Advertisement

Principles of Predictive Modeling

  • Marie Laure Delignette-Muller
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Mathematical models were first used in food microbiology in the early 20th century to describe the thermal destruction of pathogens in food, but the concept of predictive microbiology really emerged in the 1980 s. This concept was first developed and extensively discussed by McMeekin and his colleagues at the University of Tasmania (Ratkowsky, Olley, McMeekin, & Ball, 1982; McMeekin, Olley, Ross, & Ratkowsky, 1993; McMeekin, Olley, Ratkowsky, & Ross, 2002). Now predictive microbiology or predictive modeling in foods may be considered as a subdiscipline of food microbiology, with its international meetings (5th conference on “Predictive Modelling in Foods” in 2007) gathering a scientific community from all over the world.

In predictive microbiology, mathematical models are used to predict the behavior of a microbial population in food from a detailed knowledge of the type of microorganism and of its environmental conditions (intrinsic and extrinsic factors characterizing...

Keywords

Polynomial Model Primary Model Maximum Specific Growth Rate Initial Cell Concentration Food Microbiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albert, I., & Mafart, P. (2005). A modified Weibull model for bacterial inactivation. International Journal of Food Microbiology, 100, 197–211.CrossRefGoogle Scholar
  2. Antwi, M., Bernaerts, K., Van Impe, J. F., & Geeraerd, A. H. (2007). Modelling the combined effects of structured food model system and lactic acid on Listeria innocua and Lactococcus lactis growth in mono- and coculture. International Journal of Food Microbiology, 120, 71–84.CrossRefGoogle Scholar
  3. Aragao, G. M., Corradini, M. G., Normand, M. D., & Peleg, M. (2007). Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions. International Journal of Food Microbiology, 119, 243–257.CrossRefGoogle Scholar
  4. Augustin, J. C., Brouillaud-delattre, A., Rosso, L., & Carlier, V. (2000). Significance of inoculum size in the lag time of Listeria monocytogenes. Applied and Environmental Microbiology, 66, 1706–1710.CrossRefGoogle Scholar
  5. Augustin, J. C., & Carlier, V. (2000b). Mathematical modeling of the growth rate and lag time for Listeria monocytogenes. International Journal of Food Microbiology, 56, 29–51.CrossRefGoogle Scholar
  6. Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294.CrossRefGoogle Scholar
  7. Baranyi, J., Robinson, T. P., Kaloti, A., & Mackey, B. M. (1995). Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27, 61–75.CrossRefGoogle Scholar
  8. Baranyi, J., Ross, T., McMeekin, T. A., & Roberts, T. A. (1996). Effects of parameterization on the performance of empirical models used in 'predictive microbiology'. Food. Microbiology, 13, 83–91.CrossRefGoogle Scholar
  9. Baranyi, J. (1998). Comparison of stochastic and deterministic concepts of bacterial lag. Journal of Theor. Biology, 192, 403–408.CrossRefGoogle Scholar
  10. Baty, F., & Delignette-Muller, M. L. (2004). Estimating the bacterial lag time: which model, which precision? International Journal of Food Microbiology, 91, 261–277.CrossRefGoogle Scholar
  11. Bernaerts, K., Dens, E., Vereecken, K., Geeraerd, A., Devlieghere, F., Debevere, J., et al. (2004). Modeling microbial dynamics under time-varying conditions. In R. C. McKellar, & X. Lu (Eds.), Modelling microbial responses in food (pp. 243–261). Boca Raton, FL: CRC Press.Google Scholar
  12. Buchanan, R. L., & Bagi, L. K. (1994). Expansion of response surface models for the growth of Escherichia coli O157:H7 to include sodium nitrite as a variable. International Journal of Food Microbiology, 23, 317–332.CrossRefGoogle Scholar
  13. Buchanan, R. L., Whiting, R. C., & Damert, W. C. (1997). When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology, 14, 313–326.CrossRefGoogle Scholar
  14. Couvert, O., Gaillard, S., Savy, N., Mafart, P., & Leguérinel, I. (2005). Survival curves of heated bacterial spores: effect of environmental factors on Weibull parameters. International Journal of Food Microbiology, 101, 73–81.CrossRefGoogle Scholar
  15. Delignette-Muller, M. L. (1998). Relation between the generation and the lag time of bacterial growth kinetics. International Journal of Food Microbiology, 43, 97–104.Google Scholar
  16. Delignette-Muller, M. L., & Rosso, L. (2000). Biological variability and exposure assessment. International Journal of Food Microbiology, 58, 203–212.CrossRefGoogle Scholar
  17. Delignette-Muller, M. L., Baty, F., Cornu, M. & Bergis, H. (2005). Modelling the effect of a temperature shift on the lag phase duration of Listeria monocytogenes. International Journal of Food Microbiology, 100, 77–84.Google Scholar
  18. Delignette-Muller, M. L., Cornu, M., Pouillot, R., & Denis, J. B. (2006). Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon. International Journal of Food Microbiology, 106, 195–208.CrossRefGoogle Scholar
  19. Fernández, A., López, M., Bernardo, A., Condón, S., & Raso, J. (2007). Modelling thermal inactivation of Listeria monocytogenes in sucrose solutions of various water activities. Food Microbiology, 24, 372–379.CrossRefGoogle Scholar
  20. Francois, K., Devlieghere, F., Smet, K., Standaert, A. R., Geeraerd, A. H., Van Impe, J. F., et al. (2005). Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes. International Journal of Food Microbiology, 100, 41–53.CrossRefGoogle Scholar
  21. Geeraerd, A. H., Herremans, C. H., & Van Impe, J. F. (2000). Structural model requirements to describe microbial inactivation during mild heat treatment. International Journal of Food Microbiology, 59, 185–209.CrossRefGoogle Scholar
  22. Geeraerd, A. H., Valdramidis, V. P., Devlieghere, F., Bernaert, H., Debevere, J., & Van Impe, J. F. (2004). Development of a novel approach for secondary modelling in predictive microbiology: incorporation of microbiological knowledge in black box polynomial modelling. International Journal of Food Microbiology, 91, 229–44.CrossRefGoogle Scholar
  23. Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102, 95–105. Erratum in: International Journal of Food Microbiology Aug 1 2006, 110(3), 297.Google Scholar
  24. Gibson, A. M., Bratchell, N., & Roberts, T. A. (1988). Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 6, 155–178.CrossRefGoogle Scholar
  25. Guillier, L., & Augustin, J. C. (2006). Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions. International Journal of Food Microbiology, 111, 241–251.CrossRefGoogle Scholar
  26. Gysemans, K. P., Bernaerts, K., Vermeulen, A., Geeraerd, A. H., Debevere, J., Devlieghere, F., et al. (2007). Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes. International Journal of Food Microbiology, 114, 316–331.CrossRefGoogle Scholar
  27. Janssen, M., Geeraerd, A. H., Logist, F., De Visscher, Y., Vereecken, K. M., Debevere, J., et al. (2006). Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles. International Journal of Food Microbiology, 111, 59–72.CrossRefGoogle Scholar
  28. Janssen, M., Geeraerd, A. H., Cappuyns, A., Garcia-Gonzalez, L., Schockaert, G., Van Houteghem, N., et al. (2007). Individual and combined effects of pH and lactic acid concentration on Listeria innocua inactivation: development of a predictive model and assessment of experimental variability. Applied and Environmental Microbiology, 73, 1601–1611.CrossRefGoogle Scholar
  29. Koseki, S., & Yamamoto, K. (2007). A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116, 275–282.CrossRefGoogle Scholar
  30. Koutsoumanis, K., Stamatiou, A., Skandamis, P., & Nychas, G. J. (2006). Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Applied and Environmental Microbiology, 72, 124–134.CrossRefGoogle Scholar
  31. Lambert, R. J., & Bidlas, E. (2007). An investigation of the Gamma hypothesis: a predictive modelling study of the effect of combined inhibitors (salt, pH and weak acids) on the growth of Aeromonas hydrophila. International Journal of Food Microbiology, 115, 12–28.CrossRefGoogle Scholar
  32. Leguérinel, I., Spegagne, I., Couvert, O., Coroller, L., & Mafart, P. (2007). Quantifying the effects of heating temperature, and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella typhimurium. International Journal of Food Microbiology, 116, 88–95.CrossRefGoogle Scholar
  33. Le Marc, Y., Huchet, V., Bourgeois, C. M., Guyonnet, J. P., Mafart, P., & Thuault, D. (2002). Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. International Journal of Food Microbiology, 73, 219–237.CrossRefGoogle Scholar
  34. Leroy, F., & De Vuyst, L. (2007). Modelling microbial interactions in foods. In S. Brul, S. van Gerwen, & M. Zwietering (Eds.), Modelling microorganisms in food.Cambridge, England: Woohead publishing limited.Google Scholar
  35. Mafart, P., Couvert, O., Gaillard, S., & Leguérinel, I. (2002). On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72, 107–113.CrossRefGoogle Scholar
  36. Mataragas, M., Drosinos, E. H., Siana, P., Skandamis, P., & Metaxopoulos, I. (2006). Determination of the growth limits and kinetic behavior of Listeria monocytogenes in a sliced cooked cured meat product: validation of the predictive growth model under constant and dynamic temperature storage conditions. Journal of Food Protection, 69, 1312–1321.Google Scholar
  37. McKellar, R. C., & Lu, X. (2004). Primary models. In Eds. McKellar, R. C. and Lu, X. Modelling microbial responses in food (pp. 21–62). Boca Raton, FL: CRC Press.Google Scholar
  38. McMeekin, T. A., Chandler, R. E., Doe, P. E., Garland, C. D., Olley, J., Putro, S., et al. (1987). Model for the combined effect of temperature and salt concentration/water activity on growth rate of Staphylococcus xylosus.Journal of Applied Bacteriology, 62, 543–550.Google Scholar
  39. McMeekin, T. A., Olley, J. N., Ross, T., & Ratkowsky, D. A. (1993). Predictive microbiology: Theory and application (pp. 1–9). New York: John Wiley & Sons, Inc.Google Scholar
  40. McMeekin, T. A., Olley, J. N., Ratkowsky, D. A., & Ross, T. (2002). Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 73, 395–407.CrossRefGoogle Scholar
  41. Mellefont, L. A., & Ross, T. (2003). The effect of abrupt shifts in temperature on the lag phase duration of Escherichia coli and Klebsiella oxytoca. International Journal of Food Microbiology, 83, 295–305.CrossRefGoogle Scholar
  42. Mellefont, L. A., McMeekin, T. A., & Ross, T. (2005). Viable count estimates of lag time responses for Salmonella typhimurium M48 subjected to abrupt osmotic shifts. International Journal of Food Microbiology, 105, 399–410.CrossRefGoogle Scholar
  43. Mellefont, L. A., McMeekin, T. A., & Ross, T. (2008). Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture.International Journal of Food Microbiology, 121, 157–168.CrossRefGoogle Scholar
  44. Membré, J. M., Ross, T., & McMeekin, T. (1999). Behaviour of Listeria monocytogenes under combined chilling processes. Letters in Applied Microbiology, 28, 216–220.CrossRefGoogle Scholar
  45. Moore, C. M., & Sheldon, B. W. (2003). Evaluation of time-temperature integrators for tracking poultry product quality throughout the chill chain. Journal of Food Protection, 66(2), 287–292.Google Scholar
  46. Nauta, M. J. (2007). Uncertainty and variability in predictive models of microorganisms in food. In S. Brul, S. van Gerwen, M. Zwietering (Eds.), Modelling microorganisms in food (pp. 44–66). Cambridge, England: Woohead publishing limited.CrossRefGoogle Scholar
  47. Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science, 38, 353–380.CrossRefGoogle Scholar
  48. Pin, C., Garcia de Fernando, G. D., Ordonez, J. A., & Baranyi, J. (2002). Analysing the lag-growth rate relationship of Yersinia enterocolitica. International Journal of Food Microbiology, 73, 197–201.CrossRefGoogle Scholar
  49. Pinon, A., Zwietering, M., Perrier, L., Membré, J. M., Leporq, B., Mettler, E., et al. (2004). Development and validation of experimental protocols for use of cardinal models for prediction of microorganism growth in food products. Applied and Environmental Microbiology, 70, 1081–1087.CrossRefGoogle Scholar
  50. Pouillot, R., Albert, I., Cornu, M., & Denis, J. B. (2003). Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes. International Journal of Food Microbiology, 81, 87–104.CrossRefGoogle Scholar
  51. Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149, 1–5.Google Scholar
  52. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154, 1222–1226.Google Scholar
  53. Ratkowsky, D. A. (1990). Handbook of nonlinear regression models (pp. 181–192). New York: Marcel Dekker.Google Scholar
  54. Ratkowsky, D. A., & Ross, T. (1995). Modelling the bacterial growth/no growth interface. Letters in Applied Microbiology, 20, 29–33.CrossRefGoogle Scholar
  55. Ratkowsky, D. A. (2004). Model fitting and uncertainty. In R. C. McKellar, & X. Lu (Eds.), Modelling microbial responses in food (pp. 151–196). Boca Raton, FL: CRC Press.Google Scholar
  56. R Development Core Team. (2007). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  57. Robinson, T. P., Ocio, M. J., Kaloti, A., & Mackey, B. M. (1998). The effect of the growth environment on the lag phase of Listeria monocytogenes. International Journal of Food Microbiology, 44, 83–92.CrossRefGoogle Scholar
  58. Ross, T., & Dalgaard, P. (2004). Secondary models. In R. C. McKellar, & X. Lu (Eds.), Modelling microbial responses in food (pp. 63–150). Boca Raton, FL: CRC Press.Google Scholar
  59. Rosso, L., Lobry, J. R., & Flandrois, J. P. (1993). An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. Journal of Theoretical Biology, 162, 447–463.CrossRefGoogle Scholar
  60. Rosso, L., Lobry, J. R., Bajard, S., & Flandrois, J. P. (1995). Convenient model to describe the combined effects of temperature and pH on microbial growth. Applied and Environmental Microbiology, 61, 610–616.Google Scholar
  61. Rosso, L., & Robinson, T. P. (2001). A cardinal model to describe the effect of water activity on the growth of moulds. International Journal of Food Microbiology, 63, 265–273.Google Scholar
  62. Skandamis, P. N., Stopforth, J. D., Kendall, P. A., Belk, K. E., Scanga, J. A., Smith, G. C., et al. (2007). Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7. International Journal of Food Microbiology, 120, 237–249.CrossRefGoogle Scholar
  63. Standaert, A. R., Francois, K., Devlieghere, F., Debevere, J., Van Impe, J. F., & Geeraerd, A. H. (2007). Modeling individual cell lag time distributions for Listeria monocytogenes. Risk Analysis, 27, 241–254.CrossRefGoogle Scholar
  64. Swinnen, I. A., Bernaerts, K., Dens, E. J., Geeraerd, A. H., & Van Impe, J. F. (2004). Predictive modelling of the microbial lag phase: a review. International Journal of Food Microbiology, 94, 137–159.CrossRefGoogle Scholar
  65. Swinnen, I. A., Bernaerts, K., Gysemans, K., & Van Impe, J. F. (2005). Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study. International Journal of Food Microbiology, 100, 85–96.CrossRefGoogle Scholar
  66. Tamplin, M. L., Paoli, G., Marmer, B. S., & Phillips, J. (2005). Models of the behavior of Escherichia coli O157:H7 in raw sterile ground beef stored at 5–46°C. International Journal of Food Microbiology, 100, 335–344.CrossRefGoogle Scholar
  67. Taoukis, P. S., Koutsoumanis, K., & Nychas, G. J. (1999). Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53, 21–31.CrossRefGoogle Scholar
  68. van Boekel, M. A., & Zwietering, M. H. (2007). Experimental design, data processing and model fitting in predictive microbiology. In S. Brul, S. van Gerwen, & M. Zwietering (Eds.), Modelling microorganisms in food (pp. 22–43). Cambridge, England: Woohead publishing limited.CrossRefGoogle Scholar
  69. van Gerwen, S. J. C., & Zwietering, M. H. (1998). Growth and inactivation models to be used in quantitative risk assessments. Journal of Food Protection, 61, 1541–1549.Google Scholar
  70. Vimont, A., Vernozy-Rozand, C., Montet, M. P., Lazizzera, C., Bavai, C., & Delignette-Muller, M. L. (2006). Modeling and predicting the simultaneous growth of Escherichia coli O157:H7 and ground beef background microflora in various enrichment protocols. Applied and Environmental Microbiology, 72, 261–268.Google Scholar
  71. Vaikousi, H., Biliaderis, C. G., & Koutsoumanis, K. P. (2008). Development of a microbial Time Temperature Indicator (TTI) prototype for monitoring microbiological quality of chilled foods. Applied and Environmental Microbiology, 74, 3242–3250.Google Scholar
  72. Valdramidis, V. P., Geeraerd, A. H., & Van Impe, J. F. (2007). Stress-adaptive responses by heat under the microscope of predictive microbiology. Journal of Applied Microbiology, 103, 1922–1930.CrossRefGoogle Scholar
  73. Whiting, R. C., & Bagi, L. K. (2002). Modelling the lag phase of Listeria monocytogenes. International Journal of Food Microbiology, 73, 291–295.CrossRefGoogle Scholar
  74. Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881.Google Scholar
  75. Zwietering, M. H., de Koos, J. T., Hasenack, B. E., de Wit, J. C., & van’t Riet, K. (1991). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101.Google Scholar
  76. Zwietering, M. H., Wijtzes, T., de WIT, J. C., & van’t Riet, K. (1992). A decision support system for prediction of the microbial spoilage in foods. Journal of Food Protection, 55, 973–979.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Université de Lyon, F-69000, Lyon CNRS, UMR5558, Laboratoire de Biométrie et Biologie EvolutiveF-69622 Villeurbanne Ecole Nationale Vétérinaire de Lyon, F-69280Marcy l’EtoileFrance

Personalised recommendations