Insights into Fresh Meat Spoilage

  • Spiros Paramithiotis
  • P.N. Skandamis
  • George-John E. Nychas
Part of the Food Microbiology and Food Safety book series (FMFS)

Development of Spoilage Microbiota

The conditions under which the animals are reared and slaughtered determine the level, extent and type of contamination. Possible sources of contamination include the abiotic environment in contact with the animal (air, soil, water, feeds), the animal itself (hides, intestinal tract, faeces) and the processing equipment including utensils and humans. Contamination may also vary according to specific characteristics of each animal, its geographic origin as well as the season of the year.

The micro-organisms that usually dominate the initial microbiota of fresh carcasses are Gram-negative rods (mainly pseudomonads) and micrococci (mainly Kocuria spp. and Staphylococcus spp.). Furthermore, Gram-negative bacteria such as Acinetobacter spp., Alcaligenes spp., Moraxella spp. and Enterobacteriaceae, and Gram-positive species including spore-forming bacteria, lactic acid-producing bacteria and Brochothrix thermosphacta, as well as yeasts and moulds, may also...


Shelf Life Meat Product Modify Atmosphere Packaging Fresh Meat Spoilage Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahvenainen, R. (2003). Active and intelligent packaging: an introduction. In R. Ahvenainen (Editor), Novel food packaging techniques, (pp. 5–21). Cambridge: Woodhead Publishing Ltd.CrossRefGoogle Scholar
  2. Alvarado, R., Rodriguez-Yunta, M. A., Hoz, L., Garcia de Fernando, G. D., & Ordonez, J. A. (1992). Rapid p-nitroaniline test for assessing the microbial quality of refrigerated meat. Journal of Food Science, 57, 1330–1331.CrossRefGoogle Scholar
  3. Ammor, M. S., Argyri, A., & Nychas, G.-J. E (2008). Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Science (submitted)Google Scholar
  4. Barakat, R. K., & Harris, L. J. (1999). Growth of Listeria monocytogenes and Yersinia enterocolitica on cooked modified-atmosphere poultry in the presence and absence of a naturally occurring microbiota. Applied Environmental Microbiology, 65, 342–345.Google Scholar
  5. Blixt, Y., & Borch, E. (1999). Using an electronic nose for determining the spoilage of vacuum-packaged beef. International Journal of Food Microbiology, 46, 123–134.CrossRefGoogle Scholar
  6. Bodenhammer, W. T. (2002). Method and apparatus for selective biological material detection. US Patent 6376204.Google Scholar
  7. Bodenhammer, W. T., Jakowski, G., & Davies, E. (2004). Surface binding of an immunoglobulin to a flexible polymer using a water soluble varnish matrix. US Patent 6692973.Google Scholar
  8. Borch, E., & Agerhem, H. (1992). Chemical, microbial and sensory changes during the anaerobic cold storage of beef inoculated with a homofermentative Lactobacillus sp. or a Leuconostoc sp. International Journal of Food Microbiology, 15, 99–108.CrossRefGoogle Scholar
  9. Bovill, R. A., Bew, J., & Baranyi, J. (2001). Measurements and predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature II. Rapidly changing temperatures. International Journal of Food Microbiology, 67, 131–137.CrossRefGoogle Scholar
  10. Buchanan, R. L., & Klawitter, L. A. (1991). Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures. International Journal of Food Microbiology, 12, 235–245.CrossRefGoogle Scholar
  11. Buchanan, R. L., Stahl, H.G., & Whiting, R. C. (1989). Effects and interactions of temperature, pH, atmosphere, sodium chloride, and sodium nitrite on the growth of Listeria monocytogenes. Journal of Food Protection, 52, 844–851.Google Scholar
  12. Carlin, F., Nguyen T. C., & Morris, C. E. (1996). Influence of background microflora on Listeria monocytogenes on minimally processed fresh broad-leaved endive (Cichorium endivia var. latifolia). Journal of Food Protection, 59, 698–703.Google Scholar
  13. Cassin, M. H., Lammerding, A. M., Todd, E. C. D., Ross, W., & McColl, R. S. (1998). Quantitative risk assessment for Escherichia coli O157:H7 in ground beef hamburgers. International Journal of Food Microbiology, 41, 21–44.CrossRefGoogle Scholar
  14. Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 33, 19–34.CrossRefGoogle Scholar
  15. Dainty, R. H., Edwards, R. A., & Hibbard, C. M. (1985). Time course of volatile compound formation during refrigerated storage of naturally contaminated beef in air. Journal of Applied Bacteriology, 59, 303–309.Google Scholar
  16. Dainty, R. H., Edwards, R. A., Hibbard, C. M., & Marnewick, J. J. (1989). Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. Journal of Applied Bacteriology, 66, 281–289.Google Scholar
  17. Dainty, R. H., & Hibbard, C. M. (1980). Aerobic metabolism of Brochothrix thermosphacta growing on meat surfaces and in laboratory media. Journal of Applied Bacteriology, 48, 387–396.Google Scholar
  18. Davies, E. S., & Gardner, C. D. (1996). Oxygen indicating composition. British Patent 2298273.Google Scholar
  19. Devlieghere, F., Geeraerd, A. H., Versyck, K. J., Vandewaetere, B., Van Impe, J., & Debevere, J. (2001). Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: A predictive model. Food Microbiology, 18, 53–66.CrossRefGoogle Scholar
  20. Drosinos, E. H. (1994). Microbial associations of minced lamb and their ecophysiological attributes. (Doctoral dissertation, University of Bath, Bath, UK, 1994).Google Scholar
  21. Drosinos, E. H., & Board, R. G. (1994). Metabolic activities of pseudomonads in batch cultures in extract of minced lamb. Journal of Applied Bacteriology, 77, 613–620.Google Scholar
  22. Drosinos, E. H., & Board, R. G. (1995). Attributes of microbial associations of meat growing as xenic batch cultures in a meat juice at 4oC. International Journal of Food Microbiology, 26, 279–293.CrossRefGoogle Scholar
  23. Drosinos, E. H., & Nychas, G.-J. E. (1997). Production of acetate and lactate in relation to glucose content during modified atmosphere storage of gilt-seabream (Sparus aurata) at 0±1oC. Journal of Applied Microbiology, 83, 569–575.CrossRefGoogle Scholar
  24. Du, W. X., Kim, J., Cornell, J. A., Huang, T., Marshall, M. R., & Wei, C. I. (2001). Microbiological, sensory, and electronic nose evaluation of yellowfin tuna under various storage conditions. Journal of Food Protection, 64, 2027–2036.Google Scholar
  25. Duffy, G., Garvey, P., & McDowell, D. A. (2001). Verocytotoxigenic E. coli. Connecticut: Food and Nutrition Press Inc.Google Scholar
  26. Duffy, L. L., Vanderlinde, P. B., & Grau, F. H. (1994). Growth of Listeria monocytogenes on vacuum-packed cooked meats: Effect of pH, aw, nitrite and ascorbate. International Journal of Food Microbiology, 23, 377–390.CrossRefGoogle Scholar
  27. Edwards, R. A., & Dainty, R. H. (1987). Volatile compounds associated with spoilage of normal and high pH vacuum-packed pork. Journal of Science of Food & Agriculture, 38, 57–66.CrossRefGoogle Scholar
  28. Edwards, R. A., Dainty, R. H., Hibbard, C. M., & Ramantanis, S. V. (1987). Amines in fresh beef of normal pH and the role of bacteria in changes in concentration observed during storage in vacuum packs at chill temperatures. Journal of Applied Bacteriology, 63, 427–434.Google Scholar
  29. Ellis, D. I., Broadhurst, D., & Goodacre, R. (2004). Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Analytica Chimica Acta, 514, 193–201.CrossRefGoogle Scholar
  30. Ellis, D. I., Broadhurst, D., Kell, D. B., Rowland, J. J., & Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by Fourier Transform Infrared Spectroscopy and machine learning. Applied Environmental Microbiology, 68, 2822–2828.CrossRefGoogle Scholar
  31. Ellis, D. I., & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science and Technology, 12, 414–424.CrossRefGoogle Scholar
  32. Farber, J. M., Cai, Y., & Ross, W. H. (1996). Predictive modeling of the growth of Listeria monocytogenes in CO2 environments. International Journal of Food Microbiology, 32, 133–144.CrossRefGoogle Scholar
  33. Farrag, S. A., & Marth, E. H. (1989). Growth of Listeria monocytogenes in the presence of Pseudomonads fluorescens at 7 or 13oC in skim milk. Journal of Food Protection, 52, 852–855.Google Scholar
  34. FDA/CFSAN (Food and Drug Administration/Center for Food Safety and Applied Nutrition). (2003). Quantitative assessment of the relative risk to public health from foodborne Listeria monocytogenes among selected food categories of ready-to-eat foods. Available at
  35. Flint, S., Walker, K., Waters, B., & Crawford, R. (2007). Description and validation of a rapid (1 h) flow cytometry test for enumerating thermophilic bacteria in milk powders. Journal of Applied Microbiology, 102, 909–915.Google Scholar
  36. Floros, J. D., Dock, L. L., & Han, J. H. (1997). Active packaging technologies and applications. Food Cosmetics and Dry Packaging, 20, 10–17.Google Scholar
  37. Garcia-Lopez, M. L., Prieto, M., & Otero, A. (1998). The physiological attributes of Gram-negative bacteria associated with spoilage of meat and meat products. In R. G. Board & A. R. Davies (Eds.), The microbiology of meat and poultry (pp. 1–34). London: Blackie Academic and Professional.Google Scholar
  38. Gay, M., Cerf, O., & Davey, K. R. (1996). Significance of pre-incubation temperature and inoculum concentration on subsequent growth of Listeria monocytogenes at 14°C. Journal of Applied Microbiology, 81, 433–438.Google Scholar
  39. Giannakourou, M., Koutsoumanis, K., Nychas, G.-J. E., & Taoukis, P. S. (2001). Development and assessment of an intelligent Shelf life Decision System (SLDS) for quality optimization of the food chill chain. Journal of Food Protection, 64, 1051–1057.Google Scholar
  40. Gill, C. O. (1986). The control of microbial spoilage in fresh meats. In A. M. Pearson & T. R. Dutson (Eds.), Advances in meat research: Meat and poultry microbiology (pp. 49–88). New York: T.L. Macmillan.Google Scholar
  41. Gill, C. O., & Molin, G. (1991). Modified atmospheres and vacuum packaging. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 172–199). Glasgow: Blackie.Google Scholar
  42. Gill, C. O., & Newton, K. G. (1977). The development of aerobic spoilage flora on meat stored at chill temperatures. Journal of Applied Bacteriology, 43, 189–195.Google Scholar
  43. Gill, C. O., & Reichel, M. P. (1989). Growth of the cold-tolerant pathogens Yersinia enterocolitica, Aeromonas hydrophila and Listeria monocytogenes on high-pH beef packaged under vacuum or carbon dioxide. Food Microbiology, 6, 223–230.CrossRefGoogle Scholar
  44. Glass, K. A., Loeffelholz, J. M., Ford, J. P., & Doyle, M. P. (1992). Fate of Escherichia coli O157:H7 as affected by pH or sodium and in fermented dry sausage. Applied Environmental Microbiology, 58, 2513–2516.Google Scholar
  45. Goodacre, R., Vaidynathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22, 245–252.CrossRefGoogle Scholar
  46. Gram, L., & Dalgaard, P. (2002). Fish Spoilage bacteria – problems and solutions Current Opinion in Biotechnology, 13, 262–266.CrossRefGoogle Scholar
  47. Grau, F. H., & Vanderlinde, P. B. (1992). Occurrence, numbers and growth of Listeria monocytogenes on some vacuum-packaged processed meats. Journal of Food Protection, 55, 4–7.Google Scholar
  48. Gray, R. J. H., Elliot, P. H., & Tomlins, R. J. (1984). Control of two major pathogens on fresh poultry using a combination potassium sorbate/CO2 packaging treatment. Journal of Food Science, 49, 142–148.CrossRefGoogle Scholar
  49. Gutierrez, R., Garcia, T., Gonzalez, I., Sanz, B., Hernandez, P. E., & Martin, R. (1998). Quantitative detection of meat spoilage bacteria by using the polymerase chain reaction (PCR) and an enzyme linked immunosorbent assay (ELISA). Letters in Applied Microbiology, 26, 372–376.CrossRefGoogle Scholar
  50. Hanna, M. O., Stewart, J. C., Zinc, D. L., Carpenter, Z. L., & Vanderzant, C. (1977). Development of Yersinia enterocolitica in raw and cooked beef and pork at different temperatures. Journal of Food Science, 42, 1180–1184.CrossRefGoogle Scholar
  51. Hao, Y. Y., & Bracket, R. E. (1993). Growth of Escherichia coli O157:H7 in modified atmosphere. Journal of Food Protection, 56, 330–332.Google Scholar
  52. Hintlian, J. H., & Hotchkiss, J. H. (1987). Comparative growth of spoilage and pathogenic organisms on modified atmosphere-packaged cooked beef. Journal of Food Protection, 50, 218–223.Google Scholar
  53. Holicka, J., Guy, R. A., Kapoor, A., Shepherd, D., & Horgen, P. A. (2006). A rapid (one day), sensitive realtime polymerase chain reaction assay for detecting Escherichia coli O157:H7 in ground beef. Canadian Journal of Microbiology, 52, 992–998.CrossRefGoogle Scholar
  54. Holm, C., Mathiasen, T., & Jespersen, L. (2004). A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk. Journal of Applied Microbiology, 97, 935–941.CrossRefGoogle Scholar
  55. Hudson, J. H., Mott, S. J., & Penney, N. (1994). Growth of Listeria monocytogenes, Aeromonas hydrophila, and Yersinia enterocolitica on vacuum and saturated carbon dioxide controlled atmosphere-packaged sliced roast beef. Journal of Food Protection, 57, 204–208.Google Scholar
  56. Jackson, T. C., Acuff, G. R., Vanderzant, C., Sharp, T .R., & Savell, J. W. (1992). Identification and evaluation of volatile compounds of vacuum and modified atmosphere packaged beef strip loins. Meat Science, 31, 175–190.CrossRefGoogle Scholar
  57. Jay, J. M. (1986). Microbial spoilage indicators and metabolites. In M. D. Pierson & N. J. Sterm (Eds.), Foodborne microorganisms and their toxins: Developing methodology (pp. 219–240). Basil: Marcel Dekker Inc.Google Scholar
  58. Johnson, J. L., Doyle, M. P., & Cassens, R. G. (1988). Survival of Listeria monocytogenes in ground beef. International Journal of Food Microbiology, 6, 243–247.CrossRefGoogle Scholar
  59. Josefsen, M. H., Krause, M., Hansen, F., & Hoorfar, J. (2007). Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Applied Environmental Microbiology, 73, 3040–3048.CrossRefGoogle Scholar
  60. Kakouri, A., & Nychas, G.-J. E. (1994). Storage of poultry meat under modified atmospheres or vacuum packs: Possible role of microbial metabolites as indicator of spoilage. Journal of Applied Bacteriology, 76, 163–172.Google Scholar
  61. Kaniou, I., Samouris, G., Mouratidou, T., Eleftheriadou, A., & Zantopoulos, N. (2001). Determination of biogenic amines in fresh and unpacked and vacuum-packed beef during storage at 4°C. Food Chemistry, 74, 515–519.CrossRefGoogle Scholar
  62. Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74, 113–130.CrossRefGoogle Scholar
  63. Kleinlein, N., & Untermann, F. (1990). Growth of pathogenic Yersinia enterocolitica strains in minced meat with and without protective gas with consideration of the competitive background flora. International Journal of Food Microbiology, 10, 65–71.CrossRefGoogle Scholar
  64. Koutsoumanis, K. (2001). Predictive modeling of the shelf life of fish under nonisothermal conditions. Applied Environmental Microbiology, 76, 1821–1825.CrossRefGoogle Scholar
  65. Koutsoumanis, K., Giannakourou, M., Taoukis, P. S., & Nychas, G.-J. E. (2002). Application of SLDs (Shelf life Decision system) to marine cultured fish quality. International Journal of Food Microbiology, 73, 375–382.CrossRefGoogle Scholar
  66. Koutsoumanis, K., & Nychas, G.-J. E. (1999). Chemical and sensory changes associated with microbial flora of Mediterranean boque (Boops boops) stored aerobically at 0, 3, 7 and 10oC. Applied Environmental Microbiology, 65, 698–706.Google Scholar
  67. Krumhar, K. C., & Karel, M. (1992). Visual indicator system. US Patent 5096813.Google Scholar
  68. Lambropoulou, K. A., Drosinos, E. H., & Nychas, G.-J. E. (1996). The effect of glucose supplementation on the spoilage microflora and chemical composition of minced beef stored aerobically or under a modified atmosphere at 4oC. sInternational Journal of Food Microbiology, 30, 281–291.CrossRefGoogle Scholar
  69. Lasta, J. A., Pensel, N., Masana, M., Rodriguez, H. R., & Garcia P. T. (1995). Microbial growth and biochemical changes on naturally contaminated chilled – Beef subcutaneous adipose tissue stored aerobically. Meat Science, 39, 149–158.CrossRefGoogle Scholar
  70. Lee, M., Sebranek, J., & Parrish, F. C. (1996). Accelerated post-mortem aging of beef utilizing electron beam irradiation and modified atmosphere packaging. Journal of Food Science, 61, 133–136, 141.CrossRefGoogle Scholar
  71. Liberski, D. J. A. (1990). Bacteriological examinations of chilled, cured canned pork hams and shoulders using a conventional microbiological technique and the DEFT method. International Journal of Food Microbiology, 10, 19–22.CrossRefGoogle Scholar
  72. Lin, M., Al-Holy, M., Mousavi-Hesary, M., Al-Qadiri, H., Cavinato, A. G., & Rasco, B. A. (2004). Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600–1100 nm). Letters in Applied Microbiology, 39, 148–155.CrossRefGoogle Scholar
  73. Lin, M., Mousavi, M., Al-Holy, M., Cavinato, A. G., & Rasco, B. A. (2006). Rapid near infrared spectroscopic method for the detection of spoilage in rainbow trout (Oncorhynchus mykiss) fillet. Journal of Food Science, 71, S18–S23.CrossRefGoogle Scholar
  74. Loughran, M., & Diamond, D. (2000). Monitoring of volatile bases in fish sample headspace using an acidochromic dye. Food Chemistry, 69, 97–103.CrossRefGoogle Scholar
  75. Mano, S. B., García de Fernando, G. D., López, D., Selgas, M. D., García, M. L., Cambero, M. I., et al. (1995). Growth/survival of Listeria monocytogenes on refrigerated pork and turkey packaged under modified atmospheres. Journal of Food Safety, 15, 305–319.CrossRefGoogle Scholar
  76. Manu-Tawiah, W., Myers, D. J., Olson, D. G., & Molins, R. A. (1993). Survival and growth of Listeria monocytogenes and Yersinia enterocolitica in pork chops packaged under modified gas atmospheres. Journal of Food Science, 58, 475–479.CrossRefGoogle Scholar
  77. Marks, H. M., Coleman, M. E., Lin, C.-T. J., & Roberts, T. (1998). Topics in microbial risk assessment: Dynamic flow tree modeling. Risk Analysis, 18, 309–328.CrossRefGoogle Scholar
  78. Marshall, D. L., Andrews, L. S., Wells, J. H., & Farr, A. J. (1992). Influence of modified atmosphere packaging on the competitive growth of Listeria monocytogenes and Pseudomonads fluorescens on precooked chicken. Food Microbiology, 9, 303–309.CrossRefGoogle Scholar
  79. Marshall, D. L., & Schmidt, R. H. (1988). Growth of Listeria monocytogenes at 10oC in milk preincubated with selected pseudomonads. Journal of Food Protection, 51, 277–282.Google Scholar
  80. Marshall, D. L., & Schmidt, R. H. (1991). Physiological evaluation of stimulated growth of Listeria monocytogenes by Pseudomonas species in milk. Canadian Journal of Microbiology, 37, 594–599.CrossRefGoogle Scholar
  81. Mattila-Sandholm, T., Ahvenainen, R., Hurme, E., & Jarvi-Kaarianen, T. (1995). Leakage indicator. Finnish Patent 94802.Google Scholar
  82. Mattila-Sandholm, T., & Skytta, E. (1991). The effect of spoilage flora on the growth of food pathogens in minced meat stored at chilled temperature. Lebensmittel-Wissenschaft und- Technologie, 24, 116–120.Google Scholar
  83. McClure, P. J. (1994). Modeling the growth, survival and death of microorganisms in foods: The UK food micromodel approach. International Journal of Food Microbiology, 34, 262–275.Google Scholar
  84. McMeekin, T. A. (1977). Spoilage association of chicken leg muscle. Applied Microbiology, 33, 1244–1246.Google Scholar
  85. McMeekin, T. A. (1982). Microbial spoilage of meats. In R. Davies (Ed.), Developments in food microbiology-1 (pp. 1–40). London: Applied Science Publishers.Google Scholar
  86. McMullen, L. M., & Stiles, M. E. (1991). Changes in microbial parameters and gas composition during modified atmosphere of fresh pork loins cuts. Journal of Food Protection, 54, 778–783.Google Scholar
  87. Meyer, R. L., Larsen, L. H., & Revsbech, N. P. (2002). Microscale biosensor for measurement of volatile fatty acids in anoxic environments. Applied Environmental Microbiology, 68, 1204–1210.CrossRefGoogle Scholar
  88. Miller, D. W., Wilkes, J. G., & Conte, E. D. (1999). Food quality indicator device. PCT International patent application WO 99/04256.Google Scholar
  89. Moleyar, V., & Narasimham, P. (1994). Modified atmosphere packaging of vegetables – an appraisal. Journal of Food Science and Technology, 31, 267–278.Google Scholar
  90. Molin, G., & Tenstrom, A. (1986). Phenotypically based taxonomy of psychrotrophic Pseudomonas isolated from spoiled meat, water and soil. International Journal of Systematic Bacteriology, 36, 257–274.CrossRefGoogle Scholar
  91. Nassos, P. S., King, A. D., Jr., & Stafford, A. E. (1983). Relationship between lactic acid concentration and bacterial spoilage in ground beef. Applied Environmental Microbiology, 46, 894–900.Google Scholar
  92. Nassos, P. S., King, A. D., Jr., & Stafford, A. E. (1985). Lactic acid concentration and microbial spoilage in anaerobically and aerobically stored ground beef. Journal of Food Science, 50, 710–712.CrossRefGoogle Scholar
  93. Nassos, P. S., King, A. D., Jr., & Stafford, A. E. (1988). Lactic acid concentration as an indicator of acceptability in refrigerated or freeze – Thawed ground beef. Applied Environmental Microbiology, 54, 822–823.Google Scholar
  94. Navas, J., Ortiz, S., Lopez, P., Jantzen, M. M., Lopez, V., & Martinez-Suarez, J. V. (2006). Evaluation of effects of primary and secondary enrichment for the detection of Listeria monocytogenes by real-time PCR in retail ground chicken meat. Foodborne Pathogens and Disease, 3, 347–354.CrossRefGoogle Scholar
  95. Neurater, G., Klimant, I., & Wolfbeis, O. S. (1999). Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Analytica Chimica Acta, 382, 67–75.CrossRefGoogle Scholar
  96. Newton, K. G., & Rigg, W. J. (1979). The effect of film permeability on the storage life and microbiology of vacuum packaged meat. Journal of Applied Bacteriology, 47, 433–441.Google Scholar
  97. Nychas, G.-J. E. (1984). Microbial growth in minced meat. (Doctoral dissertation, University of Bath, Bath, UK, 1984).Google Scholar
  98. Nychas, G.-J. E. (1994). Modified atmosphere packaging of meats. In: R. P. Singh & F. A. R. Oliveira (Eds.), Minimal processing of foods and process optimization, an interface (pp. 417–436). London: CRC Press Inc.Google Scholar
  99. Nychas, G.-J. E., & Arkoudelos, J. S. (1990). Microbiological and physicochemical changes in minced meat under carbon dioxide, nitrogen or air at 3°C. International Journal of Food Science and Technology, 25, 389–398.Google Scholar
  100. Nychas, G.-J. E., & Arkoudelos, J. S. (1991). The influence of Brochothrix thermosphacta on the quality of minced meat. Agricultural Research, 15, 103–115 (in Greek).Google Scholar
  101. Nychas, G.-J. E., Dillon, V. M., & Board, R. G. (1988). Glucose the key substrate in the microbiological changes occurring in meat and certain meat products. Biotechnology and Applied Biochemistry, 10, 203–231.Google Scholar
  102. Nychas, G.-J. E., Drosinos, E. H., & Board, R. G. (1998). Chemical changes in stored meat. In R. G. Board & A. R. Davies (Eds.), The microbiology of meat and poultry (pp. 288–326). London: Blackie Academic and Professional.Google Scholar
  103. Nychas, G.-J. E., Marshall, D., & Sofos, J. (2007). Meat poultry and seafood. In M. P. Doyle, L. R. Beuchat & T. J. Montville (Eds.), Food microbiology fundamentals and frontiers, (Chapter 6). Washington: ASM press.Google Scholar
  104. Nychas, G.-J. E., Skandamis, P. N., Tassou, C. C., & Koutsoumanis, K. P. (2008). Meat spoilage during distribution. Meat Science, 78, 77–89.CrossRefGoogle Scholar
  105. Nychas, G.-J. E., & Tassou, C. C. (1997). Spoilage processes and proteolysis in chicken as detected by HPLC. Journal of Science of Food & Agriculture, 74, 199–208.CrossRefGoogle Scholar
  106. Okuma, H., Okazaki, W., Usami, R., & Horikoshi, K. (2000). Development of the enzyme reactor system with an amperimetric detection and application to estimation of the incipient stage of spoilage of chicken. Analytica Chimica Acta, 411, 37–43.CrossRefGoogle Scholar
  107. Ordonez, J. A., de Pablo, B., Perez de Castro, B., Asensio, M. A., & Sanz, B. (1991). Selected chemical and microbiological changes in refrigerated pork stored in carbon dioxide and oxygen enriched atmospheres. Journal of Agricultural and Food Chemistry, 39, 668–672.CrossRefGoogle Scholar
  108. Ouattara, B., Simard, R. E., Piette, G., Begin, A., & Holley R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with Chitosan. International Journal of Food Microbiology, 62, 139–148.CrossRefGoogle Scholar
  109. Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44, 185–193.CrossRefGoogle Scholar
  110. Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2007). Screening food raw materials for the presence of the world’s most frequent clinical cases of Shiga toxin-encoding Escherichia coli O26, O103, O111, O145 and O157. International Journal of Food Microbiology, 113, 284–288.CrossRefGoogle Scholar
  111. Pettipher, G. L., & Rodrigues, U. M. (1982). Rapid enumeration of microorganisms in foods by the direct epifluorescent filter technique. Applied Environmental Microbiology, 44, 809–813.Google Scholar
  112. Phillips, C. A. (1996). Review: Modified atmosphere and its effects on the microbiological quality and safety of produce. International Journal of Food Science & Technology, 31, 463–479.CrossRefGoogle Scholar
  113. Qvist, S. H., & Jakobsen, M. (1985). Application of the direct epifluorescent filter technique as a rapid method in microbiological quality assurance in the meat industry. International Journal of Food Microbiology, 2, 139–144.CrossRefGoogle Scholar
  114. Randell, K., Ahvenainen, R., Latva-Kala, K., Hurme, E., Mattila-Sandholm, T., & Hyvonen, L. (1995). Modified atmosphere-packed marinated chicken breast and rainbow trout quality as affected by package leakage. Journal of Food Science, 60, 667–672.CrossRefGoogle Scholar
  115. Rasmussen, S. K. J., Ross, T., & McMeekin, T. (2002). A process risk model for the shelf life of Atlantic salmon fillets. International Journal of Food Microbiology, 73, 47–60.CrossRefGoogle Scholar
  116. Riordan, D. C. R., Duffy, G., Sheridan, J. J., Whiting, R. C., Blair, I. S., & McDowell, D. A. (2000). Effects of acid adaptation, product pH, and heating on survival of Escherichia coli O157:H7 in pepperoni. Applied Environmental Microbiology, 66, 1726–1729.CrossRefGoogle Scholar
  117. Roca, C., & Olsson, L. (2001). Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition. Journal of Biotechnology, 86, 39–50.CrossRefGoogle Scholar
  118. Rokka, M., Eerola, S., Smolander, M., Alakomi, H. L., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler chicken cuts in different temperature conditions B. Biogenic amines as quality-indicating metabolites, Food Control, 15, 601–607.CrossRefGoogle Scholar
  119. Schmitt, R. E., & Schmidt-Lorenz, W. (1992a). Formation of ammonia and amines during microbial spoilage of refrigerated broilers. Lebensmittel-Wissenschaft und-Technologie, 25, 6–10.Google Scholar
  120. Schmitt, R. E., & Schmidt-Lorenz, W. (1992b). Degradation of amino acids and protein changes during microbial spoilage of chilled unpacked and packed chicken carcasses. Lebensmittel-Wissenschaft und-Technologie, 25, 11–20.Google Scholar
  121. Seymour, I. J., Cole, M. B., & Coote, P. J. (1994). A substrate-mediated assay of bacterial proton effux/influx to predict the degree of spoilage of beef mince stored at chill temperatures. Journal of Applied Bacteriology, 76, 608–615.Google Scholar
  122. Shelef, L. A. (1989). Survival of Listeria monocytogenes in ground beef or liver during storage at 4 and 25°C. Journal of Food Protection, 52, 379–383.Google Scholar
  123. Shu, H. C., Hakanson, E. H., & Mattiason, B. (1993). D-Lactic acid in pork as a freshness indicator monitored by immobilized d-lactate dehydrogenase using sequential injection analysis. Analytica Chimica Acta, 283, 727–737.CrossRefGoogle Scholar
  124. Siragusa, G. R., Dorsa, W. J., Cutter, C. N., Perino, L. J., & Koohmaraie, M. (1996). Use of a newly developed rapid microbial ATP bioluminescence assay to detect microbial contamination on poultry carcasses. Journal of Bioluminescence and Chemiluminescence, 11, 297–301.CrossRefGoogle Scholar
  125. Skandamis, P. N., Tsigarida, E., & Nychas, G.-J. E. (2002). The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5°C under aerobic, VP/MAP conditions. Food Microbiology, 19, 97–103.CrossRefGoogle Scholar
  126. Smith, J. L., Fratamico, P. M., & Novak, J. S. (2004). Quorum sensing: A primer for food microbiologists. Journal of Food Protection, 67,1053–1070.Google Scholar
  127. Smolander, M. (2003). The use of freshness indicators in packaging. In R. Ahvenainen, (Ed.), Novel food packaging techniques (pp. 128–143). Cambridge: Woodhead Publishing Ltd.Google Scholar
  128. Sorheim, O., Nissen, H., & Nesbakken, T. (1999). The storage life of beef and pork packaged in an atmosphere with low carbon monoxide and high carbon dioxide. Meat Science, 52, 157–164.CrossRefGoogle Scholar
  129. Stanbridge, L. H., & Davies, A. R. (1998). The microbiology of chill-stored meat. In R. G. Board & A. R. Davies (Eds.), The microbiology of meat and poultry (pp. 174–219). London: Blackie Academic and Professional.Google Scholar
  130. Stannard, C. J., & Wood, J. M. (1983). The rapid estimation of microbial contamination of raw meat by measurement of adenosine triphosphate (ATP). Journal of Applied Bacteriology, 55, 429–438.Google Scholar
  131. Stutz, H. K., Silverman, G. J., Angelini, P., & Levin, R. E. (1991). Bacteria and volatile compounds associated with ground beef spoilage. Journal of Food Science, 56, 1147–1153.CrossRefGoogle Scholar
  132. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.CrossRefGoogle Scholar
  133. Tsigarida, E., Boziaris, I. S., & Nychas, G.-J. E. (2003). Bacterial synergism or antagonism in a Gel Cassette system. Applied Environmental Microbiology, 69, 7204–7209.CrossRefGoogle Scholar
  134. Tsigarida, E., & Nychas, G.-J. E. (2001). Ecophysiological attributes of a Lactobacillus sp. and a Pseudomonas sp. on sterile beef fillets in relation to storage temperature and film permeability. Journal of Applied Microbiology, 90, 696–705.CrossRefGoogle Scholar
  135. Tsigarida, E., Skandamis, P., & Nychas, G.-J. E. (2000). Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5°C. Journal of Applied Microbiology, 89, 901–909.CrossRefGoogle Scholar
  136. Vainonpaa, J., Smolander, M., Alakomi, H.-L., Ritvanen, T., Rajamaki, Rokka, M., & Ahvenainen, R. (2004). Comparison of different analytical methods in the monitoring of the quality of modified atmosphere packaged broiler chicken cuts using principle components analysis. Journal of Food Engineering, 65, 273–280.Google Scholar
  137. Van Netten, P., Valentijn, A., Mossel, D. A. A., & Huis in’t Veld, J. H. J. (1998). The survival and growth of acid-adapted mesophilic pathogens that contaminate meat after lactic acid decontamination. Journal of Applied Microbiology, 84, 559–567.Google Scholar
  138. Varnam, A. H., & Evans, M. G. (1991) Foodborne pathogens: An illustrated text. London: Wolfe Publishing Ltd.Google Scholar
  139. Vermeiren, L., Devlieghere, F., & Debevere, J. (2002). Effectiveness of some recent antimicrobial packaging concepts. Food Additives and Contaminants, 19(Suppl. 1), 163–171.CrossRefGoogle Scholar
  140. Walls, I., Sheridan, J. J., Welch, R. W., & Mcdowell, D. A. (1990). Separation of microorganisms from meat and their rapid enumeration using a membrane filtration – epifluorescent microscopy technique. Letters in Applied Microbiology, 10, 23–26.CrossRefGoogle Scholar
  141. Wimpfhimer, L., Altman, N. S., & Hotchkiss, J. H. (1990). Growth of Listeria monocytogenes Scott A, serotype 4 and competitive spoilage organism in raw chicken packaged under modified atmospheres and in air. International Journal of Food Microbiology, 11, 205–214.CrossRefGoogle Scholar
  142. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: Concepts and applications. Journal of Food Science, 70, 1–10.CrossRefGoogle Scholar
  143. Yano, Y., Kataho, N., Wataanabe, M., & Nakamura, T. (1995). Changes in the concentration of biogenic amines and application of tyramine sensor during storage of beef. Food Chemistry, 54, 155–159.CrossRefGoogle Scholar
  144. Yoshikawa, Y., Nawata, T., Goto, M., & Fujii, Y. (1987). Oxygen indicator. US Patent 4169811.Google Scholar
  145. Zagory, D. (1999). Effects of post-processing handling and packaging on microbial populations. Postharvest Biology and Technology, 15, 313–321.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Spiros Paramithiotis
    • 1
  • P.N. Skandamis
    • 1
  • George-John E. Nychas
    • 2
  1. 1.Laboratory of Food Quality Control and Hygiene, Department of Food Science and TechnologyAgricultural University of AthensGreece
  2. 2.Department of Food Science and TechnologyAgricultural University of AthensAthensGreece

Personalised recommendations