Advertisement

Real-Time PCR Methods for Detection of Foodborne Bacterial Pathogens in Meat and Meat Products

  • Marta Hernández
  • Flemming Hansen
  • Nigel Cook
  • David Rodríguez-Lázaro
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

As a consequence of the potential hazards posed by the presence of microbial pathogens, microbiological quality control programmes are being increasingly applied throughout the meat production chain in order to minimize the risk of infection for the consumer. Classical microbiological methods to detect the presence of microorganisms, involving enrichment and isolation of presumptive colonies of bacteria on solid media, and final confirmation by biochemical and/or serological identification, although remaining the approach of choice in routine analytical laboratories, can be laborious and time consuming. The adoption of molecular techniques in microbial diagnostics has become a promising alternative approach, as they possess inherent advantages such as shorter time to results, excellent detection limits, specificity and potential for automation. Several molecular detection techniques have been devised in the last two decades, such as nucleic acid sequence-based...

Keywords

Meat Product Fluorescence Resonance Energy Transfer Polymerase Chain Reaction Assay Polymerase Chain Reaction Method Conventional Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anonymous. (1993). Statistics. Vocabulary and symbols. Part 1: Probability and general statistical terms (ISO 3534-1:1993). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  2. Anonymous. (1994). Accuracy (trueness and precision) of measurement and results (ISO 5725-1:1994).Geneva, Switzerland: International Organization for Standardization.Google Scholar
  3. Anonymous. (1999). Salmonella. Detection in foods (5th ed., NKML no. 71). Esbo, Finland: Nordic Committee on Food Analysis.Google Scholar
  4. Anonymous. (2003a). Microbiology of food and animal feeding stuffs – Protocol for the validation of alternative methods (ISO 16140:2003). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  5. Anonymous. (2003b). Microbiology of food and animal feeding stuffs – Horizontal method for the detection of Salmonella (EN ISO 6579:2003).Geneva, Switzerland: International Organization for Standardization.Google Scholar
  6. Anonymous. (2003c). Microbiology of food and animal feeding stuffs – Preparation of test samples, initial suspension and decimal dilution for microbiological examination – Part 2: Specific rules for the preparation of meat and meat products (ISO 6887-2:2003). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  7. Anonymous. (2005a). Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – Performance testing for thermal cyclers (ISO/TS 20836:2005). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  8. Anonymous. (2005b). Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – General requirements and definitions (ISO 22174:2005). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  9. Anonymous. (2006a). Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – Requirements for sample preparation for qualitative detection (ISO 20837:2006). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  10. Anonymous. (2006b). Microbiology of food and animal feeding stuffs – Polymerase chain reaction (PCR) for the detection of food-borne pathogens – Requirements for amplification and detection for qualitative methods (ISO 20838:2006). Geneva, Switzerland: International Organization for Standardization.Google Scholar
  11. Bohaychuk, V. M., Gensler, G. E., McFall, M. E., King, R. K., & Renter, D. G. (2007). A real-time PCR assay for the detection of Salmonella in a wide variety of food and food-animal matrices. Journal of Food Protection, 70, 1080–1087.Google Scholar
  12. Cook, N. (2003). The use of NASBA for the detection of microbial pathogens in food and environmental samples. Journal of Microbiological Methods, 53, 165–174.CrossRefGoogle Scholar
  13. D’Agostino, M., & Rodríguez-Lázaro, D. (2009). Harmonisation and Validation of Methods in Food Safety - “FOOD-PCR”, a case study. In Barbosa-Cánovas, G., Mortimer, A., Colonna, P., Lineback, D., Spiess, W., Buckle, K. (Eds.), Global issues in food science and technology. Amsterdam: Elsevier.Google Scholar
  14. Fach, P., Perelle, S., Dilasser, F., & Grout, J. (2001). Comparison between a PCR-ELISA test and the vero cell assay for detecting Shiga toxin-producing Escherichia coli in dairy products and characterization of virulence traits of the isolated strains. Journal of Applied Microbiology, 90, 809–818.CrossRefGoogle Scholar
  15. Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6, 86–94.CrossRefGoogle Scholar
  16. Hoorfar, J., & Cook, N. (2003). Critical aspects of standardization of PCR. Methods in Molecular Biology, 216, 51–64.Google Scholar
  17. Hoorfar, J., Cook, N., Malorny, B., Wagner, M., De Medici, D., Abdulmawjood, A., et al. (2003). Making internal amplification control mandatory for diagnostic PCR. Journal of Clinical Microbiology, 41, 5835.CrossRefGoogle Scholar
  18. Hoorfar, J., Malorny, B., Abdulmawjood, A., Cook, N., Wagner, M., & Fach, P. (2004). Practical considerations in design of internal amplification controls for diagnostic PCR assays. Journal of Clinical Microbiology, 42, 1863–1868.CrossRefGoogle Scholar
  19. Josefsen, M. H., Jacobsen, N. R., & Hoorfar, J. (2004). Enrichment followed by quantitative PCR both for rapid detection and as a tool for quantitative risk assessment of food-borne thermotolerant campylobacters. Applied and Environmental Microbiology, 70, 3588–3592.CrossRefGoogle Scholar
  20. Josefsen, M. H., Krause, M., Hansen, F., & Hoorfar, J. (2007). Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Applied and Environmental Microbiology, 73, 3040–3048.CrossRefGoogle Scholar
  21. Krause, M., Josefsen, M. H., Lund, M., Jacobsen, N. R., Brorsen, L., Moos, M., et al. (2006). Comparative, collaborative, and on-site validation of a TaqMan PCR method as a tool for certified production of fresh, campylobacter-free chickens. Applied and Environmental Microbiology, 72, 5463–5468.CrossRefGoogle Scholar
  22. Lübeck, P. S. L., Cook, N., Wagner, M., Fach, P., & Hoorfar, J. (2003). Toward an international standard for PCR-based detection of food-borne thermotolerant campylobacters. Part 2. Validation of the PCR assay in a multicenter collaborative trial. Applied and Environmental Microbiology, 69, 5670–5672.CrossRefGoogle Scholar
  23. Lübeck, P. S. L., Wolffs, P., On, S. L. W., Ahrens, P., Rådström, P., & Hoorfar, J. (2003). Toward an international standard for PCR-based detection of food-borne thermotolerant campylobacters. Part 1. Assay development and analytical validation. Applied and Environmental Microbiology, 69, 5664–5669.CrossRefGoogle Scholar
  24. Malorny, B., Bunge, C., & Helmuth, R. (2007). A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs. Journal of Microbiological Methods, 70, 245–251.CrossRefGoogle Scholar
  25. Malorny, B., Hoorfar, J., Bunge, C., & Helmuth, R. (2003). Multicenter validation of the analytical accuracy of Salmonella PCR: Towards and international standard. Applied and Environmental Microbiology, 69, 290–296.CrossRefGoogle Scholar
  26. Malorny, B., Hoorfar, J., Hugas, M., Heuvelink, A., Fach, P., Ellerbroek, L., et al. (2003). Interlaboratory diagnostic accuracy of a Salmonella-specific PCR-based method. International Journal of Food Microbiology, 89, 241–249.CrossRefGoogle Scholar
  27. Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A., & Helmuth, R. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Applied and Environmental Microbiology, 70, 7046–7052.CrossRefGoogle Scholar
  28. Malorny, B., Tassios, P. T., Rådström, P., Cook, N., Wagner, M., & Hoorfar, J. (2003b). Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology, 83, 39–48.CrossRefGoogle Scholar
  29. Mengaud, J., Vicente, M. F., Chenevert, J., Pereira, J. M., Geoffroy, C., Gicquel-Sanzey, B., et al. (1988). Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infection and Immunity, 56, 766–772.Google Scholar
  30. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.CrossRefGoogle Scholar
  31. Notzon, A., Helmuth, R., & Bauer, J. (2006). Evaluation of an immunomagnetic separation – Real-time PCR assay for the rapid detection of Salmonella in meat. Journal of Food Protection, 69, 2896–2901.Google Scholar
  32. O’Grady, J., Sedano-Balbas, S., Maher, M., Smith, T., & Barrya, T. (2008). Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiology, 25, 75–84.CrossRefGoogle Scholar
  33. Paoletti, C., & Wighardt, F. (2002). Definition of pre-validation performance requirements. 4th meeting of the European Network of GMO Laboratories – ENGL, 29–30 April, 2002. Ispra, Italy: Joint Research Centre.Google Scholar
  34. Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2002). Identification of the O-antigen biosynthesis genes of Escherichia coli O91 and development of a O91 PCR serotyping test. Journal of Applied Microbiology, 93, 758–764.CrossRefGoogle Scholar
  35. Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2003). Development of a 5′-nuclease PCR assay for detecting Shiga toxin-producing Escherichia coli O145 based on the identification of an ‘O island 29’ homologue. Journal of Applied Microbiology, 94, 587–594.CrossRefGoogle Scholar
  36. Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2004). Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases. Molecular and Cellular Probes, 18, 185–192.CrossRefGoogle Scholar
  37. Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2007). Screening food raw materials for the presence of the world’s most frequent clinical cases of Shiga toxin-encoding Escherichia coli O26, O103, O111, O145 and O157. International Journal of Food Microbiology, 113, 284–288.CrossRefGoogle Scholar
  38. Perelle, S., Dilasser, F., Malorny, B., Grout, J., Hoorfar, J., & Fach, P. (2004). Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Molecular and Cellular Probes, 18, 409–420.CrossRefGoogle Scholar
  39. Perelle, S., Josefsen, M., Hoorfar, J., Dilasser, F., Grout, J., & Fach, P. (2004). A LightCycler real-time PCR hybridization probe assay for detecting food-borne thermophilic Campylobacter. Molecular and Cellular Probes, 18, 321–327.CrossRefGoogle Scholar
  40. Rådström, P., Knutsson, R., Wolffs, P., Dahlenborg, M., & Löfström, C. (2003). Pre-PCR processing of samples. Methods in Molecular Biology, 216, 31–50.Google Scholar
  41. Rodriguez-Lazaro, D., & Hernandez, M. (2006). Isolation of Listeria monocytogenes DNA from meat products for quantitative detection by real-time PCR. Journal of Rapid Methods and Automation in Microbiology, 14, 395–404.CrossRefGoogle Scholar
  42. Rodriguez-Lazaro, D., Hernandez, M., D’Agostino, M., & Cook, N. (2006). Application of nucleic acid sequence-based amplification for the detection of viable foodborne pathogens: Progress and challenges. Journal of Rapid Methods and Automation in Microbiology, 14, 218–236.CrossRefGoogle Scholar
  43. Rodriguez-Lazaro, D., Hernandez, M., Scortti, M., Esteve, T., Vazquez-Boland, J. A., & Pla, M. (2004). Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: Assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Applied and Environmental Microbiology, 70, 1366–1377.CrossRefGoogle Scholar
  44. Rodriguez-Lazaro, D., Jofre, A., Aymerich, T., Hugas, M., & Pla, M. (2004). Rapid quantitative detection of Listeria monocytogenes in meat products by real-time PCR. Applied and Environmental Microbiology, 70, 6299–6301.CrossRefGoogle Scholar
  45. Rodriguez-Lazaro, D., Lombard, B., Smith, H., Rzezutka, A., D’Agostino, M., Helmuth, R., et al. (2007). Trends in analytical methodology in food safety and quality: Monitoring microorganisms and genetically modified organisms. Trends in Food Science and Technology, 18, 306–319.CrossRefGoogle Scholar
  46. Rodriguez-Lazaro, D., Pla, M., Scortti, M., Monzo, H. J., & Vazquez-Boland, J. A. (2005). A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Applied and Environmental Microbiology, 71, 9008–9012.CrossRefGoogle Scholar
  47. Rossen, L., Nøskov, P., Holmstrøm, K., & Rasmussen, O. F. (1992). Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA extraction solution. International Journal of Food Microbiology, 17, 37–45.CrossRefGoogle Scholar
  48. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.CrossRefGoogle Scholar
  49. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., et al. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–1354.CrossRefGoogle Scholar
  50. Scheu, P. M., Berghof, K., & Stahl, U. (1998). Detection of pathogenic and spoilage microorganisms in food with the polymerase chain reaction. Food Microbiology, 15, 13–31.CrossRefGoogle Scholar
  51. Sharma, V. K. (2002). Detection and quantitation of enterohemorrhagic Escherichia coli O157, O111, and O26 in beef and bovine feces by real-time polymerase chain reaction. Journal of Food Protection, 65, 1371–1380.Google Scholar
  52. Skoog, D. A., & Leary, J. J. (1992). Principles of instrumental analysis. London, UK: Saunders College Publishing.Google Scholar
  53. Stefan, A., Scaramagli, S., Bergami, R., Mazzini, C., Barbanera, M., Perelle, S., et al. (2007). Real-time PCR and enzyme-linked fluorescent assay methods for detecting Shiga-toxin-producing Escherichia coli in mincemeat samples. Canadian Journal of Microbiology, 53, 337–342.Google Scholar
  54. Thompson, M., Ellison, S. L. R., & Wood, R. (2002). Harmonised guidelines for single-laboratory validation of methods of analysis (IUAPC Technical Report). Pure and Applied Chemistry, 74, 835–855.CrossRefGoogle Scholar
  55. Walker, J. A., Hughes, D. A., Anders, B. A., Shewale, J., Sinha, S. K., & Batzer, M. A. (2003). Quantitative intra-short interspersed element PCR for species-specific DNA identification. Analytical Biochemistry, 316, 259–269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marta Hernández
    • 1
  • Flemming Hansen
    • 2
  • Nigel Cook
    • 3
  • David Rodríguez-Lázaro
    • 1
  1. 1.Food Safety and Technology Research Group, Instituto Tecnológico Agrario de Castilla y León (ITACyL)Subdirección de Investigación y TecnologíaFinca ZamadueñasSpain
  2. 2.Meat Research Institute (DMRI)Denmark
  3. 3.Food and Environmental MicrobiologyDEFRA Central Science LaboratorySand HuttonUK

Personalised recommendations