Detecting and Tracking Emerging Pathogenic and Spoilage Bacteria from Farm to Fork

  • Geraldine Duffy
Part of the Food Microbiology and Food Safety book series (FMFS)


There is a direct relationship between the microbiological profile of food and its safety and quality. A knowledge of the typical microbiological profile (i.e. microbial species) associated with a particular meat or meat product as well as information on the microbial load is important in terms of accurately predicting both its safety and its shelf life.

Emergent Pathogens

Zoonotic pathogens can be transmitted from animals to humans through the meat chain and can cause a significant burden of illness. Campylobacter, Salmonella,Listeria monocytogenes and verocytotoxigenic E. coli (VTEC) group, which includes E. coliO157:H7, are significant causes of bacterial gastrointestinal illnesses in humans (EFSA, 2007). In recent years, a combination of factors have led to the emergence of additional zoonotic micro-organisms in the meat chain. A continuing shift away from small farming units to very large-scale intensive farming operations has given enormous potential for widespread...


Lactic Acid Bacterium Restriction Fragment Length Polymorphism Analysis Modify Atmosphere Packaging Conventional Polymerase Chain Reaction Total Viable Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AOAC (1990). Official method of analysis (15th ed.). Washington, DC: Association of Official Analytical ChemistsGoogle Scholar
  2. Bankowski, M. J., & Anderson, S. M. (2004). Real-time nucleic acid amplification in clinical microbiology. Clinical Microbiology Newsletter, 26(2), 9–15.CrossRefGoogle Scholar
  3. Bellin, T., Pulz, M., Matussek, A., Hempen, H. G., & Gunzer, F. (2001). Rapid detection of enterohemorrhagic Escherichia coli by real-time PCR with fluorescent hybridisation probes. Journal of Clinical Microbiology, 39(1), 370–374.CrossRefGoogle Scholar
  4. Blixt, Y., & Borch, E. (1999).Using an electronic nose for determining the spoilage of vacuum-packaged beef. International Journal of Food Microbiology, 46(2), 123–134.CrossRefGoogle Scholar
  5. Boerema, J. A., Broda, D. M., & Bell, R. (2002). PCR detection of psychrotolerant clostridia associated with deep tissue spoilage of vacuum-packed chilled meats. Letters in Applied Microbiology, 35(5), 446–450.CrossRefGoogle Scholar
  6. Boerema, J. A., Broda, D. M., & Bell, R. G. (2003). Abattoir sources of psychrophillic Clostridia causing “blown pack” spoilage of vacuum chilled meats by culture based and molecular detection methods. Letters in Applied Microbiology, 36(6), 406–411.CrossRefGoogle Scholar
  7. Bollinger, S., Casella, M., & Teuber, M. (1994). Comparative impedance evaluation of the microbial load of different foodstuffs. Lebensmittel-Wissenschaft Technologie, 27(2), 177–184.CrossRefGoogle Scholar
  8. Borch, E., Kant-Muermans, M. L., & Blixt, Y. (1996). Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology 33(1), 103–120.CrossRefGoogle Scholar
  9. Brightwell, G., Clemens, R., Urlich, S., & Boerema, J. (2007). Possible involvement of psychrotolerant Enterobacteriaceae in blown pack spoilage of vacuum-packaged raw meats. International Journal of Food Microbiology Nov. 1, 119(3), 334–339.CrossRefGoogle Scholar
  10. Broda, D. M., Saul, D. J., Lawson, P. A., Bell, R. G., & Musgrave, D. R. (2000). Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum packed meat. International Journal of Systematic and Evolutionary Microbiology, 50(6), part 1 107–118.Google Scholar
  11. Broda, D. M., Musgrave, D. R., & Bell, R. G. (2000). Use of restriction fragment length polymorphism analysis to differentiate strains of psychrophilic and psychrotropic clostridia associated with blown pack' spoilage of vacuum-packed meats. Journal of Applied Microbiology, 88(1), 107–116.CrossRefGoogle Scholar
  12. Broda, D. M., Boerema, J. A., & Bell, R. G. (2003). PCR detection of psychrophilic Clostridium spp. causing ‘blown pack' spoilage of vacuum-packed chilled meats. Journal of Applied Microbiology, 94(3), 515–522.CrossRefGoogle Scholar
  13. Catarame, T., O’Hanlon, K. A., Blair, I. S., McDowell, D. A., & Duffy, G. (2006). Comparison of a real time PCR assay with a culture method for the detection of Salmonella in retail meat samples. Journal of Food Safety, 26(1), 1–15.CrossRefGoogle Scholar
  14. Chenoll, E., Macian, M. C., Elizaquivel, P., & Aznar, R. (2007). Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: population analysis by rDNA-based methods. Journal of Applied Microbiology, 102(2), 498–508.CrossRefGoogle Scholar
  15. Chiu, T. H., Chen, T. R., Hwang, W. Z., & Tsen, H. Y. (2005). Sequencing of an internal transcribed spacer region of 16S-23S rRNA gene and designing of PCR primers for the detection of Salmonella spp. in food. International Journal of Food Microbiology, 97(3), 259–265.CrossRefGoogle Scholar
  16. Collins, M. D., Rodrigues, U. M., Dainty, R. M., Edwards, R. A., & Roberts, T. A. (1992). Taxonomic studies on a psychrophilic Clostridia from vacuum packed beef: description of Clostridium estertheticum sp. nov. FEMS Microbiology Letters, 15(2–3), 235–240.Google Scholar
  17. De Boer, E., & Beumer, R. R. (1999). Methodology for detection and typing of foodborne microorganisms. International Journal of Food Microbiology, 50(1–2), 119–130.CrossRefGoogle Scholar
  18. Dietrich, W. F., Weber, J. L., Nickerson, D. A., & Kwok, P.-Y. (1999). Identification and analysis of DNA polymorphisms. In B. Birren, E. D. Green, P. Hieter, S. Klapholz, R. M. Myers, H. Riethman, & J. Roskams, (Eds.), Genome analysis: A laboratory manual, mapping genomes (Vol. 4). New York: Cold Spring Harbor Laboratory Press.Google Scholar
  19. Du, W. X., Kim, J., Cornell, J. A., Huang, T., Marshall, M. R., & Wei, C. I. (2001). Microbiological, sensory, and electronic nose evaluation of yellowfin tuna under various storage conditions. Journal of Food Protection, 64(12), 2027–2036.Google Scholar
  20. Duffy, G., Sheridan, J. J., McDowell, D. A., Blair, I. S., & Harrington, D. (1991). The use of Alcalase 2.5 L in the acridine orange direct count technique for the rapid enumeration of bacteria on beef mince. Letters in Applied Microbiology, 13(4), 198–202.CrossRefGoogle Scholar
  21. Duffy, G., & Sheridan, J. J. (1998). Viability staining in a direct count rapid method for the determination of total viable counts on processed meats. Journal of Microbiological Methods, 31(3), 167–174.CrossRefGoogle Scholar
  22. Ellerbroek, L., & Lox, C. (2004). The use of neck skin for microbial process control of fresh poultry meat using the bioluminescence method. Dtsch Tierarztl Wochenschr, 111(5), 181–184.Google Scholar
  23. Ellingson, J. L., Anderson, J. L., Carlson, S. A., & Sharma, V. K. (2004). Twelve hour real-time PCR technique for the sensitive and specific detection of Salmonella in raw and ready-to-eat meat products. Molecular and Cellular Probes, 18(1), 51–57.CrossRefGoogle Scholar
  24. Ellis, D. I., Broadhurst, D., Kell, D. B., Rowland, J. J., & Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning. Applied and Environmental Microbiology, 68(6), 2822–2828.CrossRefGoogle Scholar
  25. Ellis, D. I., Broadhurst, D., & Goodacre, R. (2004). Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Analytica Chimica Acta, 514(2), 193–201.CrossRefGoogle Scholar
  26. Entis, P., Fung, D. Y. C., Griffiths, M., W., McIntyre, L., Russell, S., Sharpe, A. N., et al. (2001). Rapid methods for detection, identification and enumeration. In F. P. Downes, & K. Ito, et al. (eds.), Compendium of methods for the microbiological examination of foods (pp. 89–126). Washington, DC: American Public Health Association Publications, ISBN: 0875531733.Google Scholar
  27. Ercolini, D., Russo, F., Torrieri, E., Masi, P., & Villani, F. (2006). Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Applied and Environmental Microbiology, 72(7), 4663–4671.CrossRefGoogle Scholar
  28. European Food Standards Agency (2007). G. Duffy, member of working group of EFSA Scientific Opinion on “Monitoring of verotoxigenic Escherichia coli (VTEC) and identification of human pathogenic VTEC types
  29. Fitzmaurice, J., Duffy, G., Kilbride, B., Sheridan, J. J., Carroll, C., & Maher, M. (2004). Comparison of a membrane surface adhesion recovery method with an IMS method for use in a polymerase chain reaction method to detect Escherichia coli O157:H7 in minced beef. Journal of Microbiological Methods, 59(2), 243–252.CrossRefGoogle Scholar
  30. Gerner-Smidt, P., & Scheutz, F. (2006). Standardized pulsed-field gel electrophoresis of Shiga toxin-producing Escherichia coli: the Pulse Net Europe Feasibility Study. Foodborne Pathogenic Diseases, 3(1), 74–80.CrossRefGoogle Scholar
  31. Goto, S., Takahashi, H., Kawasaki, S., Kimura, B., Fujii, T., Nakatsuji, M., et al. (2004). Detection of Leuconostoc strains at a meat processing plant using polymerase chain reaction. Shokuhin Eiseigaku Zasshi, 45(1), 25–28.CrossRefGoogle Scholar
  32. Gustavsson, P., & Borch, E. (1993). Contamination of beef carcasses by psychrotrophic Pseudomonas and Enterobacteriaceae at different stages along the processing line. International Journal of Food Microbiology, 20(2), 67–83.CrossRefGoogle Scholar
  33. Hall, B. (2004). Predicting the evolution of antibiotic resistance genes. Nature Reviews Microbiology, 2(5), 430–435.CrossRefGoogle Scholar
  34. Hinton, A., Jr., Cason, J. A., & Ingram, K. D. (2004). Tracking spoilage bacteria in commercial poultry processing and refrigerated storage of poultry carcasses. International Journal of Food Microbiology, 91(2), 155–165.CrossRefGoogle Scholar
  35. Huis in't Veld, J. H. J. (1996). Microbial and biochemical spoilage of foods: an overview. International Journal of Food Microbiology, 33(1), 1–18.CrossRefGoogle Scholar
  36. Hyytia-Trees, E., Smole, S. C., Fields, P. A., Swaminathan, B., & Ribot, E. M. (2006). Second generation sub typing: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). Foodborne Pathogenic Diseases, 3(1), 118–131.CrossRefGoogle Scholar
  37. International Organisation for Standardisation. (2003). EN ISO 4833:2003. Microbiology of food and animal feeding stuffs – horizontal method for the enumeration of microorganisms – colony count technique at 30°C. Geneva, Switzerland: International Organisation for Standardisation.Google Scholar
  38. Jin, U. H., Cho, S. H., Kim, M. G., Ha, S. D., Kim, K. S., Lee, K. H., et al. (2004). PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples Journal of Microbiology, 42(3), 216–222.Google Scholar
  39. Jung, Y. S., Frank, J. F., Brackett, R. E., & Chen, J. (2003). Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB. Journal of Food Protection, 66(2), 237–241.Google Scholar
  40. Lee, H. J., Park, S. Y., & Kim, J. (2000). Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiology Letters, 193(2), 243–247.CrossRefGoogle Scholar
  41. Levy, S. B. (1998). Antimicrobial resistance: bacteria on the defence. Resistance stems from misguided efforts to try to sterilise our environment. BMJ, 317(7159), 612–613.Google Scholar
  42. Liberski, D. J. A. (1990). Bacteriological examinations of chilled, cured canned pork hams and shoulders using a conventional microbiological technique and the DEFT method. International Journal of Food Microbiology, 10(1), 19–22.CrossRefGoogle Scholar
  43. Lunge, V. R., Miller, B. J., Livak, K. J., & Batt, C. A. (2002). Factors affecting the performance of 5' nuclease PCR assays for Listeria monocytogenes detection. Journal of Microbiological Methods, 51(3), 361–368.CrossRefGoogle Scholar
  44. Mateo, E., Carcamo, J., Urquijo, M., Perales, I., & Fernandez-Astorga, A. (2005). Evaluation of a PCR assay for the detection and identification of Campylobacter jejuni and Campylobacter coli in retail poultry products. Research Microbiology, 156(4), 568–574.CrossRefGoogle Scholar
  45. McDermott, P. F., Zhao, S., Wagner, D. D., Simjee, S., Walker, R. D., & White, D. G. (2002).The food safety perspective of antibiotic resistance. Animal Biotechnology, 13(1), 71–84.CrossRefGoogle Scholar
  46. Méndez-Álvarez, S., Pavòn, V., Esteve, I., Guerrero, R., & Gaju, N. (1995). Analysis of bacterial genomes by pulsed field gel electrophoresis. Microbiologìa SEM, 11(3), 323–336.Google Scholar
  47. Miller, W. G., On, S. L., Wang, G., Fontanoz, S., Lastovica, A. J., & Mandrell, RE. (2005). Extended multi-locus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. Journal of Clinical Microbiology, 43(5), 2315–2329.CrossRefGoogle Scholar
  48. Moore, C. M., & Sheldon, B. W. (2003). Evaluation of time-temperature integrators for tracking poultry product quality throughout the chill chain. Journal of Food Protection, 66(2), 287–292.Google Scholar
  49. O’Hanlon, K. A., Catarame, T. M. G., Duffy, G., Sheridan, J. J., Blair, I. S., & McDowell, D. A. (2004). Rapid Detection and Quantification of E. coli O157/O26/O111 in minced beef by Real-time PCR. Journal of Applied Microbiology, 96(5), 1013–1023.Google Scholar
  50. Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2004). Detection by 5'-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases. Molecular and Cellular Probes, 18(3), 185–192.CrossRefGoogle Scholar
  51. Pin, C., Garcia de Fernando, G. D., & Ordonez, J. A. (2002). Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta. Applied and Environmental Microbiology, 68(9), 4441–4447.CrossRefGoogle Scholar
  52. Schimmer, B., Nygard, K., Eriksen, H. M., Lassen, J., Lindstedt, B. A., Brandal, L. T., et al. (2008). Outbreak of haemolytic uraemic syndrome in Norway caused by stx2-positive Escherichia coli O103:H25 traced to cured mutton sausages. BMC Infectious Diseases, 3(8), 41.CrossRefGoogle Scholar
  53. Sharma, V. K. (2002). Detection and quantification of enterohemorrhagic Escherichia coli O157, O111 and O26 in beef and bovine faeces by real-time polymerase chain reaction. Journal of Food Protection, 65(9), 1371–1380.Google Scholar
  54. Sierra, M. L., Sheridan, J. J., & McGuire, L. (1997). Microbial quality of lamb carcasses during processing and the acridine orange direct count technique (a modified DEFT) for rapid enumeration of total viable counts. International Journal of Food Microbiology, 36(1), 61–67.CrossRefGoogle Scholar
  55. Siragusa, G. R., Dorsa, W. J., Cutter, C. N., Perino, L. J., & Koohmaraie, M. (1996). Use of a newly developed rapid microbial ATP bioluminescence assay to detect microbial contamination on poultry carcasses. Journal of Bioluminescence and Chemiluminescence, 11(6), 297–301.CrossRefGoogle Scholar
  56. Torpdahl, M., Sørensen, G., Lindstedt, B. A., & Nielsen, E. M. (2007). Tandem repeat analysis for surveillance of human Salmonella Typhimurium infections. Emerging Infectious Diseases, 13(3), 388–395.CrossRefGoogle Scholar
  57. Urwin, R., & Maiden, M. C. J. (2003). Multi-locus sequence typing: a tool for global epidemiology. Trends in Microbiology, 11(10), 479–487.CrossRefGoogle Scholar
  58. Van Belkum, A. (2007). Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunology and Medical Microbiology, 49(1), 22–27.CrossRefGoogle Scholar
  59. Venkatasubbarao, S. 2004. Microarrays-status and prospects. Trends in Biotechnology, 22, 630–637.CrossRefGoogle Scholar
  60. Wang, X., Jothikumar, N., & Griffiths, M. W. (2004). Enrichment and DNA extraction protocols for the simultaneous detection of Salmonella and Listeria monocytogenes in raw sausage meat with multiplex real-time PCR. Journal of Food Protection, 67(1)189–192.Google Scholar
  61. Wittner, C. T., Herrmann, M. G., Moss, A. A., & Rasmussen, R. P. (1997). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22(1), 130–131, 134–138.Google Scholar
  62. Yost, C. K., & Nattress, F. M. (2000). The use of multiplex PCR reactions to characterize populations of lactic acid bacteria associated with meat spoilage. Letters in Applied Microbiology, 31(2), 129–133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Ashtown Food Research Centre, TeagascAshtownIreland

Personalised recommendations