Advertisement

GMO Detection

  • Jaroslava Ovesná
  • Kateřina Demnerová
  • Vladimíra Pouchová
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Modern agriculture and the food industry are under constant pressure to produce healthier, tastier and cheaper food, while at the same time maintaining and improving safety standards. Consequently, these industries are all the time demanding still better, more efficient genotypes of crop species and farm animals suited to a wide range of usages. Farmers, in particular, are calling for species that are more resistant to disease, that have improved adaptation to stress, and that facilitate simpler farming systems while also increasing yield and productivity. At the same time, scientists believe that such animal and crop varieties could provide a source of food for poor countries and, thereby, help to prevent, and ultimately eliminate, third-world malnutrition (Biotechnology Industry Organization, 2008; Monastra & Rossi, 2003; Herdt, 2006).

The genetic resources of plants and animals have been altered by centuries of careful selection. In the nineteenth century, Mendel's...

Keywords

Genetically Modify Genetically Modify Food Modern Biotechnology Codex Alimentarius Commission Genetically Modify Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work was supported by the projects of The Czech Ministry of Agriculture CZ00027002602, MZE0002700604 and 1B44068 (National Agency for Agricultural Research).

References

  1. Ahmed, F. E. (2002). Detection of genetically modified organisms in foods. Trends Biotechnology, 20, 215–223.CrossRefGoogle Scholar
  2. Anklam, E., Gadani, F., Heinze, P., Pijnenburg, H., & Van Den Eede, G. (2002). Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant derived products. European Food Research and Technology, 214, 3–26.CrossRefGoogle Scholar
  3. Arvanitoyannis, I. S., Choreftaki, S., & Tserkezou, D. (2005). An update of EU legislation (Directives and Regulations) on food-related issues (safety, hygiene, packaging, technology, GMOs, additives, radiation, labelling): presentation and comments. International Journal of Food Science & Technology, 40, 1021–1112.CrossRefGoogle Scholar
  4. Babu, C. V. S., Song, E. J., Babar, S. M., Oh, E., Wi, M. H., & Yoo, Y. S. (2008). Capillary Electrophoresis at the omics level: Towards systems biology – An update. Electrophoresis, 29, 129–142.CrossRefGoogle Scholar
  5. Bai, S. L., Zhong, X. B., Ma, L. G., Zheng, W., Fan, L.-M., Wei, N., & Deng, X. W. (2007). A simple and reliable assay for detecting specific nucleotide sequences in plants using optical thin-film biosensor chips. Plant Journal, 49, 354–366.CrossRefGoogle Scholar
  6. Beismann, H., Finck, M., & Seitz, H. (2007). Standardisation of methods for GMO Monitoring on a European level. Journal for Consumer Protection and Food Safety, 2(Suppl. 1), 76–78.Google Scholar
  7. Bendixen, C., Hedegaard, J., & Horn, P. (2005). Functional genomics in farm animals – Microarray analysis, Meat Science, 71, 128–137.CrossRefGoogle Scholar
  8. Bertheau, Y., Diolez, A., Kobilinsky, A., & Magin, K. (2002). Detection methods and performance criteria for genetically modified organisms. The Journal of AOAC International, 85, 801–808.Google Scholar
  9. Bertoni, G., & Marsan, P. A. (2005). Safety risks for animals fed genetic modified (GM) plants. Veterinary Research Communications, 29(Suppl. 2), 13–18.CrossRefGoogle Scholar
  10. Biotech Industry Organisation. (2008). Biotechnology Industry Review. From http://www.accessexcellence.org/RC/AB/IE/Biotech_Industry_Review.php.
  11. Bonfini, L., Heinze, P., Kay, S., & Van den Eede, G. (2001). Review of GMO detection and quantification techniques, final version. From http://www.osservaogm.it/pdf/JRCReview.pdf.
  12. Brera, C., Donnarumma, E., Foti, N., Miraglia, M., Onori, R., & Pazzaglini, B. (2005). Evaluation of sampling criteria for the detection of GM soybeans in bulk. Italian Journal of Food Science, 17, 177–185.Google Scholar
  13. Brod, F. C. A., & Raisi, A. C. M. (2005). Recombinant DNA in meat additives: Specific detection of Roundup Ready™ soybean by nested PCR. Journal of the Science of Food and Agriculture, 87, 1980–1984.CrossRefGoogle Scholar
  14. Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.CrossRefGoogle Scholar
  15. Buntjer, J. B., Lenstra, J. A., & Nel, H. (1995). Rapid species identification in meat by using satellite DNA probes, Zeitschrift Lebensmitteluntersuch. Forschung, 201, 577–582.CrossRefGoogle Scholar
  16. Cankar, K., Štebih, D., Dreo, T., Žel, J., & Gruden, K. (2006). Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms, BMC Biotechnology, 6, doi: 10.1186/1472-6750-6-37.Google Scholar
  17. Chapela, M. J., Sotelo, G. C., Pérez-Martín, R. I., Pardo, M. D., Pérez-Villareal, B., Gilardi, P., et al. (2007). Comparison of DNA extraction methods from muscle of canned tuna for species identification, Food Control, 18, 1211–1215.CrossRefGoogle Scholar
  18. Chen, T. L., Sanjay, A., Prasad, V., Lee, C. H., Lin, K. H., Chiueh, L. C., et al. (2006). Validation of cDNA microarray as a prototype for throughput detection of GMOs. Botanical Studies, 47, 1–11.Google Scholar
  19. Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 557–572.CrossRefGoogle Scholar
  20. Czaplicki, A., Ovesná, J., & de Vries, E. G. (2005). History and uses of plant biotechnology. In P. Pechan, & G. E. de Vries (Eds.), Genes on the menu – facts for knowledge-based decision (pp. 10–17).Berlin: Springer.Google Scholar
  21. Daniell, H., Ruiz, O. N., & Dhingra, A. (2005). Chloroplast genetic engineering to improve agronomic traits. Transgenic Plants: Methods and Protocols, 286, 111–137.CrossRefGoogle Scholar
  22. De Leon-Garcia, L. P. (2007). Codex Alimentarius and international regulations to conduct food safety assessment of foods derived from recombinant-DNA plants. Revista Mexicana De Ingenieria Quimica, 6, 1–9.Google Scholar
  23. Degrieck, I., Silva, E. D., Van Bockstaele, E., & De Loose, M. (2005). Quantitative GMO detection in maize (Zea mays L.) seed lots by means of a three-dimensional PCR based screening strategy. Seed Science and Technology, 33, 31–43.Google Scholar
  24. Deisingh, A. K., & Badrie, N. (2005). Detection approaches for genetically modified organisms in foods. Food Research International, 38, 639–649.CrossRefGoogle Scholar
  25. Delseny, M., Cooke, R., Comella, P., Wu, H. J., Raynal, M., & Grellet, F. (1997). The Arabidopsis thaliana genome project, Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences, 320, 589–599.CrossRefGoogle Scholar
  26. Demeke, T., Perry, D. J., & Scowcroft, W. R. (2006). Adventitious presence of GMOs: Scientific overview for Canadian grains. Canadian Journal of Plant Science, 86, 1–23.Google Scholar
  27. Di Pinto, A., Forte, V. T., Guastadisegni, M. G., Martino, C., Schena, F., & Tantillo, B (2007). A comparison of DNA extraction methods for food analysis. Food Control, 18, 76–81.CrossRefGoogle Scholar
  28. Dos Santos Ferrari, C., Valente, L. L., Brod, F. C. A., Tagliari, C., Sebastião, E. S., & Arisi, S. A. C. M. (2007). Evaluation of polymerase chain reaction and DNA isolation protocols for detection of genetically modified soybean. International Journal of Food Science & Technology, 42, 1249–1255.CrossRefGoogle Scholar
  29. Du, S. J., Gong, Z., Fletcher, G. L., Shears, M. A, King, M. J., Idler, D. R., et al. (1992). Growth enhancement in transgenic Atlantic salmon by the use of an all fish chimeric growth-hormone gene construct. Bio/Technology, 10, 176–181.CrossRefGoogle Scholar
  30. Emslie, K. R., Whaites, L., Griffiths, K. R., & Murby, E. J. (2007). Sampling plan and test protocol for the semiquantitative detection of genetically modified canola (Brassica napus) seed in bulk canola seed. Journal of Agricultural and Food Chemistry, 55, 4414–4421.CrossRefGoogle Scholar
  31. Ermolli, M., Fantozzi, A., Marini, M., Scotti, D., Balla B., Hoffmann, S., et al. (2006). Food safety: Screening tests used to detect and quantify GMO proteins. Accreditation Quality Assurance, 11, 55–57.CrossRefGoogle Scholar
  32. Federal Health Office. (1998) Detection of a genetic modification of Lactobacillus curvatus in uncooked-meat sausage by amplification of the modified DNA sequence using the polymerase chain reaction (PCR) and hybridization of the PCR product with a DNA probe. In Collection of official methods under article 35 of the German Federal Foods Act; Methods or sampling and analysis of foods, tobacco products, cosmetics and commodity goods. Berlin: Beuth Verlag GmbH.Google Scholar
  33. Ferrari, C. D. S., Lehmkuhl Valente, L., Brod, F. C. A., Tagliari, C., Sant'Anna, E. S., & Maisonnave Arisi, A. C. (2007). Evaluation of polymerase chain reaction and DNA isolation protocols for detection of genetically modified soybean. International Journal of Food Science & Technology, 42, 1249–1255.CrossRefGoogle Scholar
  34. Fletcher, G. L., Davies, P. L., & Hew, C. L. (1992). Genetic engineering of freeze resistant Atlantic salmon. In C. L. Hew, & G. L. Fletcher (Eds.), Transgenic fish (pp. 190–208). River Edge, NJ: World Scientific Publishing.Google Scholar
  35. Food and Agriculture Organization. (2008). From http://www.fao.org/DOCREP/MEETING/006/Y8350e.HTM.
  36. Freese, L., Scholdberg, T. A., Burton, D. D., Norden, T. D., Shokere, L. A., & Jenkins, G. R. (2007). Evaluating homogeneity of LL601 rice in commercial lots using quantitative real-time PCR Source. Journal of Agricultural and Food Chemistry, 55, 6060–6066.CrossRefGoogle Scholar
  37. Gamborg, P., & Sandøe, A. (2004). Sustainability in farm animal breeding: a review. Livestock Production Science, 92, 221–231.CrossRefGoogle Scholar
  38. García-Cañas, V., Cifuentes, A., & Gonzalez, R. (2004). Detection of genetically modified organisms in foods by DNA amplification techniques. Critical Reviews in Food Science and Nutrition, 44, 425–436.CrossRefGoogle Scholar
  39. García-Cañas, V., González, R., & Cifuentes, A. (2004). The combined use of molecular techniques and capillary electrophoresis. Trends in Analytical Chemistry, 23, 637–643.CrossRefGoogle Scholar
  40. Giovannini, T., & Concillo, L. (2002). PCR detection of genetically modified organisms: a review. Starch, 54, 321–327.CrossRefGoogle Scholar
  41. Hallenan, E. M., McLean, E., & Fleming, I. A. (2007). Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: A review identifying research needs. Applied Animal Behaviour Science, 104, 265–294.CrossRefGoogle Scholar
  42. Harbers, M. (2008). The current status of cDNA cloning. Genomics, 91, 232–242.CrossRefGoogle Scholar
  43. Hazebroek, J. P. (2000). Analysis of genetically modified oils. Progress in Lipid Research, 39, 477–506.CrossRefGoogle Scholar
  44. Herdt, R. W. (2006). Biotechnology in Agriculture. Annual Review of Environment and Resources, 31, 265–295.CrossRefGoogle Scholar
  45. Hernandez, M., Rodriguez-Lazaro, D., & Ferrando, A. (2005). Current methodology for detection, identification and quantification of genetically modified organisms. Current Analytical Chemistry, 1, 203–221.CrossRefGoogle Scholar
  46. Holst-Jensen, A., & Berdal, K. G. (2004). The modular analytical procedure and validation approach and the units of measurement for genetically modified materials in foods and feeds. The Journal of AOAC International, 87, 4927–936.Google Scholar
  47. Hug, K. (2008). Genetically modified organisms: do the benefits outweigt the risks? Medicina Lithuania, 44, 87–99.Google Scholar
  48. Hulse, J. H. (2004). Biotechnologies: past, history, present state and future prospects trends. Food Science and Technology, 15, 3–18.CrossRefGoogle Scholar
  49. Jerman, S., Podgornik, A., Cankar, K., Čadež, N., Skrt, M., Žel, K., et al. (2005). Detection of processed genetically modified food using CIM monolithic columns for DNA isolation. Journal of Chromatography, 1065, 107–113.CrossRefGoogle Scholar
  50. Kamenarova, K., Gecheff, K., Stoyanova, M., Muhovski, Y., Anzai, H., & Atanassov, A. (2007). Production of recombinant human lactoferin in transgenic barley. Biotechnology & Biotechnological Equipment, 21, 18–27.Google Scholar
  51. Kasama, K., Watanabe, T., Kikuchi, H., Suzuki, T., Tokishita, S., Sakata, K., et al. (2005). Laboratory-performance study of the quantitative detection method for genetically modified soybeans (Roundup ready soybeans 40-3-2). Journal of Food Hygienic Social Japan, 46, 270–276.CrossRefGoogle Scholar
  52. Kay, R., & Paoletti, C. (2001). Sampling Strategies for GMO detection and/or quantification. From http://biotech.jrc.it/home/documents/EuroReport-Sampling_Strategies.pdf.
  53. Kobilinsky, A., & Bertheau, Y. (2005). Minimum cost acceptance sampling plans for grain control, with application to GMO detection. Chemometrics and Intelligent Laboratory Systems, 75, 189–200.CrossRefGoogle Scholar
  54. Kok, E. J., Keijer, J., Meter, G. A., & Kuiper, H. A. (2008). Comparative safety assessment of plant derived foods. Regulatory Toxicology and Pharmacology, 50, 98–113.CrossRefGoogle Scholar
  55. Kolodziejczyk, P. P., & Fedec, P. (1999). Recent progress in agricultural biotechnology and opportunities for contract research and development. Chemicals via Higher Plant Bioengineering, 464, 5–20.Google Scholar
  56. Konig, A., Cockburn, A., Crevel, R. W. R., Debruyne, E., Grafström, R. C., Hammerling, U., et al. (2004). Assessment of the safety of foods derived from genetically modified (GM) crops. Food and Chemical Toxicology, 42, 1047–1088.CrossRefGoogle Scholar
  57. La Paz, J. L., Esteve, T., & Pla, M. (2007). Comparison of real-time PCR detection chemistries and cycling modes using Mon810 event-specific assays as model. Journal of Agricultural and Food Chemistry, 11, 4312–4318.CrossRefGoogle Scholar
  58. Lechner, M., & Rieder, J. (2007). Mass spectrometric profiling of low-molecular-weight volatile compounds - Diagnostic potential and latest applications. Current Medicinal Chemistry, 14, 987–995.CrossRefGoogle Scholar
  59. Leimanis, S., Hernandez, M., Fernande, S., Boyer, F., Burns, M., Bruderer, S., et al. (2006). A microarray-based detection system for genetically modified (GM) food ingredients. Plant Molecular Biology, 61, 123–139.CrossRefGoogle Scholar
  60. Lezaun, J. (2006). Creating a new object of government: Making genetically modified organisms traceable. Social Studies Science, 36, 499–531.CrossRefGoogle Scholar
  61. Lupotto, E., & Stile, M. R. (2007). Molecular farming in plants. Conference Information: 11th Annual Congress of the IAPTCB, Aug. 13–18, 2006 Beijing China, Biotechnology and Sustainable Agriculture and Betone, 389–396.Google Scholar
  62. Marabelli, R. (2005). Aspects connected with the enforcement of the EU provisions on genetically modified organisms. Veterinary Research Communications, 29 (Suppl. 2), 19–26.CrossRefGoogle Scholar
  63. Markoulatos, P., Siafakas, N., Papatho, A., Nerantzis, E., Betzios, B., Dourtoglou, T., et al. (2004). Qualitative and quantitative detection of protein and genetic traits in genetically modified food. Food Reviews International, 20, 275–296.CrossRefGoogle Scholar
  64. Marvier, M. (2008). Pharmaceutical crops in California, benefits and risks: A review. Agronomy for Sustainable Development, 28, 1–10.CrossRefGoogle Scholar
  65. McLean, E., & Devlin, R. H. (2000). Application of Biotechnology to enhance growth of salmonids and other fish. In M. Fingerman, & R. Nagabhushanam (Eds.), Recent advances in marine biotechnology (Vol. 4, pp. 17–55). Enfield, NH: Aquaculture, Part B: Fishes. Science Publishers.Google Scholar
  66. Metz, T. O., Zhang, Q. B., Page, J. S., Shen, Y., Callister, S. J., Jacobs, J. M., et al. (2007). Future of liquid chromatography-mass spectrometry in metabolic profiling and metabolomic studies for biomarker discovery. Biomarkers in Medicine, 1, 159–185.CrossRefGoogle Scholar
  67. Meyer, V. (2008). Genetic engineering of filamentous fungi - Progress, obstacles and future trends. Biotechnology Advances, 26, 177–185.CrossRefGoogle Scholar
  68. Miraglia, M., Berdal, K. G., Brera, C., Corbisier, P., Holst-Jensen, A., Kok, E. J., et al. (2004). Detection and traceability of genetically modified organisms in the food production chain. Food and Chemical Toxicology, 42, 1157–1180.CrossRefGoogle Scholar
  69. Monastra, G., & Rossi, L. (2003). Transgene foods as a tool for malnutrition elimination and their impact on agricultural system. Rivista di Biologia , 96, 363–384.Google Scholar
  70. Moreano, F., Busch, U., & Engel, K. H. (2005). Distortion of genetically modified organism quantification in processed foods: Influence of particle size compositions and heat-induced DNA degradation. Journal of Agricultural and Food Chemistry, 53, 9971–9979.CrossRefGoogle Scholar
  71. Moreano, F., Ehlert, A., Busch, U., & Engel, K. H. (2006). Ligation-dependent probe amplification for the simultaneous event-specific detection and relative quantification of DNA from two genetically modified organisms. European Food Research and Technology, 222, 479–485.CrossRefGoogle Scholar
  72. Moreano, F. X. (2007). Novel strategies for the detection of genetically modified food and feed. Archiv fur Lebensmittelhygiene, 58, 43–46.Google Scholar
  73. Nam, Y. K., Maclean, N., Hwang, G., & Kim, G. S. (2008). Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: a review. Journal of Fish Biology, 72, 1–26.CrossRefGoogle Scholar
  74. Nesvold, H., Kristoffersen, A. B., Holst-Jensen, A., & Berdal, K. G. (2005). Design of a DNA chip for detection of unknown genetically modified organisms (GMOs). Bioinformatics, 21, 1917–1926.CrossRefGoogle Scholar
  75. Niemann, H. (2008). Application perspectives of animal biotechnology. Zuchtungskunde, 80, 61–66.Google Scholar
  76. Paoletti, C., Donatelli, M., Kay, S., & Van Den Eede, G. (2003). Simulating kernel lot sampling: the effect of heterogeneity on the detection of GMO contaminations. Seed Science and Technology, 31, 629–638.Google Scholar
  77. Paoletti, C., Heissenberger, A., Mazzara, M., Larcher, S., Grazioli, E., Corbisier, P., et al. (2006). Kernel lot distribution assessment (KeLDA): A study on the distribution of GMO in large soybean shipments. European Food Research and Technology, 224, 129–139.CrossRefGoogle Scholar
  78. Pechan, P. (2005). Basic fact about GM crop. In P. Pechan, & G. E. de Vries (Eds.), Genes on the menu – Facts for knowledge-based decision (pp. 10–17). Berlin: Springer.Google Scholar
  79. Rahman, M. A., & Maclean, N. (1999). Growth performance of transgenic tilapia containing an exogenous piscine growth hormone gene. Aquaculture, 173, 333–346.CrossRefGoogle Scholar
  80. Ramessar, K., Sabalza, M., Capell, T., & Christou, P. (2008). Maize plants: An ideal production platform for effective and safe molecular pharming. Plant Science, 174, 409–419.CrossRefGoogle Scholar
  81. Remund, K. M., Dixon, D. A., Wright, D. L., & Holden, L. R. (2001). Statistical considerations in seed purity testing for transgenic traits. Seed Science Research, 11, 101–119.Google Scholar
  82. Roy, S., & Sen, C. K. (2006). cDNA microarray screening in food safety. Toxicology, 221, 128–133.CrossRefGoogle Scholar
  83. Sauter, H., Lauer, M., & Fritsch, H. (1991). Metabolic Profiling Of Plants – A New Diagnostic-Technique. ACS Symposium Series, 443, 288–299.CrossRefGoogle Scholar
  84. Sayre, P., & Seidler, R. J. (2005). Application of GMOs in the US: EPA research & regulatory considerations related to soil systems., Plant and Soil, 275, 77–91.CrossRefGoogle Scholar
  85. Singh, O. V., Ghai, S., Paul, D., & Jain, R. K. (2006). Genetically modified crops: success, safety assessment, and public concern. Applied Microbiology and Biotechnology, 71, 598–609.CrossRefGoogle Scholar
  86. Smith, D. S., & Maxwell, P. W. (2007). Use of quantitative PCR to evaluate several methods for extracting DNA from corn flour and cornstarch. Food Control, 18, 236–242.CrossRefGoogle Scholar
  87. Snelling, W. M., Chiu, R., Schein, J. E., Hobbs, M., Abbey, C. A., Adelson, D. L., et al. (2007). A physical map of the bovine genome. Genome Biology, 8, R165. DOI: 10.1186/gb-2007-8-8-r165Google Scholar
  88. Sölkner, J., Grausgruber, H., Okeyo, A. M., Ruckenbauer, P. & Wurzinger, M. (2008). Breeding objectives and the relative importance of traits in plant and animal breeding: a comparative review. Euphytica, 161, 273–282.CrossRefGoogle Scholar
  89. Starbird, S. (2007). Testing errors, supplier segregation, and food safety. Agricultural Economics, 36, 325–334.CrossRefGoogle Scholar
  90. Stein, N. (2007). Triticeae genomics: advances in the sequence of large genome cereal crops. Chromatography Research, 15, 21–31.Google Scholar
  91. Straub, J. A., Hertel, C., & Hammes, W. P. (1999). The fate of recombinant DNA in thermally treated fermented sausages. European Food Research and Technology, 210, 62–67.CrossRefGoogle Scholar
  92. Theofanis, C. (2004). The precautionary principle, risk assessment, and the comparative role of science in the EC and the US legal systems. In N. J. Vig, & M. G. Faure (Eds.), Green giants, environmental policies of the US and the EU (pp. 17–52). MA.USA: MIT Press, Cambridge.Google Scholar
  93. Toyota, A., Akiyama, H., Sugimura, M., Watanabe, A., Sakata, K., Shiramasa, H., et al. (2006). Rapid quantification methods for genetically modified maize contents using genomic DNAS pretreated by sonication and restriction endonuclease digestion for a capillary-type real-time PCR system with a plasmid reference standard. Bioscience, Biotechnology and Biochemistry, 70, 2965–2973.CrossRefGoogle Scholar
  94. Van den Eede, G., Aarts, H. J., Buhk, H. J., Corthier, G., Flint, H. J., Hammes, W., et al. (2004). The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food and Chemical Toxicology, 42, 1127–1156.CrossRefGoogle Scholar
  95. Waiblinger, H. U., Ernst, B., Graf, N., & Pietsch, K. (2007). Ring trial validation of a method for the extraction of DNA from soy lecithins. Journal for Consumer Protection and Food Safety, 2, 113–115.Google Scholar
  96. Wang, X. M., Li, W. Q., Li, M. Y., & Welti, R. (2006). Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 126, 90–96.CrossRefGoogle Scholar
  97. Wolf, E., Schernthaner, W., Zakhartchenko, V., Prelle, K., Stojkovic, M., & Brem, G. (2000). Transgenic technology in farm animals-progress and perspectives. Experimental Physiology, 85, 615–625.CrossRefGoogle Scholar
  98. Xu, J., Zhu, S., Miao, H., Huang, W., Qiu, M., Huang, Y., et al. (2007). Event-specific detection of seven genetically modified soybean and maizes using multiplex-PCR coupled with oligonucleotide microarray. Journal of Agricultural and Food Chemistry, 55, 5575–5579.CrossRefGoogle Scholar
  99. Žel, J., Gruden, K., Cankar, K., Štebih, D., & Blejec, A. (2007). Calculation of measurement uncertainty in quantitative analysis of genetically modified organisms using intermediate precision – A practical approach. Journal of AOAC International, 90, 582–586.Google Scholar
  100. Žel, J., Cankar, K., Ravnikar, M., Camloh, M., & Gruden, K. (2006). Accreditation of GMO detection laboratories: Improving the reliability of GMO detection, Accreditation and Quality assurance. Journal for Quality, Comparability and Reliability in Chemical Measurement, 10, 531–536.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jaroslava Ovesná
    • 1
  • Kateřina Demnerová
    • 2
  • Vladimíra Pouchová
    • 3
  1. 1.Crop Research InstituteDrnovska 507Czech Republic
  2. 2.Institute of Chemical TechnologyPrague 6Czech Republic
  3. 3.Crop Research InstituteDrnovska 507Czech Republic

Personalised recommendations