Advertisement

Oxidative Changes and Their Control in Meat and Meat Products

  • Karl-Otto Honikel
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

Oxygen is a rather reactive molecule and is able to combine with many compounds within a living organism and food. But due to this reactivity it is also essential for animal life because reactions with oxygen provide the tissues with chemical energy. But the main constituents of muscular and fatty tissues are in a healthy live animal rather unsusceptible for unwanted oxidative changes. The reason is the presence of antioxidative substances in sufficient concentrations which despite the prevailing high oxygen concentrations in the tissue control the oxidation processes.

Antioxidants are reduced chemical compounds which react with oxygen or other already oxidized constituents of tissues. In these reactions the antioxidants are oxidized. They can be either reduced again by other reduced substances or, if not possible, will loose their antioxidative character. The antioxidative compounds are either directly received via feed/food or formed in metabolism with the help of the...

Keywords

Lipid Oxidation Meat Product Propyl Gallate Propyl Gallate Maillard Reaction Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barbut, S., Josephson, D. B., & Maurer, A. J. (1985). Antioxidant properties of rosemary clear esin in turkey sausages. Journal of Food Science, 50, 1356–1361.CrossRefGoogle Scholar
  2. Bertelsen, G., Jensen, C., & Skibsted, L. H. (2000). Alteration of cooked and processed meat properties via dietary supplementation of vitamin E. In E. Decker, C. Faustman, & C. J. Lopez-Bote (Eds.), Antioxidants in muscle foods (pp. 367–394). New York: Wiley Inter Science.Google Scholar
  3. Chang, I., & Watts, B. M. (1950). Some effects of salt and moisture on rancidity of fat. Food Research, 15, 313–333.Google Scholar
  4. Ellis, R., Currie, G. T., Thornton, F. E., Bollinger, N. C., & Gaddis, A. M. (1968). Carbonyls in oxidizing fat. II. The effect of the prooxidant activity of sodium chloride in pork tissue. Journal of Food Science, 33, 555–561.CrossRefGoogle Scholar
  5. Farmer, L. J. (1992). Meat flavour. In D. A. Ledward, D. E. Johnston, & M. K. Knight (Eds.), The chemistry of muscle-based foods (pp. 167–182). Cambridge, England: Royal Society of Chemistry.Google Scholar
  6. Fooladi, M. H., Pearson, A. M., Coleman, T. H., & Merkel, R. A. (1979). The role of nitrite in preventing development of warmed-over flavour. Food Chemistry, 3, 283–289.CrossRefGoogle Scholar
  7. Galvin, K., Morrissey, P. A., & Buckley, D. J. (1998). Cholesterol oxides in processed muscle as influenced by dietary α-tocopherol supplementation. Meat Science, 48, 1–9.CrossRefGoogle Scholar
  8. Geileskey, A., King, R. D., Coste, D., Pinto, P., & Ledward, D. A. (1998). The kinetics of cooked meat hemoprotein formation in meat and model systems. Meat Science, 48, 189–199.CrossRefGoogle Scholar
  9. Gordon, M. H. (2001). The development of oxidative rancidity in foods. In J. Pokorný, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food, practical application (pp. 7–20). Cambridge, England: CRC Press, Woodhead Publishing Ltd.Google Scholar
  10. Gray, J. I., Goman, D. J., & Buckley, D. J. (1996). Oxidative quality and shelf life of meat. Meat Science, 43, 111–123.CrossRefGoogle Scholar
  11. Gray, J. I., & Pearson, A. M. (1984). Cured meat flavour. Advances in Food Research, 29, 1–40.Google Scholar
  12. Gray, J. I., & Pearson, A. M. (1987). Rancidity and warmed-over flavour. Advances in Meat Research, 3, 221–269.Google Scholar
  13. Greene, B. E. (1969). Lipid oxidation and pigment changes in raw beef. Journal of Food Science, 34, 110–114.CrossRefGoogle Scholar
  14. Greene, B. E., Hsin, I. N., & Zipser, M. W. (1971). Retardation of oxidative color changes in raw ground beef. Journal of Food Science, 36, 940–945.CrossRefGoogle Scholar
  15. Grossmann, C., Bergmann, M., & Sklan, D. (1988). Lipoxygenase in chicken muscle. Journal of Agricultural and Food Chemistry, 36, 1268–1270.CrossRefGoogle Scholar
  16. Harte, B. B. (1987). Packaging of restructured meats. In A. M. Pearson & T. R. Dutson (Eds.), Advances in meat research, Vol. 3. Restructured meat and poultry products (pp. 433–466). New York: Van Nostrand Reinhold Company.Google Scholar
  17. Honikel, K. O. (2008). The use and control of nitrate/nitrite for the processing of meat products. Meat Science, 78, 68–76.CrossRefGoogle Scholar
  18. Honikel, K. O., & Rosenbauer, H. (1998). Feed supplementation in pigs and the quality of raw meat products. In V. Gaukel & W. E. L. Spieß (Eds.), Proceedings of the 3rd Karlsruhe Nutrition Symposium (Vol. 1, pp. 194–201).Google Scholar
  19. Houlihan, C. M., & Ho, C.-T. (1985). Natural antioxidants. In D. B. Min & T. H. Smouse (Eds.), Flavor chemistry of fats and oils (pp. 117–141). Champaign, IL: Amer. Oil Chem. Soc.Google Scholar
  20. Igene, J. O. (1978). Role of meat lipids and meat pigments in development of rancidity and warmed-over flavour in frozen and cooked meat. Ph. D. dissertation, Michigan State University, East Lansing, MI.Google Scholar
  21. Igene, J. O., Yamauchi, K., Pearson, A. M., &. Gray, J. I. (1985). Mechanisms by which nitrite inhibits the development of warmed-over flavour (WOF) in cured meat. Food Chemistry, 18, 1–8.CrossRefGoogle Scholar
  22. Ingold, K. U. (1962). Metal catalysis. In H. W. Schultz, E. A. Day, & R. O. Sinnhuber (Eds.), Symposium on foods: Lipids and their oxidation (pp. 93–98). Westport, CT: AVI Publishing Co.Google Scholar
  23. Jensen, C., Skibsted, L. H., Jacobsen, K., & Bertelsen, G. (1995). Supplementation of broiler diets with all-rac-α or a mixture of natural RRR-α δ, γ tocopherol acetate. 2. Effect on oxidation stability of raw and pre cooked broiler meat products. Poultry Science, 84, 2048–2056.Google Scholar
  24. Kanner, J., Ben-Gera, I., & Berman, S. (1980). Nitric oxide myoglobin as an inhibitor of lipid oxidation. Lipids, 15, 944–947.CrossRefGoogle Scholar
  25. Kanner, H., & Harel, S. (1985). Initiation of membranal lipid peroxidation by activated metmyoglobin and methemoglobin. Archives in Biochemistry and Biophysics, 237, 314–321.CrossRefGoogle Scholar
  26. Kanner, J., Harel, S., & Hazan, B. (1986). Muscle membranal lipid peroxidation by an “iron redox cycle” system: Initiation by oxy radicals and site-specific mechanism. Journal of Agricultural and Food Chemistry, 34, 506–512.CrossRefGoogle Scholar
  27. Keeton, J. T. (1983). Effects of fat and NaCl/phosphate levels on the chemical and sensory properties of pork patties. Journal of Food Science, 48, 878–882.CrossRefGoogle Scholar
  28. Kingston, E. R., Monahan, F. J., Buckley, D. J., & Lynch, P. B. (1998). Lipid oxidation in cooked pork as effected by vitamin E, cooking and storage conditions. Journal of Food Science, 63, 386–389.CrossRefGoogle Scholar
  29. Liu, H. P., & Watts, B. M. (1970). Catalysts of lipid peroxidation in meats. 3. Catalysts of oxidative rancidity in meats. Journal of Food Science, 35, 596–601.CrossRefGoogle Scholar
  30. Love, J. D. (1972). A comparison of myoglobin and non-hem iron as prooxidants in cooked meats and dispersions of phospholipid. Ph. D. dissertation, Michigan State University, East Lansing, MI.Google Scholar
  31. MacDonald, B., Gray, J. I., & Gibbins, L. N. (1980). Role of nitrite in cured meat flavour. Antioxidant role of nitrite. Journal of Food Science, 45, 893–897.CrossRefGoogle Scholar
  32. Maerker, G. (1986). Cholesterol oxidation, Journal of AOCS, 63, 452–464.Google Scholar
  33. Mielcke, M. M., & Bertelsen, G. (1994). Approaches to prosecution of warmed-over flavour. Trends in Food Science & Technology, 5, 322–327.CrossRefGoogle Scholar
  34. Mitsumoto, M., Arnold, R. N., Schaefer, D. M., Cassens, R. G. (1993). Dietary vs. post mortem supplements of vitamin E on pigment and lipid stability in grand beef. Journal of Animal Science, 71, 1812–1816.Google Scholar
  35. Monahan, F. J. (2000). Oxidation of lipids in muscle foods: Fundamental and applied cancers. In E. Decker, C. Faustman, & C. Lopez-Bote (Eds.), Antioxidants in muscle foods (pp. 3–23). New York: Wiley Intersciene.Google Scholar
  36. Monahan, F. J., Gray, J. I., Baaren, A. M., Miller, E. R., Buckley, D. J., Morrissey, D. A., et al. (1992). Influence of dietary treatment on lipid and cholesterol oxidation in pork. Journal of Agricultural and Food Chemistry, 40, 1310–1315.CrossRefGoogle Scholar
  37. Morrissey, P. A., & Tichivangana, J. Z. (1985). The antioxidant activities of nitrite and nitrosylmyoglobin in cooked meats. Meat Science, 14, 175–187.CrossRefGoogle Scholar
  38. Münch, S. (2003). Bildung von Oxidationsprodukten des Cholesterols in Fleisch – Abhängigkeit von Zubereitung, Behandlung und Lagerung. Ph. D. thesis, University of Halle-Wittenberg, Germany.Google Scholar
  39. Pearson, A. M., Gray, J. I., Wolzok, A. M., & Horenstein, N. A. (1983). Safety implications of oxidized lipids in muscle foods. Food Technology, 37(7), 121–129.Google Scholar
  40. Pearson, A. M., & Tauber, F. W. (1984). Processed meats (2nd ed.). Westport, CT: AVI Publishing Co.Google Scholar
  41. Pokorny, J., & Schmidt, S. (2001). Natural antioxidant functionality during food processing. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food, practical applications (pp. 331–354). Cambridge, England: CRC Press, Woodhead Publishing Ltd.CrossRefGoogle Scholar
  42. Rhee, K. S. (1987). Natural antioxidants for meat products. In A. J. St. Angelo & M. E. Bailey (Eds.), Warmed-over flavor in meat (pp. 87–89). Orlando, FL: Academic Press, Inc.Google Scholar
  43. Rhee, K. S., Ziprin, Y. A., & Ordonez, G. (1987). Catalysis of lipid oxidation in raw and cooked beef by metmyoglobin –H2O2, nonhem iron, and enzyme systems, Journal of Agricultural and Food Chemistry, 35, 1013–1018.CrossRefGoogle Scholar
  44. Rosenbauer, H. (2002). Untersuchungen zur Ermittlung des Einflusses unterschiedlicher Dosierungen von DL-α-Tocopherolacetat beim Mastschwein auf die Qualität daraus gewonnener Lebensmittel. Ph. D. thesis, Universität Halle-Wittenberg, Germany.Google Scholar
  45. Sato, K., & Hegarty, G. R. (1971). Warmed-over flavor in cooked meat. Journal of Food Science, 36, 1098–1102.CrossRefGoogle Scholar
  46. Sato, K., Hegarty, G. R., & Herring, H. K. (1973). The inhibition of warmed-over flavor in cooked meats. Journal of Food Science, 38, 398–402.CrossRefGoogle Scholar
  47. Schneider, J., Wurf, J., Surowsky, B., Gregorzewski, F., Geyer, M., & Schlüter, H. O. (2008). Flureszenzspektroskopie als Werkzeug zum prozessbegleitenden Monitoring von Fleischveränderungen am Beispiel des Schweinefleischproduktion, Kurzfassung der 43 (pp. 8–9). Kulmbacher Woche.Google Scholar
  48. Schriecker, B. R., & Miller, D. D. (1985). Effects of cooking and chemical treatment on hem and nonhem iron in meat. Journal of Food Science, 48, 1340–1349.CrossRefGoogle Scholar
  49. Schwartz, W. C., & Mandigo, R. W. (1976). The effects of salt and tripolyphosphate on restructured pork. Journal of Animal Science, 39, 973–977.Google Scholar
  50. Skibsted, L. H. (1992). Cured meat products and their oxidative stability. In D. E. Johnston, M. K. Knight, & D. A. Ledward (Eds.), The chemistry of muscle-based foods (pp. 266–280). Cambridge, UK: Royal Society of Chemistry.Google Scholar
  51. Skibsted, L. H., Mikkelsen, A., & Bertelsen, G. (1998). Lipid-derived off-flavours in meat. In F. Shahidi (ed.) Flavor of meat, meat products and sea food (pp. 217–256). London, UK: Blackie Academis and Professional.Google Scholar
  52. Tappel, A. L. (1952). Linoleate oxidation catalyzed by hog muscle and adipose tissue extract. Food Research, 17, 550–569.Google Scholar
  53. Tappel, A. L. (1962). Hem compounds and lipoxidases as biocatalysts. In H. W. Schultz, E. A. Day, & R. O. Sinnhuber (Eds.), Symposium on foods: Lipids and their oxidation (pp. 122–125). Westport, CT: AVI publishing Co.Google Scholar
  54. Tichivangana, J. Z., & Morrissey, P. A. (1985). Metmyoglobin and anorganic metals as prooxidants in raw and cooked muscle systems. Meat Science, 15, 107–111.CrossRefGoogle Scholar
  55. Tims, M. J., & Watts, B. M. (1958). Protection of cooked meats with phophates. Food Technology, 12, 240.Google Scholar
  56. Toth, L. (1984). Chemie der Räucherung. Weinheim, Germany: Verlag Chemie.Google Scholar
  57. WCRF. (2007). Food, nutrition, physical activity, and the prevention of cancer: A global perspective world cancer research fond (pp. 30–46). Washington, DC: American Institute for Cancer Research.Google Scholar
  58. Yanishlieva-Maslarowa, N. V. (2001). Inhibiting oxidation. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food, practical applications (pp. 22–70). Cambridge, England: CRC Press, Woodhead Publishing Ltd.CrossRefGoogle Scholar
  59. Yanishlieva-Maslarowa, N. V., & Heinonen, I. M. (2001). Sources of natural antioxidants: Vegetables, fruits, herbs, spices. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food, practical applications (pp. 210–266). Cambridge, England: CRC Press, Woodhead Publishing Ltd.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Federal Research Centre for Nutrition and FoodMax Rubner InstituteGermany

Personalised recommendations