Molecular Analysis of Pathogenic Bacteria and Their Toxins

  • Catherine M. Logue
  • Lisa K. Nolan
Part of the Food Microbiology and Food Safety book series (FMFS)


Use of molecular methods for investigation of foodborne pathogens and illness has become much more commonplace over the last decade or so. Application of these methods has significantly expanded fields of inquiry related to food safety. Molecular methods have been used to facilitate isolation and detection of pathogens and to enhance subtype analysis of strains in an effort to link or determine relationships between strains and hosts and to sources of contamination.

Although many molecular methods rely on the presence of a pure population of cells for analysis, a considerable number of protocols exploit molecular-based techniques for isolation of target pathogens from mixed populations in foods. Such isolation protocols increase the population of the cells of interest to levels that can subsequently be analyzed by a molecular method. As traditional methods are labor and time intensive, and in the case of rapid kits often expensive, such molecular methods can provide an...


Restriction Fragment Length Polymorphism Variable Number Tandem Repeat Foodborne Pathogen Enterobacterial Repetitive Intergenic Consensus Repetitive Extragenic Palindromic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adiri, R. S., Gophna, U., & Ron, E. (2003). Multilocus sequence typing (MLST) of Escherichia coli O78 strains. FEMS Microbiology Letters, 222, 199–203.Google Scholar
  2. Aktas, Z., Day, M., Kayacan, C. B., Diren, S., & Threlfall, E. J. (2007). Molecular characterization of Salmonella typhimurium and Salmonella enteriditis by plasmid analysis and pulsed field gel electrophoresis. International Journal of Antimicrobial Agents, 30, 541–545.Google Scholar
  3. Alarcon, B., Garcia-Canas, V., Cifuentes, A., Gonzalez, R., & Aznar, R. (2004). Simultaneous and sensitive detection of three foodborne pathogens by multiplex PCR, capillary gel electrophoresis, and laser-induced fluorescent. Journal of Agriculture and Food Chemistry, 52, 7180–7186.Google Scholar
  4. Albufera, U., Bhugaloo-Vial, P., Issack, M. I., & Jaufeerally-Fakim, Y. (2009). Molecular characterization of Salmonella isolates by REP-PCR and RAPD analysis. Infection, Genetics and Evolution, in Press doi:10.1016/j.meegid.2007.12.003.Google Scholar
  5. Amavisit, P., Markahm, P. F., Lightfoot, D., Whithear, K. G., & Browning, G. F. (2001). Molecular epidemiology of Salmonella Heidelberg in an equine hospital. Veterinary Microbiology, 80, 85–98.Google Scholar
  6. Anjum, M. F., Mafura, M., Slickers, P., Ballmer, K., Kuhnert, P., Woodward, M. J., et al. (2007). Pathotyping Escherichia coli by using miniaturized DNA microarrays. Applied and Environmental Microbiology, 73, 5692–5697.Google Scholar
  7. Aquino, M. H., Filgueiras, A. L., Ferreira, M. C., Oliveira, S. S., Bastros, M. C., & Tibana, A. (2002). Antimicrobial resistance and plasmid profiles of Campylobacter jejuni and Campylobacter coli from human and animal sources. Letters in Applied Microbiology, 34, 149–153.Google Scholar
  8. Asakura, M., Samosornsuk, W., Hinenoya, A., Misawa, N., Nishimura, K., Matsuhisa, A., et al. (2008). Development of a cytolethal distending (cdt) gene –based species-specific multiplex PCR assay for the detection and identification of Campylobacter jejuni, Campylobacter coli and Campylobacter fetus. FEMS Immunology and Medical Microbiology, 52, 260–266.Google Scholar
  9. Atanassova, V., Meindl, A., & Ring, C. (2001). Prevalence of Staphylococcus aureus and staphylococcal enterotoxins in raw pork and uncooked smoked ham – a comparison of classical culturing detection and RFLP-PCR. International Journal of Food Microbiology, 15, 105–113.Google Scholar
  10. Auvray, F., Lecureuil, C., Tache, J., Leclerc, V., Deperrois, V., & Lombard, B. (2007). Detection, isolation and characterization of shiga toxin-producing Escherichia coli in retail-minced beef using PCR-based techniques, immunoassays, and colony hybridization. Letters in Applied Microbiology, 45, 646–651.Google Scholar
  11. Avery, S. M., Liebana, E., Reid, C. A., Woodward, M. J., & Buncic, S. (2002). Combined use of two genetic fingerprinting methods, pulsed-field gel electrophoresis and ribotyping, for characterization of Escherichia coli O157 isolates from food animals, retail meats and cases of human disease. Journal of Clinical Microbiology, 40, 2806–2812.Google Scholar
  12. Baert, L., Uttendale, M., & Debevere, J. (2008). Evaluation of viral extraction methods on a broad range of ready-to-eat foods with conventional and real-time RT-PCR for norovirus GII detection. International Journal of Food Microbiology, 31, 101–108.Google Scholar
  13. Bailey, J. S., Fedorka-Cray, P. J., Stern, N. S., Craven, S. E., Cox, N. A., & Cosby, D. E. (2002). Serotyping and ribotyping of Salmonella using restriction enzyme PvuII. Journal of Food Protection, 65, 1005–1007.Google Scholar
  14. Batchelor, M., Hopkins, K. L., Liebana, E., Slickers, P., Ehricht, R., Mafura, M., et al. (2008). Development of a miniaturized microarray-based assay for the rapid identification of antimicrobial resistance genes in gram-negative bacteria. International Journal of Antimicrobial Agents, 31, 440–451.Google Scholar
  15. Bender, J. B., Hedberg, C. W., Boxrud, D. J., Besser, J. M., Wicklund, J. H., Smith, K. E., et al. (2001). Use of molecular subtyping in surveillance for Salmonella enterica serotype Typhimurium. New England Journal of Medicine, 344, 189–195.Google Scholar
  16. Bergstrom, C. T., Lipstitch, M., & Levin, B. R. (2000). Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics, 155, 1505–1519.Google Scholar
  17. Beutin, L., Miko, A., Krause, G., Pries, K., Haby, S., Steege, K., et al. (2007). Identification of human-pathogenic strains of shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of shiga toxin genes. Applied and Environmental Microbiology, 73, 4769–4775.Google Scholar
  18. Bluhm, B. H., Cousin, M. A., & Woloshuk, C. P. (2004). Multiplex real-time PCR detection of fumonsin-producing and trichothecene-producing groups of Fusarium species. Journal of Food Protection, 67, 536–543.Google Scholar
  19. Blumberg, H. M., Kiehlbauch, J. A., & Wachsmuth, I. K. (1991). Molecular epidemiology of Yersinia enterocolitica O:3 infections: use of chromosomal DNA restriction length polymorphisms of rRNA genes. Journal of Clinical Microbiology, 29, 2368–2374.Google Scholar
  20. Bohaychuk, V. M., Gensler, G. E., McFall, M. E., King, R. K., & Renter, D. G. (2007). A real-time PCR assay for the detection of Salmonella in a wide variety of food and food-animal matrices. Journal of Food Protection, 70, 1080–1087.Google Scholar
  21. Boxrud, D., Pederson-Gulred, K., Wotton, J., Medus, C., Lyszkowicz, E., Besser, J., et al. (2007). Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. Journal of Clinical Microbiology, 45, 536–543.Google Scholar
  22. Boyd, E. F., Blackmer, F., & McCelland, M. (2003). Differences in gene content among Salmonella enterica serovar typhi isolates. Journal of Clinical Microbiology, 41, 3823–3828.Google Scholar
  23. Call, D. R., Brockman, F. J., & Chandler, D. P. (2001). Detecting and genotyping of Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. International Journal of Food Microbiology, 20, 71–80.Google Scholar
  24. Carle, G. F., Frank, M., & Olson, M. V. (1986). Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science, 232, 65–68.Google Scholar
  25. Carattoli, A., Villa, L., Pezzella, C., Bordi, E., & Visca, P. (2001). Expanding drug resistance through integron acquisition by IncF1 plasmids of Salmonella enterica Typhimurium. Emerging Infectious Disease, 7, 444–447.Google Scholar
  26. Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L., & Threlfall, E. J. (2005). Identification of plasmids by PCR-based replicon typing. Journal of Microbiological Methods, 63, 219–228.Google Scholar
  27. Carattoli, A., Miraqou, V., Bertini, A., Loli, A., Colinon, C., Villa, L., et al. (2006). Replicon typing of plasmids encoding resistance to newer beta –lactams. Emerging Infectious Disease, 7, 1145–1148.Google Scholar
  28. Cebula, T. A., Jackson, S. A., Brown, E. W., Goswami, B., & LeClerc, J. E. (2005). Chips and SNPs, bugs and thugs: a molecular sleuthing perspective. Journal of Food Protection, 68, 1271–1284.Google Scholar
  29. Chandler, D. P., Brown, J., Call, D. R., Wunschel, S., Grate, J. W., Holman, D. A., et al. (2001). Automated immunomagnetic separation and microarray detection of E. coli O157:H7 from poultry carcass rinse. International Journal of Food Microbiology, 70, 143–154.Google Scholar
  30. Chaudhuri, R. R., Khan, A. M., & Pallen, M. J. (2004). coliBASE; an online database for Escherichia coli, Shigella and Salmonella comparative genomics. Nucleic Acid Research, 32, 296–299.Google Scholar
  31. Chen, S., Xu, R., Wu, K. Y., Wang, C. N., Read, S., & De Grandis, S. A. (1998). An automated fluorescent PCR method for detection of shiga toxin-producing Escherichia coli in foods. Applied and Environmental Microbiology, 64, 4210–4216.Google Scholar
  32. Chen, S., Zhao, S., McDermott, P. F., Schroeder, C. M., White, D. G., & Meng, J. (2005). A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Molecular and Cellular Probes, 19, 195–201.Google Scholar
  33. Chen, Y., Zhang, W., & Knabel, S. J. (2005). Multi-virulence-locus sequence typing clarifies epidemiology of recent listeriosis outbreaks in the United States. Journal of Clinical Microbiology, 43, 5291–5294.Google Scholar
  34. Chen, Y., Zhang, W., & Knabel, S. J. (2007). Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes. Journal of Clinical Microbiology, 43, 835–846.Google Scholar
  35. Chisholm, S. A., Crichton, P. B., Knight, H. I., & Old, D. C. (1999). Molecular typing of Salmonella serotype Thompson strains isolated from human and animal sources. Epidemiology and Infection, 122, 33–39.Google Scholar
  36. Chou, C. H., & Wang, C. (2006). Genetic relatedness between Listeria monocytogenes isolates from seafood and humans using PFGE and REP-PCR. International Journal of Food Microbiology, 15, 135–148.Google Scholar
  37. Chu, G., Vollrath, D., & Davis, R. W. (1986). Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science, 234, 1582–1585.Google Scholar
  38. Clark, C. G., Price, L., Ahmed, R., Woodward, D. L., Melito, P. L., Jamieson, F., et al. (2003). Characterization of waterborne outbreak-associated Campylobacter jejuni, Walkerton, Ontario. Emerging Infectious Disease, 9, 1232–1241.Google Scholar
  39. Clark, C. G., Bryden, L., Cuff, W. R., Johnson, P. L., Jamieson, F., Ciebin, B., et al. (2005). Use of the Oxford multilocus sequence typing protocol and sequencing of the flagellin short variable region to characterize isolates from a large outbreak of waterborne Campylobacter sp. strains in Walkerton, Ontario, Canada. Journal of Clinical Microbiology, 43, 2080–2091.Google Scholar
  40. Coimbria, R. S., Nicastro, G., Gimont, P. A. D., & Grimont, F. (2001). Computer identification of Shigella species by rRNA gene restriction patterns. Research in Microbiology, 152, 47–55.Google Scholar
  41. D’Auga, C., Zabreovskaia, A., & Grimont, P. D. (1998). Restriction fragment length polymorphism analysis of some flagellin genes of Salmonella enterica. Journal of Clinical Microbiology, 36, 2835–2843.Google Scholar
  42. De Boer, P., Duim, B., Rigter, A., van der Plas, J., Jaconbs-Reitsma, W. F., & Wagenaar, J. A. (2000). Computer-assisted analysis and epidemiological value of genotyping methods for Campylobacter jejuni and Campylobacter coli. Journal of Clinical Microbiology, 38, 1940–1946.Google Scholar
  43. Da Silveria, W. D., Ferreira, A., Lancellotti, M., Barbosa, I. A. D. C. D., Leite, D. S., deCastro, A. F. P., et al. (2002). Clonal relationships among avian Escherichia coli isolates determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. Veterinary Microbiology, 83, 323–328.Google Scholar
  44. DeCesare, A., Bruce, J., Dambaugh, T. R., Guerzoni, M. E., & Wiedmann, M. (2001). Automated ribotyping using different enzymes to improve discrimination of Listeria monocytogenes isolates, with a particular focus on serotype 4b strains. Journal of Clinical Microbiology, 39, 3002–3005.Google Scholar
  45. DeCesare, A., Mioni, R., & Manfreda, G. (2007). Prevalence of Listeria monocytogenes in fresh and fermented Italian sausages and ribotyping of contaminating strains. International Journal of Food Microbiology, 120, 124–130.Google Scholar
  46. Dingle, K. E., Colles, F. M., Wareing, D. R. A., Ure, R., Fox, A. J., Bolton, F. E., et al. (2001). Multilocus sequence typing system for Campylobacter jejuni. Journal of Clinical Microbiology, 39, 14–23.Google Scholar
  47. Duirez, P., & Topp, E. (2007). Temporal dynamics and impact of manure storage on antibiotic resistance patterns and population structure of Escherichia coli isolates from a commercial swine farm. Applied and Environmental Microbiology, 73, 5486–5493.Google Scholar
  48. Enright, M. C., & Spratt, B. G. (1999). Multilocus sequence typing. Trends in Microbiology, 7, 482–487.Google Scholar
  49. Esaki, H., Noda, K., Otsuki, A., Kojima, A., Asai, T., Tamura, Y., et al. (2004). Rapid detection of quinolone-resistant Salmonella by real time SNP genotyping. Journal of Microbiological Methods, 58, 131–134.Google Scholar
  50. Fakhr, M. K., Nolan, L. K., & Logue, C. M. (2005). Multilocus sequence typing lacks the discriminatory ability of pulsed-field gel electrophoresis for typing Salmonella enterica serovar Typhimurium. Journal of Clinical Microbiology, 43, 2215–2219.Google Scholar
  51. Fakhr, M. K., Sherwood, J. S., Thorsness, J., & Logue, C. M. (2006). Molecular characterization and antibiotic resistance profiling of Salmonella isolated from retail turkey meat products. Foodborne Pathogens and Disease, 3, 366–374.Google Scholar
  52. Fakhr, M. K., McEvoy, J. M., Sherwood, J. S., & Logue, C. M. (2006). Adding a selective enrichment step to the iQ-Check real-time PCR improves the detection of Salmonella in naturally contaminated retail turkey meat products. Letters in Applied Microbiology, 43, 78–83.Google Scholar
  53. Fanning, S., O’Mullane, J., O’Meara, D., Ward, A., Joyce, C., Delaney, M., et al. (1995). Detection of the heat-stable toxin encoding gene (ST-gene) in enterotoxigenic Escherichia coli: development of a color coding amplified PCR detection system. British Journal of Biomedical Science, 52, 317–20.Google Scholar
  54. Fayos, A., Owen, R. J., Hernandez, J., Jones, V., & Lastovica, A. (1993). Molecular subtyping by genome and plasmid analysis of Campylobacter jejuni serogroups O1 and O2 (Penner) from sporadic and outbreak cases of human diarrhoea. Epidemiology and Infection, 111, 415–427.Google Scholar
  55. Fitzgerald, C., Qwen, R. J., & Stanley, J. (1996). Comprehensive ribotyping scheme for heat-stable serotypes of Campylobacter jejuni. Journal of Clinical Microbiology, 34, 265–269.Google Scholar
  56. Fitzgerald, C., Helsel, L. O., Nicholson, M. A., Olsen, S. J., Swerdlow, D. L., Flahart, R., et al. (2001). Evaluation of methods for subtyping Campylobacter jejuni during an outbreak involving a food handler. Journal of Clinical Microbiology, 39, 2386–2390.Google Scholar
  57. Foley, S. L., Simjee, S., Meng, J., White, D. G., McDermott, P. F., & Zhao, S. (2004). Evaluation of molecular typing methods for Escherichia coli O157:H7 isolates from cattle, food, and humans. Journal of Food Protection, 67, 651–657.Google Scholar
  58. Foley, S. L., White, D. G., McDermott, P. F., Walker, R. D., Rhodes, B., Fedorka-Cray, P. J., et al. (2006). Comparison of subtyping methods for differentiating Salmonella enterica serovar Typhimurium isolates obtained from food animal sources. Journal of Clinical Microbiology, 44, 3569–3577.Google Scholar
  59. Foley, S. L., & Lynne, A. M. (2007). Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. Journal of Animal Science, 86, E173–E187.Google Scholar
  60. Foley, S. L., Zhao, S., & Walker, R. D. (2007). Comparison of molecular typing methods for the differentiation of Salmonella foodborne pathogens. Foodborne Pathogens and Disease, 4, 253–276.Google Scholar
  61. Fontana, J., Stout, A., Bolstroff, B., & Timeeri, R. (2003). Automated ribotyping and pulsed-field gel electrophoresis for rapid identification of multidrug-resistant Salmonella serotype Newport. Emerging Infectious Diseases, 9, 496–499.Google Scholar
  62. Foxman, B., Zhang, L., Koopman, J. S., Manning, S. D., & Marrs, C. F. (2005). Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiologic Perspectives and Innovations, 2, 10.Google Scholar
  63. Franciosa, G., Tartaro, S., Wedeli-Neergaard, C., & Aureli, P. (2001). Characterization of Listeria monocytogenes strains involved in invasive and non invasive listeriosis outbreaks by PCR based fingerprinting techniques. Applied and Environmental Microbiology, 67, 1793–1799.Google Scholar
  64. Fratamico, P. M., & Bales, D. O. (2005). Molecular approaches for detection, identification, and analysis of foodborne pathogens. In P. M. Fratamico, A. K., Bhunia, & J. L. Smith (Eds.), Foodborne pathogens microbiology and molecular biology (pp. 1–13). Norfolk, UK: Caister Academic Press.Google Scholar
  65. Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. Nature Review of Microbiology, 3, 6509–6516.Google Scholar
  66. Fykse, E. M., Skogan, G., Davies, W., Olsen, J. S., & Blatny, J. M. (2007). Detection of Vibrio cholerae by real time nucleic acid sequence based amplification. Applied and Environmental Microbiology, 73, 1457–1466.Google Scholar
  67. Fykse, E. M., Langseth, B., Olsen, J. S., Skogan, G., & Blatny, J. M. (2008). Detection of bioterror agents in air samples using real-time PCR. Journal of Applied Microbiology, 105, 351–358.Google Scholar
  68. Garaizar, J., Lopez-Molina, N., Laconcha, I., Baggesen, D. L., Rementeria, A., Vivanco, A., et al. (2000). Suitability of PCR fingerprinting, infrequent-restriction site PCR and pulsed-field gel electrophoresis, combined with computerized gel analysis in library typing of Salmonella enterica serovar Enteriditis. Applied and Environmental Microbiology, 66, 5273–5281.Google Scholar
  69. Garaizar, J., Rementeria, A., & Porwollik, S. (2006). DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunology and Medical Microbiology, 47, 178–189.Google Scholar
  70. Gaynor, E. C., Cawthraw, S., Manning, G., MacKichan, J. K., Falkow, S., & Newell, D. G. (2004). The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence associated phenotypes. Journal of Bacteriology, 186, 503–517.Google Scholar
  71. Ge, B., Zhao, S., Hall, R., & Meng, J. (2002). A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli. Microbes and Infection, 4, 285–290.Google Scholar
  72. Ge, B., Girard, W., Zhao, S., Friedman, S., Gaines, S. A., & Meng, J. (2006). Genotyping of Campylobacter spp from retail meats by pulsed-field gel electrophoresis and ribotyping. Journal of Applied Microbiology, 100, 175–184.Google Scholar
  73. Gilpin, B., Cornelius, A., Robson, B., Boxall, N., Ferguson, A., Nichol, C., et al. (2006). Application of pulsed-field gel electrophoresis to identify potential outbreaks of campylobacteriosis in New Zealand. Journal of Clinical Microbiology, 44, 406–12.Google Scholar
  74. Goldberg, T. L., Gillespie, T. R., & Singer, R. S. (2006). Optimization of analytical parameters for inferring relationships among Escherichia coli isolates from repetitive-element PCR by maximizing correspondence with multilocus sequence typing data. Applied and Environmental Microbiology, 72, 6049–6052.Google Scholar
  75. Grant, M. A., Hu, J., & Jinneman, K. C. (2006). Multiplex real-time PCR detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Journal of Food Protection, 69, 412–416.Google Scholar
  76. Graves, L. M., Hunter, S. B., Ong, A. R., Schoonmaker-Bopp, D., Hise, K., Kornstein, L., et al. (2005). Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet network. Journal of Clinical Microbiology, 43, 2350–2355.Google Scholar
  77. Grif, K., Heller, I., Wagner, M., Dierich, M., & Wurzner, R. (2006). A comparison of Listeria monocytogenes serovar 4b isolates of clinical and food origin in Austria by automated ribotyping and pulsed-field gel electrophoresis. Foodborne Pathogens and Disease, 3, 138–141.Google Scholar
  78. Hain, T., Steinweg, C., & Chakraborty, T. (2006). Comparative and functional genomics of Listeria spp. Journal of Biotechnology, 20, 37–51.Google Scholar
  79. Hahm, B. K., Maldonado, Y., Schreiber, E., Bhunia, A. K., & Nakatsu, C. H. (2003). Subtyping of foodborne and environmental isolates by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. Journal of Microbiological Methods, 53, 387–399.Google Scholar
  80. Halstensen, A. S., Nordby, K. C., Eduard, W., & Klemsdal, S. S. (2006). Real-time detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. Journal of Environmental Monitoring, 4, 1235–1241.Google Scholar
  81. Hanninen, M.-L., Hakkinen, M., & Rautelin, H. (1999). Stability of related human and chicken Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed field electrophoresis. Applied and Environmental Microbiology, 65, 2272–2275.Google Scholar
  82. Harbottle, H., White, D. G., McDermott, P. F., Walker, R. D., & Zhao, S. (2006). Comparison of multi locus sequence typing, pulsed field gel electrophoresis, and antimicrobial susceptibility typing for characterization of Salmonella enterica serotype Newport Isolates. Journal of Clinical Microbiology, 44, 2449–2497.Google Scholar
  83. Harvey, J., & Gilmour, A. (2001). Characterization of recurrent and sporadic Listeria monocytogenes isolates from raw milk, and non dairy foods by pulsed field electrophoresis, monocin typing, plasmid profiling and cadmium and antibiotic resistance determination. Applied and Environmental Microbiology, 67, 840–847.Google Scholar
  84. Hedberg, C. W., Smith, K. E., Besser, J. M., Boxrud, D. J., Hennessy, T. W., Benderm, J. B., et al. (2001). Limitations of pulsed-field gel electrophoresis for the routine surveillance of Campylobacter infections. Journal of Infectious Disease, 184, 242–243.Google Scholar
  85. Hiett, K. L., Seal, B. S., & Siragusa, G. R. (2006). Campylobacter spp. subtype analysis using gel-based repetitive extragenic palindromic-PCR discriminates in parallel fashion to flaA short variable region DNA sequence Analysis. Journal of Applied Microbiology, 101, 1249–1258.Google Scholar
  86. Hoffmaster, A. R., Fitzgerald, C. C., Ribot, E., Mayer, L. W., & Popovic, T. (2002). Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerging Infectious Diseases, 8, 1111–1116.Google Scholar
  87. Holmberg, S. D., Wachsmuth, I. K., Hickman-Brenner, F. W., & Cohen, M. L. (1984). Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing Salmonella typhimurium from outbreaks. Journal of Clinical Microbiology, 19, 100–104.Google Scholar
  88. Hommais, F., Pereira, S., Acquaviva, C., Escobar-Paramo, P., & Denamur, E. (2005). Single-nucleotide polymorphism phylotyping of Escherichia coli. Applied and Environmental Microbiology, 71, 4784–4792.Google Scholar
  89. Horby, P. W., O’Brien, S. J., Adak, G. K., Graham, C., Hawker, J. I., Hunter, P., et al. (2003). A national outbreak of multi-resistant Salmonella enterica serovar Typhimurium definitive phage type (DT) 104 associated with consumption of lettuce. Epidemiology and Infection, 130, 169–178.Google Scholar
  90. Horsmon, J. R., Cao, C. J., Khan, A. S., Gostomski, M. V., Valsdes, J. J., & O’Connell, K. P. (2006). Real-time fluorogenic PCR assays for the detection of entA, the gene encoding staphylococcal enterotoxin A. Biotechnology Letters, 28, 823–829.Google Scholar
  91. Hu, H., Lan, R. & Reeves, P. R. (2006). Adaptation of multilocus sequencing for studying variation within a major clone: evolutionary relationships of Salmonella enterica serovar Typhimurium. Genetics, 172, 743–750.Google Scholar
  92. Huang, Q., Hu, Q., & Li, Q. (2007). Identification of 8 foodborne pathogens by multicolor combinational probe coding technology in a single real-time PCR. Clinical Chemistry, 53, 1741–1748.Google Scholar
  93. Hulton, C. S. J., Higgins, C. F., & Sharp, P. M. (1991). ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology, 5, 825–834.Google Scholar
  94. Hyytia-Trees, E., Cooper, K., Ribot, E. M., & Gerner-Smidt, P. (2007). Recent developments and future prospects in subtyping of foodborne bacterial pathogens. Future Microbiology, 2, 175–185.Google Scholar
  95. Iguchi, A., Osawa, R., Kawano, J., Shimizu, A., Terajima, J., & Watanabe, H. (2002). Effects of repeated subculturing and prolonged storage at room temperature on enterohemorrhagic Escherichia coli O157:H7 on pulsed-field gel electrophoresis profiles. Journal of Clinical Microbiology, 40, 3079–3081.Google Scholar
  96. Iriarte, P., & Owen, R. J. (1996). PCR-RFLP analysis of the large subunit (23S) ribosomal RNA genes of Campylobacter jejuni. Letters in Applied Microbiology, 23, 17–22.Google Scholar
  97. Iteman, I., Guiyoule, A., & Carniel, E. (1996). Comparison of three molecular methods for typing and sub typing pathogenic Yersinia enterocolitica strains. Journal of Medical Microbiology, 45, 48–56.Google Scholar
  98. Ito, Y., Iinuma, Y., Baba, H., Sugino, Y., Hasegawa, Y., Shimokata, et al. (2003). Evaluation of automated ribotyping system for characterization and identification of verocytotoxin-producing Escherichia coli isolated in Japan. Japanese Journal of Infectious Diseases, 56, 200–204.Google Scholar
  99. Jackson, C. J., Fox, A. J., Waering, D. R., Hutchinson, D. N., & Jones, D. M. (1996). The application of genotyping techniques to the epidemiological analysis of Campylobacter jejuni. Epidemiology and Infection, 117, 233–244.Google Scholar
  100. Jersek, B., Gilot, P., Gubina, M., Klun, N., Mehele, J., Tcherneva, E., et al. (1999). Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. Journal of Clinical Microbiology, 37, 103–109.Google Scholar
  101. Jin, H. Y., Tao, K. H., Li, Y. X., Li, F. Q., & Li, S. Q. (2005). Microarray analysis of Escherichia coli O157:H7. World Journal of Gastroenterology, 7, 5811–5815.Google Scholar
  102. Joerger, R. D., & Ross, T. (2005). Genotypic diversity of Escherichia coli isolated from cecal content and mucosa of one to six week old broilers. Poultry Science, 84, 1902–1907.Google Scholar
  103. Johansen, B. K., Wasteson, Y., Granum, P. E., & Brynestad, S. (2001). Mozaic structure of shiga-toxin-2-encoding phages isolated from Escherichia coli O157:H7 indicates frequent gene exchange between lamboid phage genomes. Microbiology, 147, 1929–1936.Google Scholar
  104. Johnson, T. J., Siek, K. E., Johnson, S. J., & Nolan, L. K. (2005). DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrobial Agents and Chemotherapy, 49, 4681–8.Google Scholar
  105. Johnson, T. J., Siek, K. E., Johsnon, S. J., & Nolan, L. K. (2006). DNA Sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. Journal of Bacteriology, 188, 745–758.Google Scholar
  106. Johnson, T. J., Johnson, S. J., & Nolan, L. K. (2006). Complete sequence of a ColBM plasmid from an avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. Journal of Bacteriology, 188, 5975–5983.Google Scholar
  107. Johnson, T. J., Wannemuehler, Y., Scaccianoce, J., Johnson, S. J., & Nolan, L. K. (2006). Complete DNA sequence, comparative genomics, and prevalence of an IncH12 plasmid occurring among extraintestinal pathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 50, 3929–3933.Google Scholar
  108. Johnson, T. J., Wannemuehler, Y. M., Johnson, S. J., Logue, C. M., White, D. G., Doetkott, C. et al. (2007). Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Applied and Environmental Microbiology, 73, 1976–1983.Google Scholar
  109. Johnson, T. J. Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S. J., Skyberg, J. A., et al. (2007). The genome sequence of avian pathogenic Escherichia coli O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. Journal of Bacteriology, 189, 3228–3226.Google Scholar
  110. Keramas, G., Bang, D. D., Lund, M., Madsen, M., Bunkenborg, H., Telleman, P., et al. (2004). Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces. Journal of Clinical Microbiology, 42, 3985–3991.Google Scholar
  111. Kim, J.-Y., Kim, S.-H., Kwon, N.-H., Bae, W.-K., Lim, J.-Y., Koo, H.-C., et al. (2005). Isolation and identification of Escherichia coli O157:H7 using different detection methods and molecular determination by multiplex PCR and RAPD. Journal of Veterinary Science, 6, 7–19.Google Scholar
  112. Kim, J. S., Lee, G. G., Park, J. S., Kwak, H. S., Kim, S. B., Nam, Y. S., et al. (2007). A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes and Vibrio parahaemolyticus. Journal of Food Protection, 70, 1656–1662.Google Scholar
  113. Kimura, R., Mandrell, R. E., Galland, J. C., Hyatt, D. & Riley, L. W. (2000). Restriction site specific PCR as a rapid test to detect enterohemorrhagic Escherichia coli O157:H7 strains in Environmental samples. Applied and Environmental Microbiology, 66, 5213–2519.Google Scholar
  114. Klein, P. G., & Juneja, V. K. (1997). Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Applied and Environmental Microbiology, 63, 4441–4448.Google Scholar
  115. Kostic, T., Weilhaster, A., Rubino, S., Delogu, G., Uzzau, S., Rudi, K., et al. (2007). A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens. Analytical Biochemistry, 15, 244–254.Google Scholar
  116. Kolstad, J., Caugant, D. A., & Rorvik, L. M. (1992). Differentiation of Listeria monocytogenes isolates by using plasmid profiling and multilocus enzyme electrophoresis. International Journal of Food Microbiology, 16, 247–260.Google Scholar
  117. Kostman, J. R., Alden, M. B., Mair, M., Edlind, T. D., LiPuma, J. J., Stull, T. L. (1995). A universal approach to bacterial molecular epidemiology by polymerase chain reaction ribotyping. Journal of Infectious Diseases, 171, 204–208.Google Scholar
  118. Kostrzynska, M., & Bachand, A. (2006). Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Canadian Journal of Microbiology, 52, 1–8.Google Scholar
  119. Kotetishvili, M., Stine, O. C., Kreger, A., Morris, J. G. Jr., & Sulakvelidze, A. (2002). Multilocus sequence typing for characterization of clinical and environmental Salmonella strains. Journal of Clinical Microbiology, 40, 1626–1635.Google Scholar
  120. Kudva, I. T., Ebans, P. S., Perna, N. T., Barrett, T. J., DeCastro, G. J., & Ausubel, F. M., et al. (2002). Polymorphic amplified typing sequences provide a novel approach to Escherichia coli O157:H7 strain typing. Journal of Clinical Microbiology, 40, 1152–1159.Google Scholar
  121. Kumao, T., Ba-Thein, W., & Hayashi, H. (2002). Molecular subtyping methods for detection of Salmonella enterica serovar Oraienburg outbreaks. Journal of Clinical Microbiology, 40, 2057–2061.Google Scholar
  122. Lee, T. M., Chang, L. L., Wang, J. C., Pan, T. M., Wang, T. K., & Chang, S. F. (2000). Molecular analysis of Shigella sonnei isolated from three well-documented outbreaks in school children. Journal of Medical Microbiology, 49, 355–360.Google Scholar
  123. Lekowska-Kochaniak, A., Rozynek, E., & Popowski, J. (1996). Antibiotic resistance of Campylobacter jejuni with reference to plasmid profiles of clinical and chicken isolates. Acta Microbiologica Polonica, 45, 249–259.Google Scholar
  124. Levin, B. R., & Bergstrom, C. T. (2000). Bacteria are different: Observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proceedings of the National Academy of Sciences, 97, 6981–6985.Google Scholar
  125. Levy, S. B., Fitzgerald, G. B., & Macone, A. B. (1976). Spread of antibiotic resistant plasmids from chicken to chicken and from chicken to man. Nature, 260, 40–42.Google Scholar
  126. Levy, D. D., Sharma, B., & Cebula, T. A. (2004). Single nucleotide polymorphism mutation spectra and resistance to quinolones in Salmonella enterica serovar Enteriditis with a mutator phenotype. Antimicrobial Agents and Chemotherapy, 48, 2355–2363.Google Scholar
  127. Li, F., Zhao, C., Zhang, W., Cui, S., Meng, J., Wu, J., et al. (2005). Use of a ramification amplification assay for detection of Escherichia coli O157:H7 and other E. coli shiga toxin-producing strains. Journal of Clinical Microbiology, 43, 6086–6090.Google Scholar
  128. Li, Q., Skyberg, J. A., Fakhr, M. K., Sherwood, J. S., Nolan, L. K., & Logue, C. M. (2006). Antimicrobial susceptibility and characterization of Salmonella isolates from processed bison carcasses. Applied and Environmental Microbiology, 72, 3046–3049.Google Scholar
  129. Li, Q., Sherwood, J. S., & Logue, C. M. (2007). Characterization of antimicrobial resistant Escherichia coli from processed bison carcasses. Journal of Applied Microbiology, 103, 2361–2369.Google Scholar
  130. Lim, H., Lee, K. H., Hong, C-H., Bahk, G.-J., & Choi, W. S. (2005). Comparison of four molecular typing methods for the differentiation of Salmonella spp. International Journal of Food Microbiology, 105, 411–418.Google Scholar
  131. Lindstedt, B.-A., Heir, E., Vardund, T., & Kapperud, G. (2000). Fluorescent amplified-fragment length polymorphism genotyping of Salmonella enterica subsp. enterica serovars and comparison with pulsed-field gel electrophoresis typing. Journal of Clinical Microbiology, 38, 1623–1627.Google Scholar
  132. Lindstedt, B.-A., Heir, E., Gjernes, E., Vardund, T., & Kappered, G. (2003). DNA fingerprinting of Shiga-toxin producing Escherichia coli O157 based on multiple-locus variable-number tandem-repeats analysis (MLVA). Annals of Clinical Microbiology and Antimicrobials, 2, 12.Google Scholar
  133. Lindstedt, B.-A. (2005). Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis, 26, 2567–2582.Google Scholar
  134. Lindqvist, R. (1999). Detection of Shigella spp. in food with a nested PCR method-sensitivity and performance compared with a conventional culture method. Journal of Applied Microbiology, 86, 971–978.Google Scholar
  135. Liebana, E., Garcia-Migura, L., Breslin, M. F., Davies, R. H., & Woodward, F. A. (2001). Diversity of strains of Salmonella enterica serotype Enteriditis from English poultry farms assessed by multiple genetic fingerprinting. Journal of Clinical Microbiology, 39, 154–161.Google Scholar
  136. Ling, J. M., Lo, N. S. W., Ho, Y. M., Kam, K. M., Hoa, N. T. T., Phi, L. T., et al. (2000). Molecular methods for the epidemiological typing of Salmonella enterica serotype Typhi from Hong Kong and Vietnam. Journal of Clinical Microbiology, 38, 292–300.Google Scholar
  137. Litrup, E., Torpdahl, M., & Nielsen, E. M. (2007). Multilocus sequence typing performed on Campylobacter coli isolates from humans, broilers, pigs and cattle originating in Denmark. Journal of Applied Microbiology, 103, 210–218.Google Scholar
  138. Liu, P. Y., Lau, Y. J., Shyr, J. M., Shi, Z. Y., Tsai, W. S., Lin, Y. H., et al. (1995). Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. Journal of Clinical Microbiology, 33, 1779–1783.Google Scholar
  139. Lopez, G. O., Hilaire, V., Lisanti, O., Ramisse, V., & Vergnaud, G. (2008). Selection and validation of a Multilocus Variable Number Tandem Repeat analysis panel for typing Shigella spp. Journal of Clinical Microbiology, 46, 1026–1036.Google Scholar
  140. Mackay, I. M. (2004). Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infections, 10, 190–212.Google Scholar
  141. Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., et al. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences USA, 95, 3140–3145.Google Scholar
  142. Malik-Kale, P., Raphael, B. H., Parker, C. T., Joens, L. A., Klena, J. D., Quinones, B., et al. (2007). Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism’s virulence potential. Applied and Environmental Microbiology, 73, 3123–3136.Google Scholar
  143. Marsh, J. W., O’Leary, M. M., Shutt, K. A., Pasculle, A. W., Johnson, S., Gerding, D. N., et al. (2006). Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in hospitals. Journal of Clinical Microbiology, 44, 2558–2566.Google Scholar
  144. Martin, I. E., Tyler, S. D., Khakhira, R., & Johnson, W. M. (1996). Evaluation of ribotyping as epidemiologic tool for typing Escherichia coli serogroup O157 isolates. Journal of Clinical Microbiology, 34, 720–723.Google Scholar
  145. Martinez, I., Mateo, E., Churruca, E., Girbau, C., Alonso, R., & Fernandez-Astorga, A. (2006). Detection of cdtA, cdtB, and cdtC genes in Campylobacter by multiplex PCR. International Journal of Medical Microbiology, 296, 45–48.Google Scholar
  146. Mazi, W., Senok, A., Al-Mahmeed, A., Arzese, A., Bindayna, K., & Botta, G. (2008). Trends in antibiotic sensitivity pattern and molecular detection of tet(O)-mediated tetracycline resistance in Campylobacter jejuni isolates from human and poultry sources. Japanese Journal of Infectious Disease, 61, 82–84.Google Scholar
  147. Mazurek, G. H., Reddy, V., Marstoin, B. J., Haas, W. H., & Crawford, J. T. (1996). DNA fingerprinting by Infrequent- restriction-site amplification. Journal of Clinical Microbiology, 34, 2386–2390.Google Scholar
  148. McCrea, B. A., Macklin, K. S., Norton, R. A., Hess, J. B., & Bilgili, S. F. (2006). A longitudinal study of Salmonella and Campylobacter jejuni isolates from day of hatch through processing by automated ribotyping. Journal of Food Protection, 69, 2908–2914.Google Scholar
  149. McIngvale, S. C., Elhanafi, D., & Drake, M. A. (2002). Optimization of reverse transcriptase PCR to detect viable Shiga-toxin-producing Escherichia coli. Applied and Environmental Microbiology, 68, 799–806.Google Scholar
  150. Mendoza, M. C., Alzugaray, R., Landeras, E., & Gonzales-Hevia, M. A. (1996). Discriminatory power and application of ribotyping of Yersinia enterocolitica O:3 in an epidemiological study. European Journal of Clinical Microbiology and Infectious Disease, 15, 220–226.Google Scholar
  151. Miles, T. D., McLaughlin, W., & Brown, P. D. (2006). Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Veterinary Research, 2, 7.Google Scholar
  152. Millemann, Y., Lesage, M. C., Chaslus-Danica, E., & Lafont, J. P. (1995). Value of plasmid profiling, ribotyping and detection of IS200 for tracing avian isolates of Salmonella typhimurium and S. enteriditis. Journal of Clinical Microbiology, 33, 173–179.Google Scholar
  153. Millemann, Y., Gaubert, S., Remy, D., & Colmin, C. (2000). Evaluation of IS200-PCR and comparison with other molecular markers to trace Salmonella enterica subsp enterica serotype Typhimurium bovine isolates from farm to meat. Journal of Clinical Microbiology, 38, 2204–2209.Google Scholar
  154. Miwa, N., Nishina, T., Kubo, S., & Fujikura, K. (1996). Nested polymerase chain reaction for detection of low levels of enterotoxigenic Clostridium perfringens in animal feces and meat. Journal of Veterinary Medicine Science, 58, 197–203.Google Scholar
  155. Mohapatra, B. R., Broersma, K., Nordin, R., & Mazumder, A. (2007). Evaluation of repetitive extragenic palindromic-PCR for discrimination of fecal Escherichia coli from humans, and different domestic-and wild-animals. Microbiology and Immunology, 51, 733–740.Google Scholar
  156. Mohapatra, B. R., Broersma, K., & Mazumder, A. (2007). Comparison of five rep-PCR genomic fingerprinting methods for the differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiology Letters, 277, 98–106.Google Scholar
  157. Mohran, A. S., Guerry, P., Lior, H., Murphy, J. R., El-Gendy, A. M., Mikail, M. M., et al. (1996). Restriction fragment length polymorphism for flagellin genes of Campylobacter jejuni and/or C. coli isolates from Egypt. Journal of Clinical Microbiology, 34, 1216–1219.Google Scholar
  158. Morin, N. J., Gong, Z., & Li, X. F. (2004). Reverse transcription-multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Vibrio cholerae O1, and Salmonella Typhi. Clinical Chemistry, 50, 2037–2044.Google Scholar
  159. Morello, L. G., Sartori, D., de Oliveria Martinez, A. L., Vieira, M. L., Taniwakai, M. H., & Fungaro, M. H. (2007). Detection and quantification of Aspergillus westerdijkiae in coffee beans based on selective amplification of beta-tubulin gene by using real-time PCR. International Journal of Food Microbiology, 119, 270–276.Google Scholar
  160. Mortimer, C. K., Peters, T. M., Gharbia, S. E., Logan, J. M., & Arnold, C. (2004). Towards the development of a DNA-sequence based approach to serotyping Salmonella enterica. BMC Microbiology, 4, 31.Google Scholar
  161. Mueller, U. G., & Wolfenbarger, L. L. (1999). AFLP genotyping and fingerprinting. Trends in Ecology and Evolution, 14, 389–394.Google Scholar
  162. Nachamkin, I., Bohachick, K., & Patton, C. M. (1993). Flagellin gene typing of Campylobacter jejuni by restriction fragment length polymorphism analysis. Journal of Clinical Microbiology, 31, 1531–1536.Google Scholar
  163. Nachamkin, I., Ung, H., & Patton, C. (1996). Analysis of HL and O serotypes of Campylobacter strains by the flagellin gene typing system. Journal of Clinical Microbiology, 34, 277–281.Google Scholar
  164. Nappi, R., Bozzetta, E., Serra, R., Grattarola, C., Decastelli, L., Florio, C., et al. (2005). Molecular characterization of Listeria monocytogenes strains associated with outbreaks of listeriosis in humans and ruminants and food products by serotyping and automated ribotyping. Veterinary Research Communications, 2, 249–252.Google Scholar
  165. Nayak, R., Stewart, T., Wang, R. F., Lin, J., Cerniglia, C. E., & Kenney, P. B. (2004). Genetic diversity and virulence gene determinants of antibiotic-resistant Salmonella isolated from preharvest turkey production sources. International Journal of Food Microbiology, 15, 51–62.Google Scholar
  166. Nde, C. W., Sherwood, J. S., Doetkott, C. W., & Logue, C. M. (2006). Prevalence and molecular profiles of Salmonella collected at a commercial turkey processing plant. Journal of Food Protection, 69, 1794–801.Google Scholar
  167. Nde, C. W., McEvoy, J. M., Sherwood, J. S., & Logue, C. M. (2007). Cross contamination of turkey carcasses by Salmonella species during defeathering. Poultry Science, 86, 162–167.Google Scholar
  168. Nde, C. W., & Logue, C. M. (2008). Characterization of antimicrobial susceptibility and virulence genes of Salmonella serovars collected at a commercial turkey processing plant. Journal of Applied Microbiology, 104, 215–223.Google Scholar
  169. Nde, C. W., Fakhr, M. K., Doetkott, C., & Logue, C. M. (2008). An evaluation of conventional culture, invA PCR, and the real-time PCR IQ-Check kit as detection tools for Salmonella in naturally contaminated premarket and retail turkey. Journal of Food Protection, 71, 386–391.Google Scholar
  170. Nielsen, E. M., Fusisng, V., Engberg, J., Nielsen, N. L., & Neimann, J. (2006). Most Campylobacter subtypes from sporadic infections can be found in retail poultry products and food animals. Epidemiology and Infection, 134, 758–767.Google Scholar
  171. Niessen, L. (2008). PCR-based diagnosis and quantification of mycotoxin-producing fungi. Advanced Food Nutrition Research, 54, 81–138.Google Scholar
  172. Nøller, A. C., McEllistrem, M. C., Pacheco, A. G. F., Boxrud, D. J., & Harrison, L. H. (2003). Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. Journal of Clinical Microbiology, 41, 5389–5397.Google Scholar
  173. Nøller, A. C., McEllistrem, M. C., Stine, O. C., Morris, J. G. Jr., Boxrud, D., Dixon, B., et al. (2003). Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. Journal of Clinical Microbiology, 41, 675–679.Google Scholar
  174. O’Grady, J., Sedano-Balbas, S., Maher, M., Smith, T., & Barry, T. (2008). Rapid real-time PCR detection of Listeria monocytogenes in enriched food sample based on the ssraA gene, a novel diagnostic target. Food Microbiology, 25, 75–84.Google Scholar
  175. Ojha, S., & Kostrzynska, M. (2008). Examination of animal and zoonotic pathogens using microarrays. Veterinary Research, 39, 4.Google Scholar
  176. Olive, D. M., & Bean, P. (1999). Principles and applications of methods for DNA-based typing of microbial organisms. Journal of Clinical Microbiology, 37, 1661–1669.Google Scholar
  177. Olsen, J. E., Skov, M. N., Angen, O., Threlfall, J. E., & Bisgaard, M. (1997). Genomic relationships between selected phage types of Salmonella enterica subsp. enterica serotype typhimurium defined by ribotyping, IS200 typing and PFGE. Microbiology, 143, 1471–1479.Google Scholar
  178. Olsvik, O., Sorum, H., K. Birkness, K., Wachsmuth, K., Fjolstad, M., Lassen, J., et al. (1985). Plasmid characterization of Salmonella typhimurium transmitted from animals to humans. Journal of Clinical Microbiology, 22, 336–338.Google Scholar
  179. On, S. L. (1998). In vitro genotypic variation of Campylobacter coli documented by pulsed-field gel electrophoretic DNA profiling: implications for epidemiological studies. FEMS Microbiology Letters, 165, 341–346.Google Scholar
  180. Pagotto, F., Corneau, N., Scherf, C., Leopold, P., Clark, C., & Farber, J. M. (2005). Ch 4 Molecular typing and differentiation of foodborne bacterial pathogens. In P. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens microbiology and molecular biology (pp. 51–75). Norfolk, UK: Caister Academic Press.Google Scholar
  181. Parker, C. T., Miller, W. G., Horn, S. T., & Lastovica, A. J. (2007). Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni. BMC Microbiology, 7, 50.Google Scholar
  182. Petersen, L., & Newell, D. G. (2001). The ability of Fla-typing schemes to discriminate between strains of Campylobacter jejuni. Journal of Applied Microbiology, 91, 217–224.Google Scholar
  183. Petersen, A., Christensen, J. P., Kuhnert, P., Bisgaard, M., & Olsen, J. E. (2006). Vertical transmission of a fluoroquinolone-resistant Escherichia coli within an integrated broiler operation. Veterinary Microbiology, 116, 120–128.Google Scholar
  184. Peterson, L., & On, S. L. W. (2000). Efficacy of flagellin gene typing for epidemiological studies of Campylobacter jejuni in poultry estimated by comparison with macrorestriction profiling. Letters in Applied Microbiology, 31, 14–19.Google Scholar
  185. Pradel, N., Bertin, Y., Martin, C., & Liverelli, V. (2008). Molecular analysis of shiga toxin producing Escherichia coli strains isolated from hemolytic-uremic syndrome patients and dairy samples in France. Applied and Environmental Microbiology, 74, 2118–2128.Google Scholar
  186. Quinones, B., Parker, C. T., Janda, J. M., Miller, W. G., & Mandrell, R. E. (2007). Detection and genotyping of Arcobacter and Campylobacter isolates from retail chicken samples by use of DNA oligonucleotide arrays. Applied and Environmental Microbiology, 73, 3645–3655.Google Scholar
  187. Radu, S., Ling, O. W., Rusil, G., Karim, M. I., & Nishibuchi, M. (2001). Detection of Escherichia coli O157:H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. Journal of Microbiological Methods, 46, 131–139.Google Scholar
  188. Raengpradub, S., Wiedemann, M., & Boor, K. J. (2008). Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Applied and Environmental Microbiology, 74, 158–171.Google Scholar
  189. Rajashekara, G., Koeuth, T., Nevile, S., Back, A., Nagaraja, K. V., Lupski, J. R., et al. (1998). SERE, a widely dispersed bacterial repetitive DNA element. Journal of Medical Microbiology, 47, 489–497.Google Scholar
  190. Rasschaert, G., Houf, K., Imberechts, JH., Grijspeerdt, K., De Zutter, L., & Heyndricks, M. (2005). Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates. Journal of Clinical Microbiology, 43, 3615–3623.Google Scholar
  191. Reen, F. J., Boyd, E. F., Porwollik, S., Murphy, B. P., Gilroy, D., Fanning, S., et al. (2005). Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using Salmonella microarray. Applied and Environmental Microbiology, 71, 1616–1625.Google Scholar
  192. Revazishvili, T., Kotetishvili, M., Stine, O. C., Kreger, A. S., Morris, J. G. Jr., & Sulakvelidze, A. (2004). Comparative analysis of multilocus sequence typing and pulsed field gel electrophoresis for characterizing Listeria monocytogenes strains isolated from environmental and clinical sources. Journal of Clinical Microbiology, 42, 276–285.Google Scholar
  193. Richards, H. A., Perez-Conesa, D., Doane, C. A., Gillespie, B. E., Mount, J. R., Oliver, S. P., et al. (2006). Genetic characterization of a diverse Escherichia coli O157:H7 population from a variety of farm environments. Foodborne Pathogens and Disease, 3, 259–265.Google Scholar
  194. Rodriguez-Lazaro, D., Jofre, A., Mymerich, T., Hugas, M., & Pia, M. (2004). Rapid quantitative detection of Listeria monocytogenes in meat products by real-time PCR. Applied and Environmental Microbiology, 70, 6299–6301.Google Scholar
  195. Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., & Nolan, L. K. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology, 151, 2097–2110.Google Scholar
  196. Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., & Nolan, L. K. (2005). Characterizing the APEC pathotype. Veterinary Research, 36, 241–256.Google Scholar
  197. Robertson, G. A., Thiruvenkataswamy, V., Shilling, H., Price, E. P., Huygens, F., Henskens, F. A., et al. (2004). Identification and interrogation of highly informative single nucleotide polymorphism sets defined by bacterial multilocus sequence typing databases. Journal of Medical Microbiology, 53, 35–45.Google Scholar
  198. Rolland, K., Lambert-Zechovsky, N., & Denamur, E. (1998). Shigella and enteroinvasive Escherichia coli are derived from distinct ancestral strains of E. coli. Microbiology, 144, 2667–2672.Google Scholar
  199. Ronner, A.-C., Borch, E., & Kaijser, B. (2005). Genetic profiling of Campylobacter jejuni strains from humans infected in Sweden or in Thailand, and from healthy Swedish chickens, studied by pulsed-field gel electrophoresis (PFGE). Scandinavian Journal of Infectious Diseases, 37, 579–584.Google Scholar
  200. Ross, T. L., Merz, W. G., Farkosh, M., & Carroll, K. C. (2005). Comparison of an automated repetitive sequence–based PCR microbial typing system to Pulsed-Field-Gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology, 43, 5642–5647.Google Scholar
  201. Sabat, A., Malachowa, N., Miedzobrodzki, J., & Hryniewwicz, W. (2006). Comparison of PCR-based methods for typing Staphylococcus aureus isolates. Journal of Clinical Microbiology, 44, 3804–3807.Google Scholar
  202. Salcedo, C., Arreaza, L., Alcala, B., de la Fuente, L., & Vazquez, J. A. (2003). Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. Journal of Clinical Microbiology, 41, 757–762.Google Scholar
  203. Sails, A. D., Swaminathan, B., & Fields, P. I. (2003). Utility of the multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. Journal of Clinical Microbiology, 41, 4733–4739.Google Scholar
  204. Sanders, B. D., Fortes, E. D., Morse, D. L., Dumas, N., Kiehlbauch, J. A., Schukken, Y., et al. (2003). Molecular subtyping to detect human listeriosis clusters. Emerging Infectious Diseases, 9, 672–680.Google Scholar
  205. Savelkoul, P. H. M., Aarts, H. J. N., DeHaas, J., Dijkshoorn, L., Duim, B., Otsen, M., et al. (1999). Amplified-fragment length polymorphism analysis: the state of the art. Journal of Clinical Microbiology, 37, 3083–3091.Google Scholar
  206. Schouls, L. M., Reulen, S., Duim, B., Wagenaar, J. A., Willems, R. J. L., Dingle, K. E., et al. (2003). Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. Journal of Clinical Microbiology, 41, 15–26.Google Scholar
  207. Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N., & Whittam, T. S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology, 51, 873–884.Google Scholar
  208. Severino, P., Darini, A. L., & Magalaes, V. D. (1999). The discriminatory power of ribo-PCR compared to conventional ribotyping for epidemiological purposes. APMIS, 107, 1079–1084.Google Scholar
  209. Siemer, B. L., Nielsen, E. M., & On, S. L. W. (2005). Identification and molecular epidemiology of Campylobacter coli isolates from human gastroenteritis, food, and animal sources by amplified fragment length polymorphism analysis and Penner serotyping. Applied and Environmental Microbiology, 71, 1953–1958.Google Scholar
  210. Skyberg, J. A., Horne, S. M., Giddings, C. W., Wooley, R. E., Gibbs, P. S., & Nolan, L. K. (2003). Characterizing avian Escherichia coli isolates with multiplex polymerase chain reaction. Avian Disease, 47, 1441–1447.Google Scholar
  211. Skyberg, J. A., Logue, C. M., & Nolan, L. K. (2006). Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Diseases, 50, 77–81.Google Scholar
  212. Sontakke, S., & Farber, J. M. (1995). The use of PCR ribotyping for typing strains of Listeria spp. European Journal of Epidemiology, 11, 665–673.Google Scholar
  213. Smith, J. M., Feil, E. J., & Smith, N. H. (2000). Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays, 22, 1115–1122.Google Scholar
  214. Steinbruckner, B., Ruberg, F., Kist, M. (2001). Bacterial genetic fingerprint: a reliable factor in the study of the epidemiology of human Campylobacter enteritis. Journal of Clinical Microbiology, 39, 4155–4159.Google Scholar
  215. Struelens, M. J. (1996). Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clinical Microbiology and Infection, 2, 2–11.Google Scholar
  216. Su, L.-H., Chiu, C.-H., Wu, T.-L., Chu, C., Chia, J.-H., Kuo, A.-J., et al. (2002). Molecular epidemiology of Salmonella enterica serovar Enteriditis isolated in Taiwan. Microbiology and Immunology, 46, 833–840.Google Scholar
  217. Suzuki, Y., Ishihara, M., Saito, M., Ishikawa, N., & Yokochi, T. (1994). Discrimination by means of pulsed-field gel electrophoresis between strains of Campylobacter jejuni Lior type 4 derived from sporadic cases and from outbreaks of infection. Journal of Infection, 29, 183–187.Google Scholar
  218. Swaminathan, B., Barrett, T. J., Hunter, S. B., Tauxe, R. V., & The CDC PulseNet Task Force. (2001). PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerging Infectious Diseases, 7, 382–389.Google Scholar
  219. Tamada, Y., Nakaoka, Y., Nishimori, K., Doi, A., Kumaki, T., Uemura, N., et al. (2001). Molecular typing and epidemiological study of Salmonella enterica serotype Typhimurium isolates from cattle by fluorescent amplified length polymorphism fingerprinting and pulsed field gel electrophoresis. Journal of Clinical Microbiology, 39, 1057–1066.Google Scholar
  220. Tarr, C. L., Large, T. M., Moeller, C. L., Lacher, D. W., Tarr, P. I., Acheson, D. W., et al. (2002). Molecular characterization of a serotype O121:H19 clone, a distinct Shiga toxin-producing clone of pathogenic Escherichia coli. Infection and Immunity, 70, 6853–6859.Google Scholar
  221. Tatavarthy, A., Peak, K., Veguilla, W., Reeves, F., Cannons, A., Amuso, P., et al. (2006). Comparison of antibiotic susceptibility profiles and molecular typing patterns of clinical and environmental Salmonella enterica serotype Newport. Journal of Food Protection, 69, 749–756.Google Scholar
  222. Torpdahl, M., Skov, M. N., Sandvang, D., & Baggesen, D. L. (2005). Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. Journal of Microbiological Methods, 63, 173–184.Google Scholar
  223. Torpdahl, M., Sorensen, G., Ethelberg, S., Sando, G., Gammelgard, K., & Porsbo, L. J. (2006). A regional outbreak of S. Typhimurium in Denmark and identification of the source using MLVA typing. Eurosurveillance, 11, 134–136.Google Scholar
  224. Turner, K. M. E., & Feil, E. J. (2007). The secret life of the multilocus sequence type. International Journal of Antimicrobial Agents, 29, 129–135.Google Scholar
  225. Van Belkum, A. (2007). Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunology and Medical Microbiology, 49, 22–27.Google Scholar
  226. Van Belkum, A., Tassios, P. T., Dijkshoorn, L., Haeggman, S., Cookson, B., Fry, N. K., Fusisng, V., et al. (2007). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clinical Microbiology and Infectious Diseases, 13, 1–46.Google Scholar
  227. van den Berg, R. J., Schaap, I., Templeton, K. E., Klaassen, C. H. W., Kuijper, E. J. (2007). Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. Journal of Clinical Microbiology, 45, 1024–1028.Google Scholar
  228. Van Kessel, J. S., Karns, J. S., Gorsji, L., & Perdue, M. L. (2005). Subtyping of Listeria monocytogenes from bulk tank milk using automated repetitive element-based PCR. Journal of Food Protection, 68, 2707–2712.Google Scholar
  229. Vaz-Veiho, M., Duarte, G., McLaughlin, J., & Gibbs, P. (2001). Characterization of Listeria monocytogenes isolated from production lines of fresh and cold-smoked fish. Journal of Applied Microbiology, 91, 556–562.Google Scholar
  230. Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 6823–6831.Google Scholar
  231. Vidal, M., Kuger, E., Duran, C., Lagos, R., Levine, M., Prado, V., et al. (2005). Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. Journal of Clinical Microbiology, 43, 5362–5365.Google Scholar
  232. Vogler, A. J., Keys, C., Nemoto, Y., Colman, R. E., Jay, Z., & Keim, P. (2006). Effect of repeat copy number of variable-number tandem repeat mutations in Escherichia coli O157:H7. Journal of Bacteriology, 188, 4253–4263.Google Scholar
  233. Volokhov, D., Rasooly, A., Chumakov, K., & Chizhikov, V. (2002). Identification of Listeria species by microarray-based assay. Journal of Clinical Microbiology, 40, 4720–4728.Google Scholar
  234. Volokhov, D., Chizhikov, V., Chumakov, K., & Rasooly, A. (2003). Microarray-based identification of thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. Journal of Clinical Microbiology, 41, 4071–4080.Google Scholar
  235. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.Google Scholar
  236. Wachsmuth, I. K., Kiehlbauch, J. A., Bopp, C. A., Cameron, D. N., Strockbine, N. A., Wells, J. G., et al. (1991). The use of plasmid profiles and nucleic acid probes in epidemiological investigations of foodborne, diarrheal diseases. International Journal of Food Microbiology, 12, 77–90.Google Scholar
  237. Wang, Y., & Taylor, D. E. (1990). Natural transformation in Campylobacter species. Journal of Bacteriology, 172, 949–955.Google Scholar
  238. Wang, L., Li, Y., & Mustaphai, A. (2007). Rapid and simultaneous quantitation of Escherichia coli O157:H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation. Journal of Food Protection, 70, 1366–1372.Google Scholar
  239. Warren, B. R., Parish, M. E., & Schneider, K. R. (2006). Shigella as a foodborne pathogen and current methods for detection in food. Critical Reviews in Food Science and Nutrition, 46, 551–567.Google Scholar
  240. Wassenaar, T. M., Geilhausen, B., & Newell, D. G. (1998). Evidence of genomic instability in Campylobacter jejuni isolated from poultry. Applied and Environmental Microbiology, 64, 1816–1821.Google Scholar
  241. Wassenaar, T. M., & Newell, D. G. (2000). Genotyping of Campylobacter spp. Applied and Environmental Microbiology, 66, 1–9.Google Scholar
  242. White-Ziegler, C. A., Malhowski, A. J., & Young, S. (2007). Human body temperature (37°C) increases the expression of Iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12. Journal of Bacteriology, 189, 5429–5440.Google Scholar
  243. Wiedmann, M. (2002). Subtyping of bacterial foodborne pathogens. Nutrition Reviews, 60, 201–208.Google Scholar
  244. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.Google Scholar
  245. Woo, Y.-K., & Lee, S.-H. (2006). Genetic diversity of multi-resistant Salmonella enterica serotype Typhimurium isolates from animals and humans. The Journal of Microbiology, 44, 106–112.Google Scholar
  246. Yoshida, C., Franklin, K., Konczy, P., McQuinston, J. R., Fields, P. I., Nash, J. H., et al. (2007). Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. Journal of Microbiological Methods, 70, 261–271.Google Scholar
  247. Zhang, Y., Laing, C., Steele, M., Ziebell, K., Johnson, R., Benson, A. K., et al. (2007). Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics, 16, 121.Google Scholar
  248. Zhang, W., Jayarao, B. M., & Knabel, S. J. (2004). Multi-virulence-locus sequence typing of Listeria monocytogenes. Applied and Environmental Microbiology, 70, 913–920.Google Scholar
  249. Zhang, W., Bielaszewska, M., Pulz, M., Becker, K., Friedrich, A. W., Karch, H., et al. (2008). A new immuno-PCR assay for the detection of low concentration of shiga toxin 2 and its variants. Journal of Clinical Microbiology, 46, 1292–1297.Google Scholar
  250. Ziebell, K. A., Read, S. C., Johnson, R. P., & Gyles, C. L. (2002). Evaluation of PCR and PCR-RFLP protocols for identifying shiga toxins. Research in Microbiology, 153, 289–300.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Veterinary and Microbiological SciencesPO Box 6050 Dept 7690, North Dakota State UniversityFargoUSA
  2. 2.Department of Veterinary Microbiology & Preventive MedicineCollege Veterinary Medicine, Iowa State UniversityUSA

Personalised recommendations