Advertisement

Methodologies for the Detection of BSE Risk Material in Meat and Meat Products

  • Ernst Lücker
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Soon after the emergence of bovine spongiform encephalopathy (BSE), a fatal disease of the central nervous system (CNS) in cattle, so-called specified bovine offal were legally defined and banned (SBO-ban) in order to reduce the presumed potential BSE exposition risk for British consumers (UK, 1989). Later on the legal definition of risk material was frequently modified according to new scientific results on BSE tissue infectivity (Table 19.1 ). A European-wide ban on specified risk materials (SRM) was established in 2001 (EC, 2001). In effect, the SRM-ban is still the most important direct measure in reducing potential human BSE exposure risk (EC, 2005). Taking into account the overall and constant reduction of the frequency of BSE cases as well as the very high costs of preventive measures, the European Commission has envisioned a future lifting of the SRM-ban (EC, 2005). Scientific uncertainties and new insights into atypical BSE, however, do not argue in favour of a...

Keywords

Glial Fibrillary Acidic Protein Myelin Basic Protein Meat Product Bovine Spongiform Encephalopathy Nervonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdulmawjood, A., Schoenenbrücher, H., & Bülte, M. (2005). Novel molecular method for detection of bovine-specific central nervous system tissue as bovine spongiform encephalopathy risk material in meat and meat products. Journal Molecular Diagnostics, 7, 368–374.CrossRefGoogle Scholar
  2. Abdulmawjood, A., Schönenbrücher, H., & Bülte, M. (2006). Collaborative trial for validation of a real-time reverse transcriptase-polymerase chain reaction assay for detection of central nervous system tissues as bovine spongiform encephalopathy risk material: Part 1. Journal AOAC International, 89, 1335–1340.Google Scholar
  3. Agazzi, M. E., Barrero-Moreno, J., Lücker, E., v. Holst, C., & Anklam, E. (2002). Performance comparison of two analytical methods for the detection of tissues of the central nervous system in sausages: Results of an interlaboratory study. European Food Research and Technology, 215, 334–339.CrossRefGoogle Scholar
  4. Agazzi, M. E., Barrero-Moreno, J., Lücker, E., v. Holst, C., & Anklam, E. (2004). Quantitative analysis of tissues of the central nervous system in food products by GFAP-ELISA test kit. Results of an interlaboratory study. Food Control, 15, 297–301.CrossRefGoogle Scholar
  5. Agazzi, M. E., Bau, A., Barcarolo, R., Lücker, E., Barrero-Moreno, J., & Anklam, E. (2003). In-house validation of an improved sample extraction and clean-up method for GC determination of isomers of nervonic acid in meat products. Analytical and Bioanalytical Chemistry, 376, 360–365.Google Scholar
  6. Anil, M. H., Love, S., Helps, C. R., McKinstry, J. L., Brown, S. N., Philips, A., et al. (2001). Jugular venous emboli of brain tissue induced by the use of captive bolt guns. Veterinary Record, 148, 619–620.CrossRefGoogle Scholar
  7. Aupperle, H., Lücker, E., Overhoff, M., & Schoon, H. A. (2002). Verfahren zum Nachweis von im Hinblick auf die bovine spongiforme Enzephalopathie (BSE) unerwünschten Zutaten in Fleischerzeugnissen. 6. Immunhistologischer Nachweis von zentralem und peripherem Nervengewebe in Fleischerzeugnissen. Fleischwirtschaft, 82, 100–104.Google Scholar
  8. Bäuerlein, R., Sandmeier, B., Villmann, C., Hammon, A., Gareis, M., Becker, C. M., et al. (2008). Development of a dot blot assay for the rapid detection of central nervous system tissue on meat and contact surfaces. Journal of Agricultural and Food Chemistry, 56, 44–49.CrossRefGoogle Scholar
  9. Biedermann, W., Lücker, E., & Hensel, A. (2002). Detection of tissues of the central nervous system (CNS) as specified risk material (SRM) in meat products by means of gas chromatography–mass spectrometry (GC–MS). Berliner und Münchner Tierärztliche Wochenschrift, 115, 131–131.Google Scholar
  10. Biedermann, W., Lücker, E., Pörschmann, J., Lachhab, S., Truyen, U., & Hensel, A. (2004). Structural characterisation of some fatty acids from the brain as biomarkers of BSE risk material. Analytical and Bioanalytical Chemistry, 379, 1031–1038.CrossRefGoogle Scholar
  11. Bissig-Choissat, B., Kuhn, M., Schlosser, H., & Jemmi, T. (2002). Nachweis von zentralnervösem Gewebe in Wurstwaren und erhitzten Fleischerzeugnissen: Ergebnisse einer ersten Studie. In Deutsche Veterinärmedizinische Gesellschaft (Eds.), Proceedings 42. Arbeitstagung “Lebensmittelhygiene” 2001 (pp. 88–93). Garmisch-Partenkirchen, DVG Service GmbH, Gießen, ISBN: 3-935747-11-X.Google Scholar
  12. BVL. (1992). Bestimmung des Cholesteringehaltes in Eiern und Eiprodukten. Enzymatisches Verfahren. In Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFBG. L-05.00-17. Berlin, Germany: Beuth-Verlag.Google Scholar
  13. BVL. (2004). Bestimmung von Geweben des Zentralen Nervensystems durch den Nachweis des sauren Gliafaserproteins in Fleisch und Fleischerzeugnissen. Enzymimmunologischer Nachweis. In Amtliche Sammlung von Untersuchungsverfahren nach § 64 LFBG. L-06.00-53. Berlin, Germany: Beuth-Verlag.Google Scholar
  14. Collins Kelley, L., Hafner, S., McCaskey, P. C., Sutton, M. T., & Langheinrich, K. (2000). An evaluation of methods for the detection of spinal cord in product derived from advanced meat recovery systems. Journal of Food Protection, 63, 1107–1112.Google Scholar
  15. DeArmond, S. J., Kretzschmar, H. A., & Prusiner, S. B. (2002). Prion disease. In: D. I. Graham & P. L. Lantos (Eds.), Greenfield’s neuropathology (Vol. 2, 7th ed., pp. 273–323). London: Arnold.Google Scholar
  16. EC. (2000). Directive 2000/13/EC of the European Parliament and of the Council on the approximation of the laws of the member states relating to the labelling, presentation and advertisement of foodstuffs. Official Journal, L109, 29–42; amended by Directive 2001/101/EC of 26 November 2001. Official Journal, L310, 19–21.Google Scholar
  17. EC. (2001). Directive (EC) No. 999/2001 of the European Parliament and of the Council of 22 Mai 2001 laying down rules fort he prevention, control and eradication of certain transmissible spongiform encephalopathies. Official Journal, L147, 1–40; last change: 11.01.2008 Directive EC/21/2008, Official Journal, L9, 3–5.Google Scholar
  18. EC. (2005). European Commission. The TSE-Roadmap. Brussels (15.07.2005), available at: http://europa.eu.int/comm/food/food/biosafety/bse/roadmap_en.pdf
  19. Fries, R., Eggers, T., Hildebrandt, G., Rauscher, K., Buda, S., & Budras, K. D. (2003). Autonomous nervous system with respect to dressing of cattle carcasses and its probable role in transfer of PrP(res) molecules. Journal of Food Protection, 66, 890–895.Google Scholar
  20. Gaunitz, C., Gabert, J., Lücker, E., Seeger, J., & Stahl, T. (2008). Suitability of antigens PGP 9.5 and Neurofilament light as marker proteins for detection of neuronal tissue in processed meat products. Journal of Food Protection (in Press).Google Scholar
  21. Gout, S., Valdivia, H., Mc Dowell, D., & Harris, N. (2004). Detection of neuronal tissue in meat using specific DNA modifications. Biotechnology Agronomy Society and Environment, 8, 229–234.Google Scholar
  22. Grießbach, M., Baumann, D., Biedermann, W., Krex, C., Kunath, O., Truyen, U., et al. (2007). Qualitativer und quantitativer Nachweis von ZNS in Fleischerzeugnissen mittles GC/MS und GFAP-Elisa – Vergleichende Untersuchungen. Archiv für Lebensmittelhygiene, 58, 208–213.Google Scholar
  23. Grießbach, M., Hartmann, F., Massag, N., Baumann, D., Krex, C., Biedermann, W., et al. (2008). Species and age determination of central nervous system tissue by fatty acid patterns. Journal of Chromatography A, 1179, 69–73.CrossRefGoogle Scholar
  24. Grundmann, C., Kunath, O., Lücker, E., Hardt, M., & Groschup, M. (2005). Direkter Nachweis von PrPC/Sc in Fleischerzeugnissen. Proceedings 45. Arbeitstagung DVG “Lebensmittelhygiene” 2004 (pp. 364–369). Garmisch-Partenkirchen, DVG Service GmbH, Gießen, ISBN 3-938026-37-5, S.Google Scholar
  25. Grundmann, C., Lücker, E., Hardt, M., & Groschup, M. (2004). Direkter Nachweis von PrPSc in Fleischerzeugnissen – Untersuchungen zur Optimierung eines immunometrischen Testkits. In Deutsche Veterinärmedizinische Gesellschaft (Eds.), Proceedings 44. Arbeitstagung “Lebensmittelhygiene” 2003 (pp. 584–588). Garmisch-Partenkirchen, DVG Service GmbH, Gießen, ISBN 3-936815-85-2.Google Scholar
  26. Hajmeer, M., Cliver, D. O., & Provost, R. (2003). Spinal cord tissue detection in comminuted beef: Comparison of two immunological methods. Meat Science, 65, 757–763.CrossRefGoogle Scholar
  27. Herde, K., Bergmann, M., Lang, C., Leiser, R., & Wenisch, S. (2005). Glial fibrillary acidic protein and myelin basic protein as markers for the immunochemical detection of bovine central nervous tissue in heat-treated meat products. Journal of Food Protection, 68, 823–827.Google Scholar
  28. Holtbecker, J., & Stolle, A. (2005). Species-specific test system for the detection of central nerve tissue in meat products using Myelin Basic Protein. Archiv für Lebensmittelhygiene, 56, 108–111.Google Scholar
  29. Hossner, K. L., Yemm, R. S., Sonnenshein, S. E., Mason, G. L., Cummings, B. A., Reddy, M. C, et al. (2006). Comparison of immunochemical (enzyme-linked immunosorbent assay) and immunohistochemical methods for the detection of central nervous system tissue in meat products. Journal of Food Protection, 69, 644–650.Google Scholar
  30. Hughson, E., Reece, P., Dennis, M. J., & Oehlschlaeger, S. (2003). Comparative evaluation of the performance of two commercial kits for the detection of central nervous system tissue in meat. Food Additives and Contaminants, 20, 1034–1043.CrossRefGoogle Scholar
  31. Kale, M., Kursun, Ö., & Pehlivanoglu, F. (2007). Detection of central nervous system tissues as bovine spongiform encephalopathy specified risk material in processed and raw meat products in turkey. Journal of Food Safety, 27, 56–65.CrossRefGoogle Scholar
  32. Kong, Q., Zheng, M., Casalone, C., Qing, L., Huang, Chakraborty B., Wang, P., et al. (2008). Evaluation of the human transmission risk of an atypical bovine spongiform prion strain. Journal of Virology, 82, 3697–3701.Google Scholar
  33. Koolmees, P. A., Tersteeg, M. H. G., Keizer, G., van den, Broek J., & Bradley, R. (2004). Comparative histological studies of mechanically versus manually processed sheep intestines used to make natural sausage casings. Journal of Food Protection, 67, 2747–2755.Google Scholar
  34. Kunath, O., Lücker, E., Troeger, K., & Grundmann, C. (2004). Weiterführende Untersuchungen zur analytischen Qualität und Erfassung von ZNS-Kontaminationen mittels GFAP-ELISA. Proceedings 45. Arbeitstagung DVG “Lebensmittelhygiene” 2004 (pp. 358–363). Garmisch-Partenkirchen, DVG Service GmbH, Gießen, ISBN 3-938026-37-5.Google Scholar
  35. Lange, B., Alter, T., Froeb, A., & Lücker, E. (2003). Molekularbiologische Erfassung von Geweben des Zentralen Nervensystems in Fleischerzeugnissen. Berliner Münchner Tierärztliche Wochenschrift, 116, 467–473.Google Scholar
  36. Lücker, E. (2006). Maßnahmen und Alternativen zur Reduzierung des humanen BSE-Expositionsrisiko. Nova Acta Leopoldina NF 94/347, 167–181.Google Scholar
  37. Lücker, E., Biedermann, W., Lachhab, S., Truyen, U., & Hensel, A. (2004). GC–MS detection of central nervous tissues as TSE risk material in meat products: Analytical quality. Analytical and Bioanalytical Chemistry, 380, 866–870.CrossRefGoogle Scholar
  38. Lücker, E., & Bülte, M. (1997). Verfahren zum Nachweis von im Hinblick auf die bovine spongiforme Enzephalopathie (BSE) unerwünschten Zutaten in Fleischerzeugnissen. 1. Enzymatische Cholesterinbestimmung als Schnellverfahren zur Erfassung von Hirngewebe. Fleischwirtschaft, 77, 836–840.Google Scholar
  39. Lücker, E., Eigenbrodt, E., & Bülte, M. (1998). Verfahren zum Nachweis von im Hinblick auf die bovine spongiforme Enzephalopathie (BSE) unerwünschten Zutaten in Fleischerzeugnissen. 2. Referenzverfahren für den Nachweis von zentralem Nervengewebe. Fleischwirtschaft, 78, 896–898.Google Scholar
  40. Lücker, E., Eigenbrodt, E., Wenisch, S., Faling, M., Leiser, R., & Bülte, M. (1999). Development of an integrated procedure for the detection of central nervous tissue in meat products using cholesterol and NSE as markers. Journal of Food Protection, 62, 268–276.Google Scholar
  41. Lücker, E., Eigenbrodt, E., Wenisch, S., Leiser, R., & Bülte, M. (2000). Identification of central nervous system tissue in retail meat products. Journal of Food Protection, 63, 258–263.Google Scholar
  42. Lücker, E., Hardt, M., & Groschup, M. (2002). Detection of CNS and PrPSc in meat products. Berliner und Münchner Tierärztliche Wochenschrift, 115, 111–117.Google Scholar
  43. Lücker, E., Horlacher, S., & Eigenbrodt, E. (2001). Brain in human nutrition and variant Creutzfeldt-Jakob disease risk (vCJD): Detection of brain in retail liver sausages using cholesterol and neuron specific enolase (NSE) as markers. British Journal of Nutrition, 86, S115–S119.CrossRefGoogle Scholar
  44. Niederer, M., & Bollhalder, R. (2001). Identification of species specific central nervous tissue by gas chromatography–mass spectrometry (GC–MS) – A possible method for supervision of meat products and cosmetics. Mitteilungen aus dem Gebiet der Lebensmitteluntersuchung und Hygiene, 92, 133–144.Google Scholar
  45. Noti, A., Biedermann-Brehm, S., Biedermann, M., & Grob, K. (2002). Determination of central nervous and organ tissue in meat products through GC–MS analysis of marker fatty acids from sphingolipids and phospholipids. Mitteilungen aus dem Gebiet der Lebensmitteluntersuchung und Hygiene, 93, 387–401.Google Scholar
  46. Nowak, B, Mueffling, T, Kuefen, A, Ganseforth, K, & Seyboldt, C. (2005). Detection of bovine central nervous system tissue in liver sausages using a reverse transcriptase PCR technique and a commercial enzyme-linked immunosorbent assay. Journal of Food Protection, 68, 2178–2183.Google Scholar
  47. Overhoff, M., & Lücker, E. (2003). Verfahren zum Nachweis von im Hinblick auf die BSE unerwünschten Zutaten in Fleischerzeugnissen. 9. Eignung monoklonaler Antikörper für den spezifischen Nachweis zentralen Nervengewebes in Fleischerzeugnissen. Fleischwirtschaft, 12, 93–96.Google Scholar
  48. Piske, K., Arndt, G., Buda, S., Budras, K. D., Eggers, T., & Fries, R. (2007). Fate of sympathetic trunk ganglia after cutting in German meat plants. Journal of Food Protection, 70, 2906–2910.Google Scholar
  49. Pörschmann, J., Trommler, U., Biedermann, W., Truyen, U., & Lücker, E. (2006). Sequential pressurized liquid extraction to determine brain-originating fatty acids in meat products as markers in bovine spongiform encephalopathy risk assessment studies. Journal of Chromatography A, 1127, 26–33.CrossRefGoogle Scholar
  50. Reddy, M. C., Hossner, K. L., Belk, K. E., Scanga, J. A., Yemm, R. S., Sofos, J. N., et al. (2006). Detection of central nervous system tissue on meat and carcass-splitting band saw blade surfaces using modified fluorescent glial fibrillary acidic protein enzyme-linked immunosorbent assay sampling and extraction procedures. Journal of Food Protection, 69, 1966–1970.Google Scholar
  51. Rencova, E. (2005). Comparison of commercially available antibodies for the detection of central nervous system tissue in meat products by enzyme-linked immunosorbent assay. Journal of Food Protection, 68, 630–632.Google Scholar
  52. Salman, M. D., Jemmi, T., Triantis, J., & Dewell, R. D. (2005). Assessment and modification of a western blot assay for detection of central nervous system tissue in meat products in the United States. Journal of Food Protection, 68, 1706–1711.Google Scholar
  53. Schlottermüller, B., & Lücker, E. (2002). ZNS-Nachweis in Fleischerzeugnissen: Untersuchungen zur Spezifität. Proceedings 42. Arbeitstagung DVG “Lebensmittelhygiene” 2001 (pp. 630–635). Garmisch-Partenkirchen.Google Scholar
  54. Schmidt, G. R., Hossner, K. L., Yemm, R. S., Gould, D. H., & O'Callaghan, J. P. (1999). An enzyme-linked immunosorbent assay for glial fibrillary acidic protein as an indicator of the presence of brain or spinal cord in meat. Journal of Food Protection, 62, 394–397.Google Scholar
  55. Schmidt, G. R., Yemm, R. S., Childs, K. D., O'Callaghan, J. P., & Hossner, K. L. (2001). The detection of central nervous system tissue on beef carcasses and in comminuted beef. Journal of Food Protection, 64, 2047–2052.Google Scholar
  56. Schmidt, G. R., Yemm, R. S., Childs, K. D., O'Callaghan, J. P., & Hossner, K. L. (2002). Verification of different glial fibrillary acidic protein (GFAP) analyses as accurate detectors of central nervous system tissue in advanced meat recovery (AMR) products. Meat Science, 62, 79–84.CrossRefGoogle Scholar
  57. Schönenbrücher, H., Abdulmawjood, A., Göbel, K. A., & Bülte, M. (2007). Detection of central nervous system tissues in meat products: Validation and standardization of a real-time PCR-based detection system. Veterinary Microbiology, 123, 336–345.CrossRefGoogle Scholar
  58. Schurr, B., Lücker, E., & Troeger, K. (2004). Untersuchungen zur analytischen Qualität der Erfassung von ZNS_Kontaminationen im Schlachtprozess. Proceedings, 44. Arbeitstagung DVG “Lebensmittelhygiene” 2003 (pp. 572–577). Garmisch-Partenkirchen, DVG Service GmbH, Gießen, ISBN 3-936815-85-2.Google Scholar
  59. Seyboldt, C., John, A., v. Müffling, T., Nowak, B., & Wenzel, S. (2003). Reverse transcription-polymerase chain reaction assay for species-specific detection of bovine central nervous system tissue in meat and meat products. RT-PCR. Journal of Food Protection, 66, 644–651.Google Scholar
  60. SSC. (1999). Opinion of the Scientific Steering Committee (SSC) on the human exposure risk (HER) via food with respect to BSE – Adopted on 10.12.99, available at: http://europa.eu.int/comm/dg24/health/sc/ssc/out67_en.html
  61. Tersteeg, M. H. G., Koolmees, P. A., & van Knapen, F. (2002). Immunohistochemical detection of brain tissue in heated meat products. Meat Science, 61, 67–72.CrossRefGoogle Scholar
  62. UK. (1989). The Bovine Offal (Prohibition) Regulations 1989. United Kingdom SI-1989; No 2061.Google Scholar
  63. USDA. (2003). United States Department of Agriculture, Food Safety and Inspection Service, Office of Public Health and Science, Athens, USA. Detection of central nervous system tissue and dorsal root ganglia in beef and central nervous system tissue in pork comminuted products by histological examination of hematoxylin and eosin stained slides and glial fibrillary acid protein immunohistochemistry. SOP PLG 0001.01. Available at: www.fsis.usda.gov/ophs/plg/plg0001-01.pdf
  64. Villmann, C., Sandmeier, B., Seeber, S., Hannappel, E., Pischetsrieder, M., & Becker, C. M. (2007). Myelin proteolipid protein (PLP) as a marker antigen of central nervous system contaminations for routine food control. Journal of Agricultural and Food Chemistry, 55, 7114–7123.CrossRefGoogle Scholar
  65. Wenisch, S., Lücker, E., Eigenbrodt, E., Leiser, R., & Bülte, M. (1999). Detection of central nervous tissue in meat products – An immunohistological approach. Nutrition Research, 19, 1165–1172.CrossRefGoogle Scholar
  66. Weyandt, R. G. (2001). Detection of BSE-risk materials. Fresenius Journal of Analytical Chemistry, 371, 574–575.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Veterinary Medicine, Department of Meat Hygiene, Institute of Food HygieneUniversity of LeipzigGermany

Personalised recommendations