Advertisement

Antimicrobials Treatment

  • Eleftherios H. Drosinos
  • Panagiotis N. Skandamis
  • Marios Mataragas
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Introduction

The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

In addition, to the compositional modification of a food, antimicrobials are also used for a food surface treatment or for incorporation in the packaging material. This is especially important for cooked meat products, to decontaminate them from post-thermal processing cross-contamination. Antimicrobial substances are also used in certain stages of food process corresponding to critical control points; their...

Keywords

Lactic Acid Bacterium Meat Product Modify Atmosphere Packaging Bacteriocin Production Sodium Lactate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abee, T., Krockel, L., & Hill, C. (1995). Bacteriocins: Modes of action and potentials in food preservation and control of food poisoning. International Journal of Food Microbiology, 28, 169–185.Google Scholar
  2. Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.Google Scholar
  3. Ariyapitipun, T., Mustapha, A., & Clarke, A. D. (1999). Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. Journal of Food Protection, 62, 913–920.Google Scholar
  4. Aureli, P., Costantini, A., & Zolea, S. (1992). Antimicrobial activity of some plant essential oils against Listeria monocytogenes. Journal of Food Protection, 55, 344–348.Google Scholar
  5. Aymerich, T., Picouet, P. A., & Monfort, J. M. (2008). Decontamination technologies for meat products. Meat Science, 78, 114–129.Google Scholar
  6. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46, 446–475.Google Scholar
  7. Barmpalia, I. M., Koutsoumanis, K. P., Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., et al. (2005). Effect of antimicrobials as ingredients of pork bologna for Listeria monocytogenes control during storage at 4 or 10°C. Food Microbiology, 22, 205–211.Google Scholar
  8. Bedie, G. K., Samelis, J., Sofos, J. N., Belk, K. E., Scanga, J. A., & Smith, G. C. (2001). Antimicrobials in the formulation to control Listeria monocytogenes postprocessing contamination on frankfurters stored at 4°C in vacuum packages. Journal of Food Protection, 64, 1949–1955.Google Scholar
  9. Berry, E. D., Hutkins, R. W., & Mandigo, R. W. (1991). The use of bacteriocin-producing Pediococcus acidilactici to control post-processing Listeria monocytogenes contamination of frankfurters. Journal of Food Protection, 540, 681–686.Google Scholar
  10. Blom, H., Nerbrink, E., Dainty, R., Hagtvedt, T., Borch, E., Nissen, H., et al. (1997). Addition of 2.5% lactate and 0.25% acetate controls growth of Listeria monocytogenes in vacuum-packed, sensory-acceptable servelat sausage and cooked ham stored at 4°C. International Journal of Food Microbiology, 38, 71–76.Google Scholar
  11. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – A review. International Journal of Food Microbiology, 94, 223–253.Google Scholar
  12. Burt, S. A., Fledderman, M. J., Haagsman, H. P., van Knapen, F., & Veldhuizen, E. J. A. (2007). Inhibition of Salmonella enterica serotype Enteritidis on agar and raw chicken by carvacrol vapour. International Journal of Food Microbiology, 119, 346–350Google Scholar
  13. Careaga, M. O., Fernández, E., Dorantes, L., Mota, L., Jaramillo, M. E., & Hernandez-Sanchez, H. (2003). Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. International Journal of Food Microbiology, 83, 331–335.Google Scholar
  14. Chen, H., & Hoover, D. G. (2003). Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2, 82–100.Google Scholar
  15. Chi, S., Zivanovic, S., & Penfield, M. P. (2006). Application of chitosan films enriched with oregano essential oil on bologna – Active compounds and sensory attributes. Food Science and Technology International, 12, 111–117.Google Scholar
  16. Choi, S. Y., & Beuchat, L. R. (1994). Growth inhibition of Listeria monocytogenes by a bacteriocin of Pediococcus acidilactici M during fermentation of Kimchi. Food Microbiology, 11, 301–307.Google Scholar
  17. Choi, S. H., & Chin, K. B. (2003). Evaluation of sodium lactate as a replacement for conventional chemical preservatives in comminuted sausages inoculated with Listeria monocytogenes. Meat Science, 65, 531–537.Google Scholar
  18. Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4°C. Food Microbiology, 24, 607–617.Google Scholar
  19. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.Google Scholar
  20. Cooksey, K. (2001). Antimicrobial food packaging materials. Additives for Polymers, 8, 6–10.Google Scholar
  21. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.Google Scholar
  22. Cutter, C. N. (2000). Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium associated with beef. Journal of Food Protection, 63, 601–607.Google Scholar
  23. Cutter, C. N., & Siragusa, G. R. (1996). Reductions of Listeria innocua and Brochothrix thermosphacta on beef following nisin spray treatments and vacuum packaging. Food Microbiology, 13, 23–33.Google Scholar
  24. Cutter, C. N., & Siragusa, G. R. (1997). Growth of Brochothrix thermosphacta in ground beef following treatments with nisin in calcium alginate gels. Food Microbiology, 14, 425–430.Google Scholar
  25. Daeschel, M. A., Jung, D. S., & Watson, B. T. (1991). Controlling wine malolactic fermentations with nisin and nisin-resistant strains of Leuconostoc oenos. Applied and Environmental Microbiology, 57, 601–603.Google Scholar
  26. Davidson, P. M. (1997). Chemical preservatives and natural antimicrobial compounds. In M. P. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology fundamentals and frontiers (pp. 520–556). New York: ASM Press.Google Scholar
  27. Davidson, P. M., & Naidu, A. S. (2000). Phyto-phenols. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 265–294). Boca Raton, London: CRC Press LLC.Google Scholar
  28. Davies, A. R. (1995). Advances in modified-atmosphere packaging. In G. W. Gould (Ed.), New methods of food preservation (pp. 304–318). London: Blackie Academic and Professional.Google Scholar
  29. Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: Possibilities and limitations. International Dairy Journal, 14, 273–285.Google Scholar
  30. Dickens, J. A., Berrang, M. E., & Cox, N. A. (2000). Efficacy of an herbal extract on the microbiological quality of broiler carcasses during a simulated chill. Poultry Science, 79, 1200–1203.Google Scholar
  31. Diep, D. B., Havarstein, L. S., & Nes, I. F. (1996). Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. Journal of Bacteriology, 178, 4472–4483.Google Scholar
  32. Djenane, D., Sánchez-Escalante, A., Beltrán, J. A., & Roncalés, P. (2003a). The shelf-life of beef steaks treated with DL-lactic acid and antioxidants and stored under modified atmospheres. Food Microbiology, 20, 1–7.Google Scholar
  33. Djenane, D., Sánchez-Escalante, A., Beltrán, J. A., & Roncalés, P. (2003b). Extension of the shelf life of beef steaks packaged in a modified atmosphere by treatment with rosemary and displayed under UV-free lighting. Meat Science, 64, 417–426.Google Scholar
  34. Dominguez, A. P. M., Bimani, D., Caldera-Olivera, F., & Brandelli, A. (2007). Cerein 8 production in soybean protein using response surface methodology. Biochemical Engineering Journal, 35, 238–243.Google Scholar
  35. Drosinos, E. H., Mataragas, M., Kampani, A., Kritikos, D., & Metaxopoulos, I. (2006). Inhibitory effect of organic acid salts on spoilage flora in culture medium and cured cooked meat products under commercial manufacturing conditions. Meat Science, 73, 75–81.Google Scholar
  36. Drosinos, E. H., Mataragas, M., Veskovic-Moracanin, S., Gasparik-Reichardt, J., Hadziosmanovic, M., & Alagic, D. (2006). Quantifying nonthermal inactivation of Listeria monocytogenes in European fermented sausages using bacteriocinogenic lactic acid bacteria or their bacteriocins: A case study for risk assessment. Journal of Food Protection, 69, 2648–2663.Google Scholar
  37. Einarsson, H., & Lauzon, H. L. (1995). Biopreservation of brined shrimp (Pandalus borealis) by bacteriocins from lactic acid bacteria. Applied and Environmental Microbiology, 61, 669–676.Google Scholar
  38. El-Khateib, T., & El-Rahman, H. A. (1987). Effect of garlic and Lactobacillus plantarum on growth of Salmonella typhimurium in Egyptian fresh sausage and beefburger. Journal of Food Protection, 50, 310–311.Google Scholar
  39. Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiology Reviews, 24, 85–106.Google Scholar
  40. European Commission (EEC) (1983). Commission Directive 83/463/EEC of 22 July 1983 introducing temporary measures for the designation of certain ingredients in the labelling of foodstuffs for sale to the ultimate consumer. Official Journal of European Communities, L255, 1–6.Google Scholar
  41. Firouzi, R., Shekarforoush, S. S., Nazer, A. H. K., Borumand, Z., & Jooyandeh, A. R. (2007). Effects of essential oils of oregano and nutmeg on growth and survival of Yersinia enterocolitica and Listeria monocytogenes in barbecued chicken. Journal of Food Protection, 70, 2626–2630.Google Scholar
  42. Fisher, K., & Phillips, C. A. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology, 101, 1232–1240.Google Scholar
  43. Formato, G., Geornaras, I., Barmpalia, I. M., Skandamis, P. N., Belk, K. E., Scanga, J. A., et al. (2007). Effect of acid adaptation on growth during storage at 10°C and resistance to stimulated gastric fluid of Listeria monocytogenes inoculated onto bologna formulated with or without antimicrobials. Journal of Food Protection, 70, 65–69.Google Scholar
  44. Ganzle, M. G., Weber, S., & Hammes, W. P. (1999). Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. International Journal of Food Microbiology, 46, 207–217.Google Scholar
  45. Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Growth inhibition of Escherichia coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. Journal of Food Protection, 68, 2559–2566.Google Scholar
  46. Gaysinsky, S., Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2007). Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. Journal of Food Protection, 70, 2631–2637.Google Scholar
  47. Gennadios, A., Hanna, M. A., & Kurth, L. B. (1997). Application of edible coatings on meats, poultry and seafoods: A review. Lebensmittel-Wissnschaft und Technologie, 30, 337–350.Google Scholar
  48. Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., & Sofos, J. N. (2005). Postprocessing antimicrobial treatments to control Listeria monocytogenes in commercial vacuum-packaged Bologna and ham stored at 10°C. Journal of Food Protection, 68, 991–998.Google Scholar
  49. Geornaras, I., Skandamis, P. N., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., et al. (2006a). Postprocess control of Listeria monocytogenes on commercial frankfurters formulated with and without antimicrobials and stored at 10°C. Journal of Food Protection, 69, 53–61.Google Scholar
  50. Geornaras, I., Skandamis, P. N., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., et al. (2006b). Post-processing application of chemical solutions for control of Listeria monocytogenes, cultured under different conditions, on commercial smoked sausage formulated with and without potassium lactate–sodium diacetate. Food Microbiology, 23, 762–771.Google Scholar
  51. Ghalfi, H., Benkerroum, N., Doguiet, D. D. K., Bensaid, M., & Thonart, P. (2007). Effectiveness of cell-adsorbed bacteriocin produced by Lactobacillus curvatus CWBI-B28 and selected essential oils to control Listeria monocytogenes in pork meat during cold storage. Letters in Applied Microbiology, 44, 268–273.Google Scholar
  52. Gill, A. O., Delaquis, P., Russo, P., & Holley, R. A. (2002). Evaluation of antilisterial action of cilantro oil on vacuum packed ham. International Journal of Food Microbiology, 73, 83–92.Google Scholar
  53. Gill, A. O, & Holley, R. A. (2000). Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. Journal of Food Protection, 63, 1338–1346.Google Scholar
  54. Giraffa, G., Picchioni, N., Neviani, E., & Carminati, D. (1995). Production and stability of an Enterococcus faecium bacteriocin during Taleggio cheesemaking and ripening. Food Microbiology, 12, 301–307.Google Scholar
  55. Glass, K. A., Granberg, D. A., Smith, A. L., McNamara, A. M., Hardin, M., Mattias, J., et al. (2002). Inhibition of Listeria monocytogenes by sodium diacetate and sodium lactate on wieners and cooked bratwurst. Journal of Food Protection, 65, 116–123.Google Scholar
  56. Glass, K. A., McDonnell, L. M., Rassel, R. C., & Zierke, K. L. (2007). Controlling Listeria monocytogenes on sliced ham and turkey products using benzoate, propionate, and sorbate. Journal of Food Protection, 70, 2306–2312.Google Scholar
  57. Glass, K., Preston, D., & Veesenmeyer, J. (2007). Inhibition of Listeria monocytogenes in Turkey and pork-beef Bologna by combinations of sorbate, benzoate, and propionate. Journal of Food Protection, 70, 214–217.Google Scholar
  58. Han, J. H. (2000). Antimicrobial food packaging. Food Technology, 54, 56–65.Google Scholar
  59. Hao, Y. Y., Brackett, R. E., & Doyle, M. P. (1998a). Efficacy of plant extracts in inhibiting Aeromonas hydrophila and Listeria monocytogenes in refrigerated, cooked poultry. Food Microbiology, 15, 367–378.Google Scholar
  60. Hao, Y. Y., Brackett, R. E., & Doyle, M. P. (1998b). Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. Journal of Food Protection, 61, 307–312.Google Scholar
  61. Havarstein, L. S., Diep, B. D., & Nes, I. F. (1995). A family of bacteriocin ABC-transporters carries out proteolytic processing of their substrates concomitant with export. Molecular Microbiology, 16, 229–240.Google Scholar
  62. Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22, 273–292.Google Scholar
  63. Houtsma, P. C., De Wit, J. C., & Rombouts, F. M. (1996). Minimum inhibitory concentration (MIC) of sodium lactate and sodium chloride for spoilage organisms and pathogens at different pH values and temperatures. Journal of Food Protection, 59, 1300–1304.Google Scholar
  64. Houtsma, P. C., Kant-Muermans, M. L., Rombouts, F. M., & Zwietering, M. H. (1996). Model for the combined effects of temperature, pH, and sodium lactate on growth rates of Listeria innocua in broth and bologna-type sausages. Applied and Environmental Microbiology, 62, 1616–1622.Google Scholar
  65. Houtsma, P. C., Kusters, B. J. M., De Wit, J. C., Rombouts, F. M., & Zwietering, M. H. (1994). Modelling growth rates of Listeria innocua as a function of lactate concentration. International Journal of Food Microbiology, 24, 113–123.Google Scholar
  66. Hugas, M., Pages, F., Garriga, M., & Monfort, J. M. (1998). Application of the bacteriocinogenic Lactobacillus sakei CTC494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiology, 15, 639–650.Google Scholar
  67. Hugenholtz, J., & De Veer, G. J. C. M. (1991). Application of nisin A and nisin Z in dairy technology. In G. Jung & H. Sahl (Eds.), Nisin and novel lantibiotics (pp. 440–447). Leiden: ESCOM Science Publishers.Google Scholar
  68. Islam, M., Chen, J., Doyle, M. P., & Chinnan, M. (2002a). Control of Listeria monocytogenes on turkey frankfurters by generally-recognized-as-safe preservatives. Journal of Food Protection, 65, 1411–1416.Google Scholar
  69. Islam, M., Chen, J., Doyle, M. P., & Chinnan, M. (2002b). Effect of selected generally recognized as safe preservative sprays on growth of Listeria monocytogenes on chicken luncheon meat. Journal of Food Protection, 65, 794–798.Google Scholar
  70. Ismaiel, A. A., & Pierson, M. D. (1990). Inhibition of germination, outgrowth and vegetative growth of Clostridium botulinum 67B by spice oils. Journal of Food Protection, 53, 755–758.Google Scholar
  71. Jofré, A., Aymerich, T., & Garriga, M. (2008). Assessment of the effectiveness of antimicrobial packaging combined with high pressure to control Salmonella sp. in cooked ham. Food Control, 19, 634–638.Google Scholar
  72. Jofré, A., Garriga, M., & Aymerich, T. (2008). Inhibition of Salmonella sp., Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Science, 78, 53–59.Google Scholar
  73. Juneja, V. K. (2003). Predictive model for the combined effect of temperature, sodium lactate, and sodium diacetate on the heat resistance of Listeria monocytogenes in beef. Journal of Food Protection, 66, 804–811.Google Scholar
  74. Juneja, V. K., & Friedman, M. (2007). Carvacrol, cinnamaldehyde, oregano oil, and thymol inhibit Clostridium perfringens spore germination and outgrowth in ground Turkey during chilling. Journal of Food Protection, 70, 218–222.Google Scholar
  75. Juven, B. J., Kanner, J., Schved, F., & Weisslowicz, H. (1994). Factors that interact with the antimicrobial action of thyme essential oil and its active constituents. Journal of Applied Bacteriology, 76, 626–631.Google Scholar
  76. Kabara, J. J. (1991). Phenols and chelators. In N. J. Russell & G. W. Gould (Eds.), Food preservatives (pp. 200–214). London, UK: Blackie.Google Scholar
  77. Kalchayanand, N., Sikes, A., Dunne, C. P., & Ray, B. (1998). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. Journal of Food Protection, 61, 425–431.Google Scholar
  78. Katla, T., Moretro, T., Aasen, I. M., Holck, A., Axelsson, L., & Naterstad, K. (2001). Inhibition of Listeria monocytogenes in cold smoked salmon by addition of sakacin P and/or live Lactobacillus sakei cultures. Food Microbiology, 18, 431–439.Google Scholar
  79. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12, 39–86.Google Scholar
  80. Laukova, A., Czikkova, S., Laczkova, S., & Turek, P. (1999). Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornad salami. International Journal of Food Microbiology, 52, 115–119.Google Scholar
  81. Legan, J. D., Seman, D. L., Milkowski, A. L., Hirschey, J. A., & Vandeven, M. H. (2004). Modeling the growth boundary of Listeria monocytogenes in ready-to-eat cooked meat products as a function of the product salt, moisture, potassium lactate, and sodium diacetate concentrations. Journal of Food Protection, 67, 2195–2204.Google Scholar
  82. Lemay, M.-J., Choquette, J., Delaquis, P. J., Gariépy, C., Rodrigue, N., & Saucier, L. (2002). Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. International Journal of Food Microbiology, 78, 217–226.Google Scholar
  83. Leroy, F., & De Vuyst, L. (2003). A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Applied and Environmental Microbiology, 69, 1093–1099.Google Scholar
  84. Leroy, F., Verluyten, J., Messens, W., & De Vuyst, L. (2002). Modelling contributes to the understanding of the different behaviour of bacteriocin-producing strains in a meat environment. International Dairy Journal, 12, 247–253.Google Scholar
  85. Lianou, A., Geornaras, I., Kendall, P. A., Belk, K. E., Scanga, J. A., Smith, G. C., et al. (2007). Fate of Listeria monocytogenes in commercial ham, formulated with or without antimicrobials, under conditions simulating contamination in the processing or retail environment and during home storage. Journal of Food Protection, 70, 378–385.Google Scholar
  86. Lihono, M. A., Mendonca, A. F., Dickson, J. S., & Dixon, P. M. (2003). A predictive model to determine the effects of temperature, sodium pyrophosphate, and sodium chloride on thermal inactivation of starved Listeria monocytogenes in pork slurry. Journal of Food Protection, 66, 1216–1221.Google Scholar
  87. Lu, Z., Sebranek, J. G., Dickson, J. S., Mendonca, A. F., & Bailey, T. B. (2005). Inhibitory effects of organic acid salts for control of Listeria monocytogenes on frankfurters. Journal of Food Protection, 68, 499–506.Google Scholar
  88. Luchansky, J. B. (1999). Overview on applications for bacteriocin-producing lactic acid bacteria and their bacteriocins. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 76, 335.Google Scholar
  89. Luchansky, J. B., Cocoma, G., & Call, J. E. (2006). Hot water postprocess pasteurization of cook-in-bag turkey breast treated with and without potassium lactate and sodium diacetate and acidified sodium chlorite for control of Listeria monocytogenes. Journal of Food Protection, 69, 39–46.Google Scholar
  90. Lungu, B., & Johnson, M. G. (2005). Fate of Listeria monocytogenes inoculated onto the surface of model Turkey frankfurter pieces treated with zein coatings containing nisin, sodium diacetate, and sodium lactate at 4°C. Journal of Food Protection, 68, 855–859.Google Scholar
  91. Maca, J. V., Miller, R. K., & Acuff, G. R. (1997). Microbiological, sensory and chemical characteristics of vacuum-packaged ground beef patties treated with salts of organic acids. Journal of Food Science, 62, 591–596.Google Scholar
  92. Marcos, B., Jofré, A., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham. Food Control, 19, 76–81.Google Scholar
  93. Masschalck, B., Deckers, D., & Michiels, C. W. (2003). Sensitization of outer-membrane mutants of Salmonella typhimurium and Pseudomonas aeruginosa to antimicrobial peptides under high pressure. Journal of Food Protection, 66, 1360–1367.Google Scholar
  94. Mataragas, M., Drosinos, E. H., & Metaxopoulos, J. (2003). Antagonistic activity of lactic acid bacteria against Listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4 ± 2oC. Food Microbiology, 20, 259–265.Google Scholar
  95. Mbandi, E., & Shelef, L. A. (2001). Enhanced inhibition of Listeria monocytogenes and Salmonella enteritidis in meat by combinations of sodium lactate and diacetate. Journal of Food Protection, 64, 640–644.Google Scholar
  96. Mellefont, L. A., & Ross, T. (2007). Effect of potassium lactate and a potassium lactate–sodium diacetate blend on Listeria monocytogenes growth in modified atmosphere packaged sliced ham. Journal of Food Protection, 70, 2297–2305.Google Scholar
  97. Messens, W., Neysens, P., Vansieleghem, W., Vanderhoeven, J., & De Vuyst, L. (2002). Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Applied and Environmental Microbiology, 68, 1431–1435.Google Scholar
  98. Messens, W., Verluyten, J., Leroy, F., & De Vuyst, L. (2003). Modeling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. International Journal of Food Microbiology, 81, 41–52.Google Scholar
  99. Miller, R. K., & Acuff, G. R. (1994). Sodium lactate affects pathogens in cooked beef. Journal of Food Science, 59, 15–19.Google Scholar
  100. Moll, G. N., Konings, W. N., & Driessen, J. M. (1999). Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 70, 185–198.Google Scholar
  101. Murphy, R. Y., Hanson, R. E., Johnson, N. R., Chappa, K., & Berrang, M. E. (2006). Combining organic acid treatment with steam pasteurization to eliminate Listeria monocytogenes on fully cooked frankfurters. Journal of Food Protection, 69, 47–52.Google Scholar
  102. Muthukumarasamy, P., Han, J. H., & Holley, R. A. (2003). Bactericidal effects of Lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. Journal of Food Protection, 66, 2038–2044.Google Scholar
  103. Nadarajah, D., Han, J. H., & Holley, R. A. (2005a). Use of mustard flour to inactivate Escherichia coli O157:H7 in ground beef under nitrogen flushed packaging. International Journal of Food Microbiology, 99, 257–267.Google Scholar
  104. Nadarajah, D., Han, J. H., & Holley, R. A. (2005b). Inactivation of Escherichia coli O157:H7 in packaged ground beef by allyl isothiocyanate. International Journal of Food Microbiology, 99, 269–279.Google Scholar
  105. Naveena, B. M., Muthukumar, M., Sen, A. R., Babji, Y., & Murthy, T. R. K. (2006). Improvement of shelf-life of buffalo meat using lactic acid, clove oil and vitamin C during retail display. Meat Science, 74, 409–415.Google Scholar
  106. Nes, I. F., Diep, D. B., Havarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 70, 113–128.Google Scholar
  107. Nettles, C. G., & Barefoot, S. F. (1993). Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. Journal of Food Protection, 56, 338–356.Google Scholar
  108. Nilsson, L., Huss, H. H., & Gram, L. (1997). Inhibition of Listeria monocytogenes on cold smoked salmon by nisin and carbon dioxide atmosphere. International Journal of Food Microbiology, 38, 217–227.Google Scholar
  109. Nychas, G. J. E. (1995). Natural antimicrobials from plants. In G. W. Gould (Ed.), New methods of food preservation (pp. 58–89). London: Blackie Academic and Professional.Google Scholar
  110. Nychas, G.-J. E., & Skandamis, P. (2005). Fresh meat spoilage and modified atmosphere packaging (MAP). In J. N. Sofos (Ed.), Improving the safety of fresh meat (pp. 461–502). Cambridge, UK: CRC/Woodhead Publishing Limited.Google Scholar
  111. Nykanen, A., Weckman, K., & Lapvetelainen, A. (2000). Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology, 61, 63–72.Google Scholar
  112. O’Sullivan, L., Ross, R. P., & Hill, C. A. (2003). A lacticin 481-producing adjunct culture increases starter lysis while inhibiting nonstarter lactic acid bacteria proliferation during cheddar cheese ripening. Journal of Applied Microbiology, 95, 1235–1241.Google Scholar
  113. Ouattara, B., Giroux, M., Smoragiewicz, W., Saucier, L., & Lacroix, M. (2002). Combined effect of gamma irradiation, ascorbic acid, and edible coating on the improvement of microbial and biochemical characteristics of ground beef. Journal of Food Protection, 65, 981–987.Google Scholar
  114. Ouattara, B., Simard, R. E., Piette, G., Bégin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62, 139–148.Google Scholar
  115. Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52, 5598–5605.Google Scholar
  116. Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. Journal of Food Protection, 69, 2364–2369.Google Scholar
  117. Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2007). Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. Journal of Food Protection, 70, 901–908.Google Scholar
  118. Palumbo, S. A., & Williams, A. C. (1994). Control of Listeria monocytogenes on the surface of frankfurters by acid treatments. Food Microbiology, 11, 293–300.Google Scholar
  119. Pandit, V. A., & Shelef, L. A. (1994). Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiology, 11, 57–64.Google Scholar
  120. Parente, E., & Ricciardi, A. (1999). Production, recovery and purification of bacteriocins in lactic acid bacteria. Applied Microbiology and Biotechnology, 52, 628–638.Google Scholar
  121. Pawar, D. D., Malik, S. V. S., Bhilegaonkar, K. N., & Barbuddhe, S. B. (2002). Effect of sodium acid pyrophosphate and sodium lactate on the viability of Listeria monocytogenes in raw buffalo meat mince. Journal of Food Science and Technology, 39, 164–166.Google Scholar
  122. Porto, A. C. S., Franco, B. D. G. M., Sant’Anna, E. S., Call, J. E., Piva, A., & Luchansky, J. B. (2002). Viability of a five-strain mixture of Listeria monocytogenes in vacuum-sealed packages of frankfurters, commercially prepared with and without 2.0 or 3.0% added potassium lactate, during extended storage at 4 and 10°C. Journal of Food Protection, 65, 308–315.Google Scholar
  123. Qvist, S., Sehested, K., & Zeuthen, P. (1994). Growth suppression of Listeria monocytogenes in a meat product. International Journal of Food Microbiology, 24, 283–293.Google Scholar
  124. Ray, B., & Daeschel, M. A. (1992). Food biopreservatives of microbial origin. Boca Raton, FL: CRC Press.Google Scholar
  125. Rayman, K., Aris, B., & Hurst, A. (1981). Nisin: A possible alternative or adjunct to nitrite in the preservation of meats. Applied and Environmental Microbiology, 41, 375–380.Google Scholar
  126. Rayman, K., Malik, N., & Hurst, A. (1983). Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Applied and Environmental Microbiology, 46, 1450–1452.Google Scholar
  127. Rico-Munoz, E., & Davidson, P. M. (1983). Effect of corn oil and casein on the antimicrobial activity of phenolic antioxidants. Journal of Food Science, 48, 1284–1288.Google Scholar
  128. Rollini, M., & Manzoni, M. (2005). Influence of different fermentation parameters on glutathione volumetric productivity by Saccharomyces cerevisiae. Process Biochemistry, 41, 1501–1505.Google Scholar
  129. Ross, R. P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., et al. (1999). Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 76, 337–346.Google Scholar
  130. Samelis, J., Bedie, G. K., Sofos, J. N., Belk, K. E., Scanga, J. A., & Smith, G. C. (2002). Control of Listeria monocytogenes with combined antimicrobials after postprocess contamination and extended storage of frankfurters at 4°C in vacuum packages. Journal of Food Protection, 65, 299–307.Google Scholar
  131. Samelis, J., Sofos, J. N., Kain, M. L., Scanga, J. A., Belk, K. E., & Smith, G. C. (2001). Organic acids and their salts as dipping solutions to control Listeria monocytogenes inoculated following processing of sliced pork bologna stored at 4°C in vacuum packages. Journal of Food Protection, 64, 1722–1729.Google Scholar
  132. Sánchez-Escalante, A., Torrescano, G., Djenane, D., Beltrán, J. A., & Roncalés, P. (2003). Combined effect of modified atmosphere packaging and addition of lycopene rich tomato pulp, oregano and ascorbic acid and their mixtures on the stability of beef patties. Food Science and Technology International, 9, 77–84.Google Scholar
  133. Schillinger, U., Geisen, R., & Holzaphel, W. H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservations of foods. Trends in Food Science and Technology, 7, 158–164.Google Scholar
  134. Schlyter, J. H., Degnan, A. J., Loeffelholz, J., Glass, K. A., & Luchansky, J. B. (1993). Evaluation of sodium diacetate and ALTA™ 2341 on viability of Listeria monocytogenes in turkey slurries. Journal of Food Protection, 56, 808–810.Google Scholar
  135. Schlyter, J. H., Glass, K. A., Loeffelholz, J., Degnan, A. J., & Luchansky, J. B. (1993). The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytogenes in turkey slurries. International Journal of Food Microbiology, 19, 271–281.Google Scholar
  136. Schultze, K. K., Linton, R. H., Cousin, M. A., Luchansky, J. B., & Tamplin, M. L. (2006). A predictive model to describe the effects of temperature, sodium lactate, and sodium diacetate on the inactivation of a serotype 4b strain of Listeria monocytogenes in a frankfurter slurry. Journal of Food Protection, 69, 1552–1560.Google Scholar
  137. Seman, D. L., Borger, A. C., Meyer, J. D., Hall, P. A., & Milkowski, A. L. (2002). Modeling the growth of Listeria monocytogenes in cured ready-to-eat processed meat products by manipulation of sodium chloride, sodium diacetate, potassium lactate, and product moisture content. Journal of Food Protection, 65, 651–658.Google Scholar
  138. Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.Google Scholar
  139. Shelef, L. A. (1983). Antimicrobial effects of spices. Journal of Food Safety, 6, 29–44.Google Scholar
  140. Shelef, L. A. (1994). Antimicrobial effects of lactates: A review. Journal of Food Protection, 57, 445–450.Google Scholar
  141. Shelef, L. A, & Addala, L. (1994). Inhibition of Listeria monocytogenes and other bacteria by sodium diacetate. Journal of Food Safety, 14, 103–115.Google Scholar
  142. Shelef, L. A., Jyothi, E. K., & Bulgarelli, M. A. (1984). Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods. Journal of Food Science, 49, 737–740.Google Scholar
  143. Skandamis, P. N., & Nychas, G.-J. E. (2001a). Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology, 91, 1011–1022.Google Scholar
  144. Skandamis, P. N., & Nychas, G.-J. E. (2001b). Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTC 12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Applied and Environmental Microbiology, 66, 1646–1653.Google Scholar
  145. Skandamis, P. N., & Nychas, G.-J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79, 35–45.Google Scholar
  146. Skandamis, P. N., Stopforth, J. D., Yoon, Y., Kendall, P. A., & Sofos, J. N. (2007). Modeling the effect of storage atmosphere on growth–no growth interface of Listeria monocytogenes as a function of temperature, sodium lactate, sodium diacetate, and NaCl. Journal of Food Protection, 70, 2329–2338.Google Scholar
  147. Skandamis, P., Tsigarida, E., & Nychas, G.-J. E. (2000). Ecophysiological attributes of Salmonella typhimurium in liquid culture and within a gelatin gel with or without the addition of oregano essential oil. World Journal of Microbiology and Biotechnology, 16, 31–35.Google Scholar
  148. Skandamis, P., Tsigarida, E., & Nychas, G.-J. E. (2002). The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5°C under aerobic, VP/MAP conditions. Food Microbiology, 19, 97–103.Google Scholar
  149. Smid, E. J., & Gorris, L. G. M. (1999). Natural antimicrobials for food preservation. In M. S. Rahman (Ed.), Handbook of food preservation (pp. 285–308). New York: Marcel Dekker Inc.Google Scholar
  150. Smith-Palmer, A., Stewart, J., & Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26, 118–122.Google Scholar
  151. Smith-Palmer, A., Stewart, J., & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18, 463–470.Google Scholar
  152. Solomakos, N., Govaris, A., Koidis, P., & Botsoglou, N. (2008). The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiology, 25, 120–127.Google Scholar
  153. Stecchini, M. L., Aquili, V., & Sarais, L. (1995). Behavior of Listeria monocytogenes in Mozzarella cheese in presence of Lactococcus lactis. International Journal of Food Microbiology, 25, 301–310.Google Scholar
  154. Stecchini, M. L., Sarais, I., & Milani, S. (1993). The effect of incubation temperature, sodium chloride and ascorbic acid on the growth kinetics of Aeromonas hydrophila. Letters in Applied Microbiology, 17, 238–241.Google Scholar
  155. Stekelenburg, F. K. (2003). Enhanced inhibition of Listeria monocytogenes in frankfurter sausage by the addition of potassium lactate and sodium diacetate mixtures. Food Microbiology, 20, 133–137.Google Scholar
  156. Stekelenburg, F. K, & Kant-Muermans, M. L. T. (2001). Effects of sodium lactate and other additives in a cooked ham product on sensory quality and development of a strain of Lactobacillus curvatus and Listeria monocytogenes. International Journal of Food Microbiology, 66, 197–203.Google Scholar
  157. Stevens, K. A., Sheldon, B. W., Klapes, N. A., & Klaenhammer, T. R. (1991). Nisin treatment for the inactivation of Salmonella species and other Gram-negative bacteria. Applied and Environmental Microbiology, 57, 3613–3615.Google Scholar
  158. Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 70, 331–345.Google Scholar
  159. Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of Gram-positive bacteria. Bacteriological Reviews, 40, 722–755.Google Scholar
  160. Tassou, C. C., Drosinos, E. H., & Nychas, G. J. E. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 and 10oC. Journal of Applied Bacteriology, 78, 593–600.Google Scholar
  161. Tassou, C. C., Lambropoulou, K., & Nychas, G.-J. E. (2004). Effect of prestorage treatments and storage conditions on the survival of Salmonella enteritidis PT4 and Listeria monocytogenes on fresh marine and freshwater aquaculture fish. Journal of Food Protection, 67, 193–198.Google Scholar
  162. Taylor, S. L., Somers, E. B., & Krueger, L. A. (1985). Antibotulinal effectiveness of nisin-nitrite combinations in culture medium and chicken frankfurter emulsions. Journal of Food Protection, 48, 234–239.Google Scholar
  163. Ting, W. T. E., & Deibel, K. E. (1992). Sensitivity of Listeria monocytogenes to spices at two temperatures. Journal of Food Safety, 12, 129–137.Google Scholar
  164. Tsigarida, E., Skandamis, P., & Nychas, G.-J. E. (2000). Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5°C. Journal of Applied Microbiology, 89, 901–909.Google Scholar
  165. Uhart, M., Ravishankar, S., & Maks, N. D. (2004). Control of Listeria monocytogenes with combined antimicrobials on beef franks stored at 4°C. Journal of Food Protection, 67, 2296–2301.Google Scholar
  166. Food and Drug Administration (FDA). (2008). Nisin preparation Code of Federal Regulations (CFR), 21, 184.1538, 545–546.Google Scholar
  167. FDA/CFSAN & USDA/FSIS (Food and Drug Administration, Center for Food Safety and Applied Nutrition and United States Department of Agriculture, Food Safety and Inspection Service). (2003). Quantitative assessment of the relative risk to public health from foodborne Listeria monocytogenes among selected food categories of ready-to-eat foods. Available at: http://www.fsis.usda.gov/OA/news/2003/rtedata.htm
  168. USDA/FSIS (United States Department of Agriculture, Food Safety and Inspection Service). (2000). Food additives for use in meat and poultry products: sodium diacetate, sodium acetate, sodium lactate and potassium lactate. Federal Register, 65, 3121–3123.Google Scholar
  169. FDA/CFSAN & USDA/FSIS (Food and Drug Administration, Center for Food Safety and Applied Nutrition and United States Department of Agriculture, Food Safety and Inspection Service). (2001). Draft assessment of the relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-eat foods. FDA Docket No. 99 N-1168 and FSIS Docket No. 00-048 N. Available at: http://www.foodsafety.gov/˜dms/lmrisk.html
  170. USDA/FSIS (United States Department of Agriculture, Food Safety and Inspection Service). (2003). Control of Listeria monocytogenes in ready-to-eat meat and poultry products; Final rule. Federal Register, 68, 34207–34254.Google Scholar
  171. Veldhuizen, E. J. A., Creutzberg, T. O., Burt, S. A., & Haagsman, H. P. (2007). Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. Journal of Food Protection, 70, 2127–2132.Google Scholar
  172. Vermeiren, L., Devlieghere, F., Van Beest, M., De Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10, 77–86.Google Scholar
  173. Vrinda-Menon, K., & Garg, S. R. (2001). Inhibitory effect of clove oil on Listeria monocytogenes in meat and cheese. Food Microbiology, 18, 647–650.Google Scholar
  174. Ward, S. M., Delaquis, P. J., Holley, R. A., & Mazza, G. (1998). Inhibition of spoilage and pathogenic bacteria on agar and pre-cooked roast beef by volatile horseradish distillates. Food Research International, 31, 19–26.Google Scholar
  175. Wicklund, R., Paulson, D. D., Rojas, M. C., & Brewer, M. S. (2007). The effects of shelf-life enhancers on E. coli K12 survival in needle-injected, surface contaminated beef strip steaks enhanced using recycled solutions. Meat Science, 75, 371–380.Google Scholar
  176. Xiraphi, N., Georgalaki, M., Van Driessche, G., Devreese, B., Van Beeumen, J., Tsakalidou, E., et al. (2006). Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 89, 19–26.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eleftherios H. Drosinos
    • 1
  • Panagiotis N. Skandamis
    • 1
  • Marios Mataragas
    • 1
  1. 1.Laboratory of Food Quality Control and Hygiene, Department of Food Science and TechnologyAgricultural University of AthensVotanikos, AthensGreece

Personalised recommendations