Advertisement

Predictive Modeling of Pathogen Growth in Cooked Meats

  • Harshavardhan Thippareddi
  • Jeyamkondan Subbiah
  • Nageswara Rao Korasapati
  • Marcos X. Sanchez-Plata
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Thermal processing or cooking of food products has been adopted for centuries as a method of food preservation. Enhancement of product quality parameters such as color, flavor, and texture probably contributed to the adoption of the method for a variety of products. Today, cooking or thermal processing is one of the most commonly used unit operation in the food industry. The significant advantages to cooking of meat and poultry products include extension of shelf life, desirable organoleptic properties, enhanced economic value, and assurance of safety of the products.

A variety of cooking technologies has been used in the meat industry, including traditional thermal processing (moist or dry heat, or a combination), microwaves, radio frequencies, infrared, and combination treatments. The cooking methods adopted for a specific product depend on the raw materials to be used, ingredients used, and the end product characteristics desired. Table 22.1provides a list of various...

Keywords

Maximum Specific Growth Rate Foodborne Pathogen Poultry Product Foodborne Illness Gompertz Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adak, G. K., Long, S. M., & O’Brien, S. J. (2002). Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut, 51, 832–841.Google Scholar
  2. ACMSF (Advisory Committee on the Microbiological Safety of Food). (1992). Report on vacuum packaging and associated processes. London, UK: Her Majesty’s Stationery Office.Google Scholar
  3. Agata, N., Ohta, M., Mori, M., & Isobe, M. (1995). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiology Letters, 129, 17–20.Google Scholar
  4. Amezquita, A., Weller, C. L., Wang, L., Thippareddi, H., & Burson, D. E. (2005). Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham. International Journal of Food Microbiology, 101, 123–144.Google Scholar
  5. Ando, X., Suzuki, T., Sunagawa, H., & Oka, S. (1985). Heat resistance, spore germination and enterotoxigenicity of Clostridium perfringens. Microbiology and Immunology, 29, 317–326.Google Scholar
  6. Austin, J. W., & Dodds, K. L. (2001). Clostridium botulinum. In Y. H. Hui, M. D. Pierson, & R. J. Gould (Eds.), Foodborne diseases handbook (IInd edn., pp. 107–138). New York: Marcel Dekker.Google Scholar
  7. Baker, J. M., & Griffiths, M. W. (1993). Predictive modeling of psychrotrophic Bacillus cereus. Journal of Food Protection, 56, 684–688.Google Scholar
  8. Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294.Google Scholar
  9. Baranyi, J., Robinson, T. P., Kaloti, A., & Mackey, B. M. (1995). Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27, 61–75.Google Scholar
  10. Bellara, S. R., McFarlane, C. M., Thomas, C. R., & Fryer, P. J. (2000). The growth of Escherichia coli in a food simulant during conduction cooling: combining engineering and microbiological modeling. Chemical Engineering Science, 55, 6085–6095.Google Scholar
  11. Benedict, R. C., Partridge, T., Wells, D., & Buchanan, R. L. 1993. Bacillus cereus: aerobic growth kinetics. Journal of Food Protection, 56, 211–214.Google Scholar
  12. Betts, G. D. (1998). Critical factors affecting the safety of minimally processed chilled foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry. Gaithersburg, MD: Aspen Publishers, Inc.Google Scholar
  13. Bhunia, A. K. (2008). Foodborne microbial pathogens-mechanisms and pathogenesis (pp. 158–159). New York: Springer.Google Scholar
  14. Cato, E. P., George, W. L., & Finegold, S. M. (1986). Section 13: Genus Clostridium. In P. H. Sneath, N. S. Mair, M. E. Sharpe, & J. G. Holts (Eds.), Bergey’s manual of systematic bacteriology (p. 1141). Baltimore, MD: Williams and Wilkens.Google Scholar
  15. Choma, C., Clavel, H., Dominguez, H., Razafindramboa, N., Soumille, H., Nguyen-the, C. et al. (2000). Effect of temperature on growth characteristics of Bacillus cereus TZ415. International Journal of Food Microbiology, 55, 73–77.Google Scholar
  16. Chorin, E., Thuault, D., Cleret, J. J., & Bourgeois, C. M. 1997. Modelling B. cereus growth. International Journal of Food Microbiology, 38, 229–234.Google Scholar
  17. Church I. (1998). The sensory quality, microbiological safety and shelf-life of packaged foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry. Gaithersburg, MD: Aspen Publishers, Inc.Google Scholar
  18. Creed, P. G. (1998). Sensory and nutritional aspects of sous vide processed foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry (pp. 57–88). Gaithersburg, MD: Aspen Publishers, Inc.Google Scholar
  19. Daniels, R. W. (1991). Applying HACCP to new-generation refrigerated foods at retail and beyond. Food Technology, 45, 122, 124.Google Scholar
  20. Dodds, K. L. (1993).Clostridium botulinum in the environment. In A. H. W. Hauschild, & K. L. Dodds (Eds.), Clostridium botulinum, Ecology and Control in Foods (pp. 21–51). New York: Marcel Dekker.Google Scholar
  21. DoH (Department of Health). (1989). Chilled and frozen foods. Guidelines on cook-chill and cook-freeze catering systems. HMSO: London.Google Scholar
  22. ECFF (European Chilled Food Federation). (1996). Guidelines for the Hygienic Manufacture of Chilled Foods. Helsinki: The European Chilled Food Federation.Google Scholar
  23. Elliott, P. H., & Schaffner, D. W. (2001). Germination, growth, and toxin production of nonproteolytic Clostridium botulinum as affected by multiple barriers. Journal of Food Science, 66, 575–579.Google Scholar
  24. Fain, A. L., Line, J. E., Moran, A. B., Martin, L. M., Lechowich, R. V., Carosella, J. M. et al. (1991). Lethality of heat to Listeria monocytogenes Scott A: D value and Z value determinations in ground beef and turkey. Journal of Food Protection, 54, 756–761.Google Scholar
  25. Farber, J. M., Pagotto, F., & Sherf, C. (2007). Incidence and behavior of Listeria monocytogens in meat products. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, listeriosis and food safety (3rd edn., pp. 503–570). New York: CRC Press.Google Scholar
  26. Farber, J. M., Daley, E. M., MackKie, M. T., & Limerick, B. (2000). A small outbreak of listeriosis potentially linked to the consumption of imitation crab meat. Letters in Applied Microbiology, 31, 100–104.Google Scholar
  27. Fernandez, P. S., Baranyi, J., & Peck, M. W. (2001). A predictive model of growth from spores of non-proteolytic Clostridium botulinum in the presence of different CO2 concentrations as influenced by chill temperature, pH and NaCl. Food Microbiology, 18, 453–461.Google Scholar
  28. Frye, D. M., Zweig, R., Sturgeon, J., Tormey, M., LeCavalier, M., Lee, I., et al. (2002). An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clinical Infectious Diseases, 35, 943–949.Google Scholar
  29. Gellin, B. G., & Broome, C. V. (1989). Listeriosis. Journal of American Medical Association, 261, 1313–132.Google Scholar
  30. Genigeorgis, C. A., Meng, J., & Baker, D. A. (1991). Behavior of nonproteolytic Clostridium botulinum type B and E spores in cooked turkey and modeling lag phase and probability of toxigenesis. Journal of Food Science, 56, 373–379.Google Scholar
  31. Gibson, A. M., Bratchell, N., & Roberts, T. A. (1987). The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. Journal of Applied Bacteriology, 62, 479–490.Google Scholar
  32. Gibson, A. M., & Eyles, J. M. (1989). Changing perceptions of foodborne botulism. CSIRO Food Research Quarterly, 49, 46–59.Google Scholar
  33. Gilbert, R. J., Mclauchlin, J., & Velani, S. K. (1993). The contamination of pate by Listeria monocytogenes in England and Wales in 1989 and 1990. Epidemiology and Infection, 110, 543–555.Google Scholar
  34. Gould, G. W. (1996). Conclusions of the ECFF botulinum working party. In Proceedings of second European symposium on sous vide, 10–12 April 1996 (pp. 173–180), Alma University Restaurants/FAIR, University of Leuven, Belgium.Google Scholar
  35. Graham, A. F., Mason, D. R., Maxwell, F. J., & Peck, M. W. (1997). Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperatures. Letters in Applied Microbiology, 24, 95–100.Google Scholar
  36. Grant, I. R., & M. F. Patterson (1995). Combined effect of gamma radiation and heating on the destruction of Listeria monocytogenes and Salmonella Typhimurium in cook-chill roast beef and gravy. International Journal of Food Microbiology, 27, 117–128.Google Scholar
  37. Granum, P. E. (1990). Clostridium perfringens toxins involved in food poisoning. International Journal of Food Microbiology, 10, 101–112.Google Scholar
  38. Granum, P. E., Bryenstad, S., & Kramer, J. M. (1993). The enterotoxin from Bacillus cereus: production and biochemical characterization. Netherlands Milk and Dairy Journal, 47, 63–70.Google Scholar
  39. Granum, P. E., & Baird Parker, T. C. (2000). Bacillus species. In B. M. Lund, T. C., Baird Parker, & G. W. Gould (Eds.), The microbiological safety and quality of foods (Vol. 2, pp. 1029–1039). Frederick, MD: Aspen Publishers.Google Scholar
  40. Granum. P. E. (1994). Bacillus cereus and its toxins. Journal of Applied Bacteriology, Symposium Supplement, 76, 61S–66S.Google Scholar
  41. Harris, R. D. (1989). Kraft builds safety into next generation refrigerated foods. Food Process, 50, 111–112, 114.Google Scholar
  42. Hatheway, C. L. (1993). Clostridium botulinum and other clostridia that produce botulinum enterotoxin. In A. H. W. Hauschild, & K. L. Dodds (Eds.), Clostridium botulinum, ecology and control in foods (pp. 3–20). New York: Marcel Dekker.Google Scholar
  43. Huang, L. (2002). Description of growth of Clostridium perfringens in cooked beef with multiple linear models. Food Microbiology, 19, 577–587.Google Scholar
  44. Huang, L. (2003). Dynamic simulation of Clostridium perfringens growth in cooked ground beef. International Journal of Food Microbiology, 87, 217–227.Google Scholar
  45. Hudson, J. A., Mott, S. J., & Penney, N. (1994). Growth of Listeria monocytogenes, Aeromonas hydrophila, and Yersinia enterocolitica on vacuum and saturated carbon dioxide controlled atmosphere–packaged sliced roast beef. Journal of Food Protection, 57, 204–208.Google Scholar
  46. Hyytiä-Trees, E., Skyttä, E., Mokkila, M., Kinnunen, A., Lindström, M., Lähteenmäki, L. et al. (2000). Safety evaluation of sous vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models. Applied and Environmental Microbiology, 66, 223–229.Google Scholar
  47. International Commission on Microbiological Specifications for Foods. (1996a). Bacillus cereus. In T. A. Roberts., T. C. Baird Parker, & R. B. Tompkin (Eds.), Microorganisms in foods 5, Characteristics of microbial pathogens (pp. 20–35). New York: Blackie Academic & Professional.Google Scholar
  48. International Commission on Microbiological Specifications for Foods. (1996b). Clostridium perfringens. In T. A. Roberts., T. C. Baird Parker, & R. B. Tompkin (Eds.), Microorganisms in foods 5, characteristics of microbial pathogens (pp. 112–125). New York: Blackie Academic & Professional.Google Scholar
  49. International Commission on Microbiological Specifications for Foods. (1996c). Listeria monocytogenes. In T. A. Roberts., T. C. Baird Parker, & R. B. Tompkin (Eds.), Microorganisms in foods 5, characteristics of microbial pathogens (pp. 141–182). New York: Blackie Academic & Professional.Google Scholar
  50. Jacquet, C., Catimel, B., Brosch, R., Buchrieser, C., Dehaumont, P., Goulet, V. et al. (1995). Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Applied and Environmental Microbiology, 61, 2242–3346.Google Scholar
  51. Johnson, J. L., Doyle, M. P., Cassens, R. G., & Schoeni, J. L. (1988). Fate of Listeria monocytogenes in experimentally infected cattle and in hard salami. Applied and Environmental Microbiology, 54, 497–501.Google Scholar
  52. Juneja, V. K. (1998). Hazards associated with non-proteolytic Clostridium botulinum and other spore-formers in extended-life refrigerated foods. In S. Ghazala (Ed.), Sous vide and cook-chill processing for the food industry (pp. 234–273). Gaithersburg, MD: Aspen Publishers, Inc.Google Scholar
  53. Juneja, V. K., Marmer, B. S., Phillips, J. G., & Palumbo, S. A. (1996). Interactive effects of temperature, initial pH, sodium chloride, and sodium pyrophosphate on the growth kinetics of Clostridium perfringens. Journal of Food Protection, 59, 963–968.Google Scholar
  54. Juneja, V. K., Whiting, R. C., Marks, H. M., & Snyder, O. P. (1999). Predictive model for growth of Clostridium perfringens at temperatures applicable to cooling of cooked meat. Food Microbiology, 16, 335–349.Google Scholar
  55. Kalish, F. (1991). Extending the HACCP concept to product distribution. Food Technology, 45, 119–120.Google Scholar
  56. Kerr, K. G., Birkenhead, D., & Seale, K. (1993). Prevalence of Listeria spp. on the hands of food workers. Journal of Food Protection, 56, 525–527.Google Scholar
  57. Konuma, H., Shinagawa, K., & Tokumaru, M. (1988). Occurrence of Bacillus cereus in meat products, raw meats and meat additives. Journal of Food Protection, 51, 324–326.Google Scholar
  58. Kramer, J. M., & Gilbert, R. J. (1989). Bacillus cereus and other Bacillus species. In M. P. Doyle (Ed.), Foodborne bacterial pathogens (pp. 21–70). New York: Marcel Dekker.Google Scholar
  59. Labbe, R. G., & Huang, T. H. (1995). Generation times and modeling of enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground beef. Journal of Food Protection, 58, 1303–1306.Google Scholar
  60. Labbe, R. G. (2000). Clostridium perfringens. In B. M. Lund, T. C. Baird Parker, & G. W. Gould (Eds.), In The microbiological safety and quality of foods (Vol. 2, pp. 1110–1135). Frederick, MD: Aspen Publishers.Google Scholar
  61. Labbe, R. G., & Juneja, V. K. (2006). Clostridium perfringens gastroenteritis. In H. P. Riemann, & D. O. Cliver (Eds.), Foodborne infections and intoxications (3rd edn., pp. 137–184). New York: Academic Press.Google Scholar
  62. Larson, A. E., Johnson, E. A., & Nelson, J. H. (1999). Survival of Listeria monocytogenes in commercial cheese brines. Journal of Dairy Science, 82, 860–1868.Google Scholar
  63. Lawrence, L., & Gilmour, A. (1995). Characterization of Listeria monocytogenes isolated from poultry products and from the poultry processing environment by random amplification of polymorphic DNA and multilocus enzyme electrophoresis. Applied and Environmental Microbiology, 61, 2139–2144.Google Scholar
  64. Legan, J. D., Seman, D. L., Milkowski, A. L., Hirschey, J. A., & Vandeven, M. H. (2004). Modeling the growth boundary of Listeria monocytogenes in ready-to-eat cooked meat products as a function of the product salt, moisture, potassium lactate, and sodium diacetate concentrations. Journal of Food Protection, 67, 2195–2204.Google Scholar
  65. Le Marc, Y., Pin, C., & Baranyi, J. (2005). Methods to determine the growth domain in a multidimensional environmental space. International Journal of Food Microbiology, 100, 3–12.Google Scholar
  66. Lindroth, S. E., & Genigeorgis, C. A. (1986). Probability of growth and toxin production by nonproteolytic Clostridium botulinum in rockfish stored under modified atmospheres. International Journal of Food Microbiology, 3, 167–181.Google Scholar
  67. Lindström, M., Mokkila, M., Skyttä, E., Hyytiä-Trees, E., Lähteenmäki, L., Sebastian, H., et al. (2001). Inhibition of growth of nonproteolytic Clostridium botulinum type b in sous vide cooked meat products is achieved by using thermal processing but not Nisin. Journal of Food Protection, 64, 838–844.Google Scholar
  68. Lund, B. M., & Peck, M. W. (2000). Clostridium botulinum. In B. M. Lund, T.C., Baird Parker, & G. W. Gould (Eds.), The microbiological safety and quality of foods (Vol. 2, pp. 1057–1109). Frederick, MD: Aspen Publishers.Google Scholar
  69. McClure, P. J., Cole, M. B., & Smelt, J. P. P. M. (1994). Effects of water activity and pH on growth of Clostridium botulinum. Journal of Applied Bacteriology, Symposium Supplement, 76, 105S–114S.Google Scholar
  70. McMeekin, T. A., J. Olley, T. Ross., & D. A. Ratkowsky. (1993). Predictive microbiology: theory and application. Taunton: Research Studies Press.Google Scholar
  71. Mead, P. S., Vance Dietz, L. S., McCaig, L. F., Bresee, J. S., Shapiro, C. M. Griffin, P. M., et al. (1999). Food-Related Illness and Death in the United States. Emerging Infectious Diseases, 5, 607–625.Google Scholar
  72. Miller, A. J. (1992). Combined water activity and solutes effect on growth and survival of Listeria monocytogenes Scott A. Journal of Food Protection, 55, 414–418.Google Scholar
  73. Ministère de ĺ Agriculture. (1974). Réglementation des conditions d'hygiène relatives à la préparation., la conservation, la distribution et la vente des plats cuisinés à l'avance (Arrêtê du 26 Juin 1974). Journal Officiel de la Republique Française, 16 juillet 1974, 7397–7399.Google Scholar
  74. Ministère de ĺ Agriculture. (1988). Prolongation de la dureé de vie des plats cuisinés à ĺavance , modification du protocole permettant d'obtenir les autorisations (Note de Service DGAL/SVHA/N88/8106 du 31 Mai 1988), Service Vétérinaire d'Hygiéne Alimetaire, Paris.Google Scholar
  75. Monsalve, D. (2008). Development of predictive models for the growth of Listeria monocytogenes on ready-to-eat meat and poultry products (Doctoral dissertation, University of Nebraska, Lincoln, 2008).Google Scholar
  76. Nissen, J., Rosnes, J. T., Brendehaug, J., & Kleiberg, G. H. (2002). Safety evaluation of sous-vide processed ready meals. Letters in Applied Microbiology, 35, 433–438.Google Scholar
  77. Nolan, D. A., Chamblin, D. C., & Troller, J. A. (1992). Minimal water activity levels for growth and survival of Listeria monocytogenes and Listeria innocua. International Journal of Food Microbiology, 16, 323–335.Google Scholar
  78. Olmez, H. K., & Aran, N. (2005). Modeling the growth kinetics of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations. International Journal of Food Microbiology, 98, 135–143.Google Scholar
  79. Painter, J., & Slustker, L. (2007). Listeriosis in humans. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, listeriosis and food safety (3rd edn., pp. 85–109). New York: CRC Press.Google Scholar
  80. Parkinson, N. G., & Ito, K. A. (2006). Clostridium botulinum. In H. P. Riemann, & D. O. Cliver (Eds.), Foodborne Infections and Intoxications (3rd edn., pp. 485–521). New York: Academic Press.Google Scholar
  81. Peck, M. W. (2006). Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? Journal of Applied Microbiology, 101, 556–570.Google Scholar
  82. Petran, R. L., & Zottola, E. A. (1989). A study of factors affecting growth and survival of Listeria monocytogenes Scott A. Journal of Food Science, 54, 458–460.Google Scholar
  83. Phan-Thanh, L. (1998). Physiological and biochemical aspects of the acid survival of Listeria monocytogenes. Journal of General and Applied Microbiology, 44, 183–191.Google Scholar
  84. Pociecha, J., Smith, Z., & Manderson, G. J. (1991). Incidence of Listeria monocytogenes in meat production environments of a South Island (New Zealand) mutton slaughter house. International Journal of Food Microbiology, 13, 321–327.Google Scholar
  85. Quintavalla, S., & Parolari, G. 1993. Effects of temperature, water activity and pH on the growth of Bacillus cells and spores: A response surface methodology study. International Journal of Food Microbiology, 19, 207–216.Google Scholar
  86. Ranken, M. D. 2000. Handbook of meat product technology. Oxford, UK: Blackwell Science Ltd.Google Scholar
  87. Ratkowsky, D. A. (2002). Some examples of, and some problems with the use of nonlinear logistic regression in predictive food microbiology. International Journal of Food Microbiology, 73, 119–125.Google Scholar
  88. Rhodehamel, E. J. (1992). FDA’s concerns with sous vide processing. Food Technology 46, 73–76.Google Scholar
  89. Roberts, T. A., Gibson, A., & Robinson, A. (1981). Prediction of toxin production by Clostridium botulinum in pasteurized pork slurry. Journal of Food Technology, 16, 337–355.Google Scholar
  90. Rocourt, J., & Buchrieser, C. (2007). The Genus Listeria and Listeria monocytogenes: Phylogenetic position, taxonomy and identification. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, Listeriosis and Food Safety (3rd edn., pp. 1–20). New York: CRC Press.Google Scholar
  91. Rogers, A. M., & Montville, T. J. (1994). Quantification of factors which influence nisin’s inhibition of Clostridium botulinum 56A in a model food system. Journal of Food Science, 59, 663–668, 686.Google Scholar
  92. Sauders, B. D., & Wiedmann, M. (2007). Ecology of Listeria species and L. monocytogens in the natural environment. In E. H. Marth, & E. T. Ryser (Eds.), Listeria, listeriosis and food safety (3rd edn., pp. 21–53). New York: CRC Press.Google Scholar
  93. Schaffner, D. W., Ross, W. H., & Montville, T. J. (1998). Analysis of the influence of environmental parameters on Clostridium botulinum time-to-toxicity by using three modeling approaches. Applied and Environmental Microbiology, 64, 4416–4422.Google Scholar
  94. Seman, D. L., Borger, A. C., Meyer, J. D., Hall, P. A., & Milkowski, A. L. (2002). Modeling the growth of Listeria monocytogenes in cured ready-to-eat processed meat products by manipulation of sodium chloride, sodium diacetate, potassium lactate, and product moisture content. Journal of Food Protection, 65, 651–658.Google Scholar
  95. Seman, D. L., Quickert, S. C., Borger, A. G., & Meyer, J. D. (2008). Inhibition of Listeria monocytogenes growth in cured ready-to-eat meat products by use of sodium benzoate and sodium diacetate. Journal of Food Protection, 71, 1386–1392.Google Scholar
  96. Shapiro, R. L., Hatheway, C. L., & Swerdlo, D. L. (1998). Botulism in the United States: a clinical and epidemiologic review. Annals of International Medicine, 129, 221–228.Google Scholar
  97. Smart, J., Roberts, T. A., Stringer, F., & Shah, N. (1979). The incidence and serotypes of Clostridium perfringens on beef, pork, and lamb carcasses. Journal of Applied Bacteriology, 46, 377–383.Google Scholar
  98. Smith, L. D. S., & Sugiyama, H. (1988). Botulism: The organism, its toxins, the disease (2nd edn). Springfield, IL: Charles C Thomas.Google Scholar
  99. Smith, S., & Schaffner, D. M. (2004). Evaluation of a predictive model for Clostridium perfringens growth during cooling. Journal of Food Protection, 67, 1133–1137.Google Scholar
  100. SVAC (Sous vide Advisory Committee). (1991). Codes of Practice for sous vide catering systems. Tetbury, UK.Google Scholar
  101. Ter Steeg, P. F., & Cuppers, H. G. A. M. (1995). Growth of proteolytic Clostridium botulinum in process cheese products: II. predictive modeling. Journal of Food Protection, 58, 1100–1108.Google Scholar
  102. Thippareddi, H., Juneja, V. K., Phebus, R. K., Marsden, J. L., & Kastner, C. L. (2003). Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of roast beef and injected pork. Journal of Food Protection; 66, 376–381.Google Scholar
  103. USDA-FSIS. (1999). Performance Standards for the production of certain meat and poultry products, Final Rule. FSIS Directive 7111.1, U. S. Department of Agriculture, Food Safety and Inspection Service, Washington, D.C. Federal Register, 64, 732–749.Google Scholar
  104. USDA-FSIS. (2000). Food additives for use in meat and poultry products: sodium diacetate, sodium acetate, sodium lactate and potassium lactate: Direct final rule. Federal Register, 65, 3121–3123.Google Scholar
  105. USDA-FSIS. (2003). Control of Listeria monocytogenes in Ready-to-Eat Meat and Poultry Products; Final Rule. 9 CFR Part 430 U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, D.C.Google Scholar
  106. Van der Elen, A. M. G., & Snijders, J. M. A. (1993). Critical points in meat production lines regarding the introduction of Listeria monocytogenes. Veterinary Quarterly, 15, 143–145.Google Scholar
  107. Whiting, R. C., & Call, J. E. (1993). Time of growth model for proteolytic Clostridium botulinum. Food Microbiology, 10, 295–301.Google Scholar
  108. Whiting, R. C., & Oriente, J. C. (1997). Time-to-turbidity model for nonproteolytic type B Clostridium botulinum. International Journal of Food Microbiology, 36, 49–60.Google Scholar
  109. Whiting, R. C. (1995). Microbial modeling in foods. Critical Reviews in Food Science and Nutrition, 35, 465–494.Google Scholar
  110. Willardsen, R. R., Busta, F. F., & C. E. Allen. (1979). Growth of Clostridium perfringens in three different beef media and fluid thioglycollate medium at static and constantly rising temperatures. Journal of Food Protection, 42, 144–148.Google Scholar
  111. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van't Riet K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881.Google Scholar
  112. Zwietering, M. H., De Koos, J. T., Hasenack, B. E., De Wit, J. C., & van’t Riet, K. (1991). Modeling of the bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Harshavardhan Thippareddi
    • 1
  • Jeyamkondan Subbiah
    • 1
  • Nageswara Rao Korasapati
    • 1
  • Marcos X. Sanchez-Plata
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of NebraskaLincolnUSA

Personalised recommendations