichothecenes. Toxicology Letters, 153, 133–143.Google Scholar
  237. Schrödter, R. (2004). Influence of harvest and storage conditions on trichothecenes levels in various cereals. Toxicology Letters, 153, 47–49.Google Scholar
  238. SCOOP Reports on Tasks 3.2.7. (2000). Assessment of dietary intake of Ochratoxin A by the population of EU member states.Google Scholar
  239. SCOOP Reports on Tasks 3.2.10. (2003). Assessment of dietary intake of Fusariums by the population of EU members states.Google Scholar
  240. Seidler, N. W., Jona, I., Vegh, M., & Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. Journal of Biological Chemistry, 264, 17816–17823.Google Scholar
  241. Senyuva, H. Z., Gilbert, J., & Ulken, U. (2007). Aflatoxins in Turkish dried figs intended for export to the European Union. Journal of Food Protection, 70, 1029–1032.Google Scholar
  242. Shank, R. C., Bhamarapravati, N., Gordon, J. E., & Wogan, G. N. (1972). Dietary aflatoxin and human liver cancer IV. Incidence of primary liver cancer in two municipal population in Thailand. Food & Cosmetics Toxicology, 10, 171–179.Google Scholar
  243. Shephard, G. S., Marasas, W. F., Yazdanpanah, H., Rahimian, H., Safavi, N., Zarghi, A., et al. (2002). Fumonisin B1 in maize harvested in Iran during 1999. Food Additives & Contaminants, 19, 676–679.Google Scholar
  244. Shephard, G. S., & Sewram, V. (2004). Determination of the mycotoxin fumonisin B1 in maize by reversed-phase thin layer chromatography: A collaborative study. Food Additives & Contaminants, 21, 498–505.Google Scholar
  245. Shephard, G. S., Thiel, P. G., Sydenham, E. W., Vleegaar, R., & Alberts, J. F. (1994). Determination of the mycotoxin fumonisin B1 and identification of its partially hydrolysed metabolites in the faeces of non-human primates. Food & Chemical Toxicology, 32, 23–29.Google Scholar
  246. Shreeve, B. J., Patterson, D. S. P., & Roberts, B. A. (1979). The carry over of aflatoxin, ochratoxin and zearalenone from naturally contaminated feed to tissues, urine, and milk of dairy cows. Food & Cosmetics Toxicology, 17, 151–152.Google Scholar
  247. Silva, L. J., Lino, C. M., Pena, A., & Molto, J. C. (2007). Occurrence of fumonisins B1 and B2 in Portuguese maize and maize-based foods intended for human consumption. Food Additives & Contaminants, 24, 381–390.Google Scholar
  248. Sosa, M. J., Cordoba, J. J., Diaz, C., Rodriguez, M., Bermudez, E., Asensio, M. A., et al. (2002). Production of cyclopiazonic acid by Penicillium commune isolated from dry cured ham on a meat extract based substrate. Journal of Food Protection, 65, 988–992.Google Scholar
  249. Spotti, M., Caloni, F., Fracchiolla, L., Pompa, G., Vigo, D., & Maffeo, G. (2001). Fumonisin B1 carry-over into milk in the isolated perfused bovine udder. Veterinary & Human Toxicology, 43, 109–111.Google Scholar
  250. Spotti, M., Pompa, G., & Caloni, F. (2001). Fumonisin B1 metabolism by bovine liver microsomes. Veterinary Research Communication, 25, 511–516.Google Scholar
  251. Stob, M., Baldwin, R. S., Tuite, J., Andrews, F. N., & Gilette, K. G. (1962). Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae. Nature, 196, 1318.Google Scholar
  252. Stopper, H., Schmitt, E., & Kobras, K. (2005). Genotoxicity of phytoestrogens. Mutation Research, 574, 139–155.Google Scholar
  253. Strum, J. C., Ghosh, S., & Bell, R. M. (1997). Lipid second messengers: A role in cell growth regulation and cell cycle progression. Advances in Experimental Medicine & Biology, 407, 421–431.Google Scholar
  254. Stubblefield, R. D., Honstead, J. P., & Shotwell, O. L. (1991). An analytical survey of aflatoxins in tissues from swine grown in regions reporting 1988 aflatoxin contaminated corn. Journal of the Association of Official Analytical Chemists, 74, 897.Google Scholar
  255. Stubblefield, R. D., Pier, A. C., Richard, J. L., & Shotwell, O. L. (1983). Fate of aflatoxins in tissues, fluids and excrements from cows dosed orally with aflatoxin B1. American Journal of Veterinary Research, 44, 1750–1752.Google Scholar
  256. Sugita-Konishi, Y., Nakajima, M., Tabata, S., Ishikuro, E., Tanaka, T., Norizuki, H., et al. (2006). Occurrence of aflatoxins, ochratoxin A, and fumonisins in retail food in Japan. Journal of Food Protection, 69, 1365–1370.Google Scholar
  257. Sundlof, S. F., & Strickland, C. (1986). Zearalenone and zeranol: Potential residue problems in livestock. Veterinary & Human Toxicology, 28, 242–250.Google Scholar
  258. Swanson, S. P., Helaszek, C., Buck, W. B., Rood, H. D., & Haschek, W. M. (1988). The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food & Chemical Toxicology, 26, 823–829.Google Scholar
  259. Sweeney, M. J., & Dobson, A. D. (1998). Mycotoxin production by Aspergillus, Fusarium and Penicillium species. International Journal of Food Microbiology, 43, 141–158.Google Scholar
  260. Sydenham, E. W., Marasas, W. F., Thiel, P. G., Shephard, G. S., & Nieuwenhuis, J. J. (1991). Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Food Additives & Contaminants, 8, 31–41.Google Scholar
  261. Tabuc, C., Bailly, J. D., Bailly, S., Querin, A., & Guerre, P. (2004). Toxigenic potential of fungal mycoflora isolated from dry cured meat products: Preliminary study. Revue de Médecine Vétérinaire, 156, 287–291.Google Scholar
  262. Tanaka, T., Hasegawa, A., Yamamoto, S., Lee, U. S., Sugiura, Y., & Ueno Y. (1988). Worldwide contamination of cereals by the Fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone. I. Survey of 19 countries. Journal of Agriculture & Food Chemistry, 36, 979–983.Google Scholar
  263. Taniwaki, M. H. (2006). An update on ochratoxigenic fungi and ochratoxin A in coffee. Advances in Experimental Medicine & Biology, 571, 189–202.Google Scholar
  264. Terada, H., Tsubouchi, H., Yamamoto, K., Hisada, K., & Sakabe, Y. (1986). Liquid chromatographic determination of ochratoxin A in coffee beans and coffee products. Journal of the Association of Official Analytical Chemists, 69, 960–964.Google Scholar
  265. Teren, J., Varga, J., Hamari, Z., Rinyu, E., & Kevei, F. (1996). Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia, 134, 171–176.Google Scholar
  266. Thompson, C., & Henke, S. (2000). Effect of climate and type of storage container on aflatoxin production in corn and its associated risks to wildlife species. Journal of Wildlife Disease, 36, 172–179.Google Scholar
  267. Toteja, G. S., Mukherjee, A., Diwakar, S., Singh, P., Saxena, B. N., Sinha, K. K, et al. (2006). Aflatoxin B1 contamination in wheat grain samples collected from different geographical regions of India: A multicenter study. Journal of Food Protection, 69, 1463–1467.Google Scholar
  268. Tran, S. T., Bailly, J. D., Tardieu, D., Durand, S., Benard, G., & Guerre, P. (2003). Sphinganine to sphingosine ratio and predictive biochemical markers of fumonisin B1 exposure in ducks. Chemical Biological Interactions, 146, 61–72.Google Scholar
  269. Trenholm, H. L., Friend, D. W., Hamilton, R. M. G., Prelusky, D. B., & Foster, B. C. (1989). Lethal toxicity and nonspecific effects. In V. L. Beasley (Ed.), Trichothecene mycotoxicosis: Pathophysiologic effects (Vol. 1, p. 107). Boca Raton, FL: CRC press.Google Scholar
  270. Trenk, H. L., & Hartman, P. A. (1970). Effect of moisture content and temperature on aflatoxin production in corn. Applied Microbiology, 19, 781–784.Google Scholar
  271. Trischer, A. M. (2004). Human health risk assessment of processing-related compounds in food. Toxicology Letters, 149, 177.Google Scholar
  272. Trucksess, M. W., Ready, D. W., Pender, M. K., Ligmond, C. A., Wood, G. E., & Page, S. W. (1996). Determination and survey of deoxynivalenol in white flour, whole wheat flour, and bran. Journal of the Association of Official Analytical Chemists International, 79, 883–887.Google Scholar
  273. Trucksess, M. W., Stoloff, L., Brumley, W. C., Wilson, D. M., Hale, O. M., Sangster, L. T., et al. (1982). Aflatoxicol and aflatoxins B1 and M1 in the tissues of pigs receiving aflatoxin. Journal of the Association of Official Analytical Chemists, 65, 884–887.Google Scholar
  274. Trucksess, M. W., Stoloff, L., Young, K., Wyatt, R. D., & Miller, B. L. (1983). Aflatoxicol and aflatoxins B1 and M1 in eggs and tissues of laying hens consuming aflatoxin-contaminated feed. Poultry Science, 62, 2176–2182.Google Scholar
  275. Valenta, H., & Goll, M. (1996). Determination of ochratoxin A in regional samples of cow milk from germany. Food Additives & Contaminants, 13, 669–676.Google Scholar
  276. Van der Merwe, K. J., Steyn, P. S., Fourie, L., Scott, D. B., & Theron, J. J. (1965). Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature, 205, 1112–1113.Google Scholar
  277. Van der Westhuizen, L., Shephard, G. S., & Van Schalkwyk, D. J. (2001). The effect of repeated gavage doses of fumonisine B1 on the sphinganine and sphingosine levels in vervet monkeys. Toxicon, 39, 969–972.Google Scholar
  278. Veldman, A., Mejs, J. A. C., Borggreve, G. J., & van der Tol Heeres, J. J. (1992). Carry-over of aflatoxin from cows’ food to milk. Animal Production, 55, 163–168.Google Scholar
  279. Vrabcheva, T., Petkova-Bocharova, T., Grosso, F., Nikolov, I., Chernozemsky, I. N., Castegnaro, M., et al. (2004). Analysis of ochratoxin A in foods consumed by inhabitants from an area with Balkan endemic nephropathy: A 1 month follow up study. Journal of Agriculture & Food Chemistry, 52, 2404–2410.Google Scholar
  280. Vrabcheva, T., Usleber, E., Dietrich, R., & Martlbauer, E. (2000). Co-occurrence of ochratoxin A and citrinin in cereals from Bulgarian villages with a history of Balkan endemic nephropathy. Journal of Agriculture & Food Chemistry, 48, 2483–2488.Google Scholar
  281. Vudathala, D. K., Prelusky, D. B., Ayroud, M., Trenholm, H. L., & Miller, J. D. (1994). Pharmacokinetic fate and pathological effect of 14C-fumonisin B1 in laying Hens. Natural Toxins, 2, 81–88.Google Scholar
  282. Weng, C. Y., Martinez, A. J., & Park, D. L. (1994). Efficacy and permanency of ammonia treatment in reducing aflatoxin levels in corn. Food Additives & Contaminants, 11, 649–658.Google Scholar
  283. Wilkins, K., Nielsen, K. F., & Din, S. U. (2003). Patterns of volatile metabolites and non-volatile trichothecenes produced by isolates of Stachybotrys, Fusarium, Trichoderma, Trichothecium and Memnoniella. Environmental Science & Pollution Research, 10, 162–166.Google Scholar
  284. Wolf-Hall, C. E., & Schwarz, P. B. (2002). Mycotoxins and fermentation-beer production. Advances in Experimental Medicine & Biology, 504, 217–226.Google Scholar
  285. Wu, M. T., Ayres, J. C., & Koehler, P. E. (1974a). Production of citrinin by Penicillium viridicatum on country cured ham. Applied Microbiology, 27, 427–428.Google Scholar
  286. Wu, M. T., Ayres, J. C., & Koehler, P. E. (1974b). Toxigenic Aspergilli and Penicillia isolated from aged cured meat. Applied Microbiology, 28, 1094.Google Scholar
  287. Yiannikouris, A., & Jouany, J. P. (2002). Mycotoxins in feeds and their fate in animals: A review. Animal Research, 51, 81–100.Google Scholar
  288. Yoshizawa, T., Swanson, S. P., & Mirocha, C. J. (1980). T-2 metabolites in the excreta of broiler chickens administered 3H-labeled T-2 toxin. Applied Environmental Microbiology, 39, 1172–1177.Google Scholar
  289. Young, J. C., Zhou, T., Yu, H., Zhu, H., & Gong, J. (2007). Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food & Chemical Toxicology, 45, 136–143.Google Scholar
  290. Zaghini, A., Martelli, G., Roncada, P., Simioli, M., & Rizzi, L. (2005). Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: Effects on eggs quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poultry Science, 84, 825–832.Google Scholar
  291. Zinedine, A., Juan, C., Soriano, J. M., Molto, J. C., Idrissi, L., & Manes, J. (2007). Limited survey for the occurrence of aflatoxins in cereal and poultry feeds from Rabat, Morocco. International Journal of Food Microbiology, 115, 124–127.Google Scholar
  292. Zinedine, A., Soriano, J. M., Molto, J. C., & Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food & Chemical Toxicology, 45, 1–18.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mycotoxicology Research UnitNational Veterinary School of ToulouseFrance

Personalised recommendations