Advertisement

Biopreservation

  • Bruna C. Gomes
  • Lizziane K. Winkelströter
  • Fernanda B. dos Reis
  • Elaine C.P. De Martinis
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

In the last decades important changes have been observed in the food science area, with increasing consumers demand for ready-to-eat (RTE) and minimally processed foods, as a reflection of the increasing awareness of the risks derived not only from foodborne pathogens but also from artificial chemical preservatives used to control them (Castellano, Belfiore, Fadda, & Vignolo, 2008; Parada, Caron, Medeiros, & Soccol, 2007; Rodríguez, Martínez, Horn, & Dodd, 2003; Schuenzel & Harrison, 2002). This tendency allied to strict government requirements for food safety has faced food producers with conflicting challenges (Settanni & Corsetti, 2008). The preservation techniques used in early days relied, without any understanding of the microbiology, on the inactivation of undesirable microorganisms through drying, salting, heating, or fermentation. These methods are still used today, combining various hurdles to inhibit growth of microorganisms, but some of the classic...

Keywords

Lactic Acid Bacterium Meat Product Modify Atmosphere Packaging Foodborne Pathogen Target Cell Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abriouel, H., Valdivia, E., Martínez-Bueno, M., Maqueda, M., & Gálvez, A. (2003). A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. Journal of Microbiological Methods, 55, 599–605.CrossRefGoogle Scholar
  2. Alves, V. F., De Martinis, E. C. P., Destro, M. T., Fonnesbech, B., & Gram, L. (2005). Antilisterial activity of a Carnobacterium piscicola isolated from Brazilian smoked fish (surubim [pseudoplatystoma sp.]) and its activity against a persistent strain of Listeria monocytogenes isolated from surubim. Journal of Food Protection, 68, 2068–2077.Google Scholar
  3. Alves, V. F., Lavrador, M. A. S., & De Martinis, E. C. P. (2003). Bacteriocin exposure and food ingredients influence on growth and virulence of Listeria monocytogenes in a model meat gravy system. Journal of Food Safety, 23, 201–217.CrossRefGoogle Scholar
  4. Alves, V. F., Martinez, R. C. R., Lavrador, M. A. S., & De Martinis, E. C. P. (2006). Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Science, 74, 623–627.CrossRefGoogle Scholar
  5. Ananou, S., Garriga, M., Hugas, M., Maqueda, M., Martínez-Bueno, M. Gálvez, A., et al. (2005). Control of Listeria monocytogenes in model sausages by enterocin AS-48. International Journal of Food Microbiology, 103, 179–190.CrossRefGoogle Scholar
  6. Ananou, S., Maqueda, M., Martínez-Bueno, M., Gálvez, A., & Valdivia, E. (2005). Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Science, 71, 549–556.CrossRefGoogle Scholar
  7. Aymerich, T., Picouet, P. A., & Monfort, J. M. (2008). Decontamination technologies for meat products. Meat Science, 78, 114–129.CrossRefGoogle Scholar
  8. Bauer, R., & Dicks, L. M. T. (2005). Mode of action of lipid II-targeting lantibiotics. International Journal of Food Microbiology, 9, 201–216.CrossRefGoogle Scholar
  9. Belgacem, Z. B., Ferchichi, M., Prévost, H., Dousset, X., & Manai, M. (2008). Screening for anti-listerial bacteriocin-producing lactic acid bacteria from ‘‘Gueddid’’ a traditionally Tunisian fermented meat. Meat Science, 78, 513–521.CrossRefGoogle Scholar
  10. Billman-Jacobe, H. (1996). Expression in bacteria other than Escherichia coli. Current Opinion in Biotechnology, 7, 500–504.Google Scholar
  11. Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67, 833–848.Google Scholar
  12. Castellano, P., Belfiore, C., Fadda, S., & Vignolo, G. (2008). Review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science, doi10.1016/j.meatsci.2007.10.009.Google Scholar
  13. Castro, A. P. (2002). Survival of mesophilic, psychrotrophic and lactic acid bacteria and Listeria monocytogenes in nisin-treated frankfurters (p. 100). (M. Sc Dissertation, Faculdade de Ciências Farmacêuticas, USP, São Paulo, 2002).Google Scholar
  14. Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44, 223–237.CrossRefGoogle Scholar
  15. Chen, H., & Hoover, D. G. (2003). Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2, 82–100.Google Scholar
  16. Cleveland, J., Montville, T. J., & Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobial for food preservation. International Journal of Food Microbiology, 71, 1–20.CrossRefGoogle Scholar
  17. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.CrossRefGoogle Scholar
  18. Cursino, L., Smarda, J., Chartone-Souza, E., & Nascimento, A. M. A. (2002). Recent updated aspects of colicins of enterobacteriaceae. Brazilian Journal of Microbiology, 33, 185–195.CrossRefGoogle Scholar
  19. Davies, E. A., Milne, C. F., Bevis, H. E., Potter, R. W., Harris, J. M., Williams, G. C., et al. (1999). Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed bologna-type sausage. Journal of Food Protection, 62, 1004–1010.Google Scholar
  20. De Martinis, E. C. P., Alves, V. F., & Franco, B. D. G. M. (2002). Fundamentals and perspectives for the use of bacteriocins produced by lactic acid bacteria in meat products. Food Reviews International, 18, 191–208.CrossRefGoogle Scholar
  21. De Martinis, E. C. P., & Franco, B. D. G. M. (1998). Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. International Journal of Food Microbiology, 42, 119–126.CrossRefGoogle Scholar
  22. De Martinis, E. C. P., Públio, M. R. P., Santarosa, P. R., Freitas, F. Z. (2001). Antilisterial activity of lactic acid bacteria isolated from vacuum-packaged Brazilian meat and meat products. Brazilian Journal of Microbiology, 32, 32–37.CrossRefGoogle Scholar
  23. Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.CrossRefGoogle Scholar
  24. Delves-Broughton, J. (2005). Nisin as a food preservative. Food Australia, 57, 525–527.Google Scholar
  25. Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70, 564–582.CrossRefGoogle Scholar
  26. Einarsson, H., & Lauzon, H. (1995). Biopreservation of brined shrimp (Pandalus borealis) by bacteriocins from lactic acid bacteria. Applied and Environmental Microbiology, 61, 669–676.Google Scholar
  27. El-Katheib, T., Yousef, A. E., & Ockerman, H. W. (1993). Inactivation and attachment of Listeria monocytogenes on beef muscle treated with lactic acid and selected bacteriocins. Journal of Food Protection, 56, 29–33.Google Scholar
  28. Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiology Reviews, 24, 85–106.CrossRefGoogle Scholar
  29. Ercolini, D., Storia, A., Villani, F., & Mauriello, G. (2006). Effect of a bacteriocin activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. Journal of Applied Microbiology, 100, 765–772.CrossRefGoogle Scholar
  30. Fang, T. J., & Lin, L.-W. (1994). Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination system. Journal of Food Protection, 57, 479–485.Google Scholar
  31. Gálvez, A., Abriouel, H., López, R. L., & Omar, B. N. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of food Microbiology, 20, 51–70.CrossRefGoogle Scholar
  32. Garcia, T., Martin, R., Sanz, B., & Hernández, P. E. (1995). Revisión: Extensión de la vida útil de la carne fresca. I: Envasado en atmósferas modificadas y utilización de bacterias lácticas y bacteriocinas. Revista Española de Ciencia y Tecnología de Alimentos, 35, 1–18.Google Scholar
  33. Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., & Givskov, M. (2002). Food spoilage – Interactions between food spoilage bacteria. International Journal of Food Microbiology, 78, 79–97.CrossRefGoogle Scholar
  34. Gravesen, A., Ramnath, M., Rechinger, K. B., Andersen, N., Jänsch, L., Héchard, Y., et al. (2002). High-level resistance to class IIa bacteriocins is associated with one general mechanisms in Listeria monocytogenes. Microbiology, 148, 2361–2369.Google Scholar
  35. Guerra, N. P., Agrasar, A. T., Macías, C. L., Bernárdez, P. F., & Castro, L. P. (2007). Dynamic mathematical models to describe the growth and nisin production by Lactococcus lactis subsp. lactis CECT 539 in both batch and re-alkalized fed-batch cultures. Journal of Food Engineering, 82, 103–113.CrossRefGoogle Scholar
  36. Guerra, N. P., Bernárdez, P. F., & Castro, L. P. (2007). Fed-batch pediocin production on whey using different feeding media. Enzyme and Microbial Technology, 41, 397–406.CrossRefGoogle Scholar
  37. Guerra, N. P., Macias, C. L., Agrasar, A. T., & Castro, L. P. (2005). Development of a bioactive packaging cellophane using Nisaplin as biopreservative agent. Letters in Applied Microbiology, 40, 106–1610.CrossRefGoogle Scholar
  38. Hammami, R., Zouhir, A., Hamida, J. B., & Fliss, I. (2007). BACTIBASE: A new web-accessible database for bacteriocin characterization. BMC Microbiology, 7, 89, doi:10.1186/1471-2180-7-89.Google Scholar
  39. Harris, L. J., Fleming, H. P., & Klaenhammer, T. R. (1991). Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A and UAL 500 to nisin. Journal of Food Protection, 5, 836–840.Google Scholar
  40. Héchard, Y., & Sahl, H.-G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84, 545–557.CrossRefGoogle Scholar
  41. Hugas, M. (1998). Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Science, 49, S139–S150.CrossRefGoogle Scholar
  42. Jeong, D. K., & Frank, J. F. (1994). Growth of Listeria monocytogenes at 10°C in biofilms with microorganisms isolated from meat and dairy processing environments. Journal of Food Protection, 57, 576–586.Google Scholar
  43. Jofré, A., Garriga, M., & Aymerich, T. (2007). Inhibition of Listeria monocytogenes in cooked ham through active packaging with natural antimicrobials and high-pressure processing. Journal of Food Protection, 70, 2498–2502.Google Scholar
  44. Jones, R. J., Hussein, H. M., Zagorec, M., Brightwell, G., & Tagg, J. R. (2008). Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat. Food Microbiology, 25, 228–234.CrossRefGoogle Scholar
  45. Kim, J.-H., & Mills, D. A. (2007). Improvement of a nisin-inducible expression vector for use in lactic acid bacteria. Plasmid, 58, 275–283.CrossRefGoogle Scholar
  46. Kolade, O. O., Carr, S. B., Kühlmann, U. C., Pommer, A., Kleanthous, C., Bouchcinsky, C. A., et al. (2002). Structural aspects of inhibition of DNase and rRNase colicins by their immunity proteins. Biochimie, 84, 439–446.CrossRefGoogle Scholar
  47. Lucas, R., Grande, J. M., Abriouel, H., Maqueda, M., Omar, N. B., Valdivia, E., et al. (2006). Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food and Chemical Toxicology, 44, 1774–1781.CrossRefGoogle Scholar
  48. Mangalassary, S., Han, I., Rieck, J., Acton, J., Jiang, X., Sheldon, B., et al. (2007). Effect of combining nisin and/or lysozyme with in-package pasteurization on thermal inactivation of Listeria monocytogenes in ready-to-eat Turkey Bologna. Journal of Food Protection, 70, 2503–2511.Google Scholar
  49. Martínez, B., Obeso, J. M., Rodríguez, A., & García, P. (2008). Nisin-bacteriophage crossresistance in Staphylococcus aureus. International Journal of Food Microbiology, 122, 253–258.CrossRefGoogle Scholar
  50. Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., & Villani, F. (2004). Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. Journal of Applied Microbiology, 97, 314–322.CrossRefGoogle Scholar
  51. McAuliffe, O., Ross, R. P., & Hill, C. (2001). Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25, 285–308.CrossRefGoogle Scholar
  52. Mc Mullen, L. M., & Stiles, M. E. (1996). Potential for use of bacteriocin-producing lactic acid bacteria in the preservation of meats. Journal of Food Protection, 59, S64–S71.Google Scholar
  53. Minei, C. C., Gomes, B. C., Ratti, R. P., D’Angelis, C. E. M., & De Martinis, E. C. P. (2008). Influence of peroxyacetic acid, nisin and co-culture with Enterococcus faecium on Listeria monocytogenes biofilm formation. Journal of Food Protection, 71, 634–638.Google Scholar
  54. Ming, X., & Daeschel, M. A. (1993). Nisin resistance of foodborne bacteria and the specific resistance response of Listeria monocytogenes. Journal of Food Protection, 56, 944–948.Google Scholar
  55. Ming, X., Weber, G. H., Ayres, J. W., & Sandine, W. E. (1997). Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. Journal of Food Science, 62, 413–415.CrossRefGoogle Scholar
  56. Montville, T. J., Winkowski, K., & Ludescher, R. D. (1995). Models and mechanism for bacteriocin action and application. International Dairy Journal, 5, 797–814.CrossRefGoogle Scholar
  57. Motta, A. S., Flores, F. S., Souto, A. A., & Brandell, A. (2008). Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie van Leeuwenhoek, 93, 275–284.CrossRefGoogle Scholar
  58. Naghmouchi, K., Drider, D., & Fliss, I. (2007). Action of divergicin M35, a class IIa bacteriocin, on liposomes and Listeria. Journal of Applied Microbiology, 102, 1508–1517.CrossRefGoogle Scholar
  59. Naghmouchi, K., Kheadr, E., Lacroix, C., & Fliss, I., (2007). Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiology, 24, 718–727.CrossRefGoogle Scholar
  60. Naidu, A. S., Bidlack, W. R., & Clemens, R. A. (1999). Probiotic spectra of lactic acid bacteria (LAB). Critical Reviews in Food Science and Nutrition, 38, 13–126.CrossRefGoogle Scholar
  61. Oppegård, C., Rogne, P., Emanuelsen, L., Kristiansen, P. E., Fimland, G., & Nissen-Meyer, J. (2007). The two-peptide class II bacteriocins: Structure, production, and mode of action. Journal Molecular Microbiol Biotechnology, 13, 210–219.CrossRefGoogle Scholar
  62. Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50, 521–542.CrossRefGoogle Scholar
  63. Parisien, A., Allain, B., Zhang, J., Mandeville, R., & Lan, C. Q. (2008). Novel alternatives to antibiotics: Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. Journal of Applied Microbiology, 104, 1–13.Google Scholar
  64. Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380.CrossRefGoogle Scholar
  65. Rao, M. S., Chander, R., & Sharma, S. (2008). Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT Food Science and Technology, doi:10.1016/j.lwt.2008.01.013.Google Scholar
  66. Reviriego, C., Fernandez, A., Horn, N., Rodriguez, E., Marin, M. L., Fernandez, L., et al. (2005). Production of pediocin PA-1, and coproduction of nisin A and pediocin PA-1, by wild Lactococcus lactis strains of dairy origin. International Dairy Journal, 15, 45–49.CrossRefGoogle Scholar
  67. Reviriego, C., Fernández, L., Kuipers, O. P., Kok, J., & Rodríguez, J. M. (2007). Enhanced production of pediocin PA-1 in wild nisin- and non-nisin-producing Lactococcus lactis strains of dairy origin international. Dairy Journal, 17, 574–577.CrossRefGoogle Scholar
  68. Reviriego, C., Fernández, L., & Rodríguez, J. M. (2007). A food-grade system for production of pediocin PA-1 in nisin-producing and non-nisin-producing Lactococcus lactis strains: Application to inhibit Listeria growth in a cheese model system. Journal of Food Protection, 70, 2512–2517.Google Scholar
  69. Riley, M. A., & Wertz, J. E. (2002). Bacteriocin diversity: Ecological and evolution perspectives. Biochimie, 84, 357–364.CrossRefGoogle Scholar
  70. Rodríguez, J. M., Martínez, M. I., Horn, N., & Dodd, H. M. (2003). Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology, 80, 101–116.CrossRefGoogle Scholar
  71. Rose, N. L., Palcic, M. M., Sporns, P., & Mc Mullen, L. M. (2000). Nisin: A novel substrate for glutathione S-transferase isolated form bovine muscle. In Workshop on the bacteriocins of lactic acid bacteria (27 April–02 May 2000), Banff, Canada.Google Scholar
  72. Ross, R. P., Morgan, S., & Hill, C. (2002). Preservation and fermentation: Past, present and future. International Journal of Food Microbiology, 79, 3–16.CrossRefGoogle Scholar
  73. Scannell, A. G. M., Hill, C., Ross, R. P., Marx, S., Hartmeier, W., & Arendt, E. K. (2000). Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. International Journal of Food Microbiology, 60, 241–249.CrossRefGoogle Scholar
  74. Schuenzel, K. M., & Harrison, M. A. (2002). Microbial antagonists of foodborne pathogens on fresh, minimally processed vegetables. Journal of Food Protection, 65, 1909–1915.Google Scholar
  75. Settanni, L., & Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 121, 123–138.CrossRefGoogle Scholar
  76. Siragura, G. R., Cutter, C. N., & Willet, J. L. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 16, 229–235.CrossRefGoogle Scholar
  77. Sobrino-López, A., & Martín-Belloso, O. (2008). Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal, 18, 329–343.CrossRefGoogle Scholar
  78. Sofos, J. N. (2008). Challenges to meat safety in the 21st century. Meat Science, 78, 3–13.CrossRefGoogle Scholar
  79. Stevens, K. A., Sheldon, B. W., Klapes, N. A., & Klaenhammer, T. R. (1991). Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Applied and Environmental Microbiology, 57, 3613–3615.Google Scholar
  80. Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek, 70, 331–345.CrossRefGoogle Scholar
  81. Stiles, M. E., & Hastings, J. W. (1991). Bacteriocin production by lactic acid bacteria: Potential for use in meat preservation. Trends Food Science and Technology, 2, 247–251.CrossRefGoogle Scholar
  82. Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 29, 1–29.CrossRefGoogle Scholar
  83. Trivedi, S., Reynolds, A. E, & Chen, J. (2008). Effectiveness of commercial household steam cleaning systems in reducing the populations of Listeria monocytogenes and spoilage bacteria on inoculated pork skin surfaces. LWT Food Science and Technology, 41, 295–302.CrossRefGoogle Scholar
  84. Työppönen, S., Petäjä, E., & Mattila-Sandholm, T. (2003). Bioprotectives and probiotics for dry sausages. International Journal of Food Microbiology, 83, 233–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bruna C. Gomes
    • 1
  • Lizziane K. Winkelströter
    • 1
  • Fernanda B. dos Reis
    • 1
  • Elaine C.P. De Martinis
    • 1
  1. 1.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations