Main Concerns of Pathogenic Microorganisms in Meat

  • Birgit Nørrung
  • Jens Kirk Andersen
  • Sava Buncic
Part of the Food Microbiology and Food Safety book series (FMFS)


Although various foods can serve as sources of foodborne illness, meat and meat products are important sources of human infections with a variety of foodborne pathogens, i.e. Salmonella spp., Campylobacter jejuni/coli, Yersinia enterocolitica, Verotoxigenic E. coli and, to some extent, Listeria monocytogenes. All these may be harboured in the gastrointestinal tract of food-producing animals. The most frequent chain of events leading to meat-borne illness involves food animals, which are healthy carriers of the pathogens that are subsequently transferred to humans through production, handling and consumption of meat and meat products. Occurrences of Salmonella spp., C. jejuni/coli,Y. enterocolitica and Verotoxigenic E. coli in fresh red meat vary relatively widely, although most often are between 1 and 10%, depending on a range of factors including the organism, geographical factors, farming and/or meat production practices.

Zoonotic pathogens in foods, including meats,...


Botulinum Toxin Meat Product Foodborne Pathogen Haemolytic Uraemic Syndrome Fermented Sausage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aarestrup, F. M., Andersen, J. K. & Jensen, N. E. (1995). Lack of staphylococcal enterotoxin production among strains of Staphylococcus aureus from bovine mastitis in Denmark. Acta Veterinaria Scandinavica, 36, 273–275.Google Scholar
  2. Andersen, J. K. (1988). Contamination of freshly slaughtered pig carcasses with human pathogenic Yersinia enterocolitica. International Journal of Food Microbiology, 7, 192–202.CrossRefGoogle Scholar
  3. Andersen, J. K., Sørensen, R., & Glensbjerg, M. (1991). Aspects of the epidemiology of Yersinia enterocolitica: A review. International Journal of Food Microbiology, 13, 231–238.CrossRefGoogle Scholar
  4. Aquilanti, L., Santarelli, S., Silvestri, G., Osimani, A., Petruzzelli, A., & Clementi, F.(2007). The microbial ecology of a typical Italian salami during its natural fermentation. International Journal of Food Microbiology, 35, 213–221; 120, 136–145.Google Scholar
  5. Avery, S. M., & Buncic, S. (2003). Escherichia coli O157 diversity with respect to survival during drying on concrete. Journal of Food Protection, 66, 780–786.Google Scholar
  6. Baird-Parker, T. C. (2000). Staphylococcus aureus. In B. M. Lund, T. C. Baird-parker, & G. W. Gould, (Eds.), The microbiological safety and quality of foods (Vol. II). Gaithersburg, MD: Aspen Publishers.Google Scholar
  7. Batz, M. B., Doyle, M. P., Morris, G., Painter, J. J., Singh, R., Tauxe, R.V., et al. (2005). Attributing illness to food. Emerging Infectious Diseases, 11, 993–999.Google Scholar
  8. Berends, B. R., Urling, H. A. P., Snijders, J. M. A., & Van Knapen, F. (1996). Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. International Journal of Food Microbiology, 30, 37–53.CrossRefGoogle Scholar
  9. Bolton, D. J., & Maunsell, B. (2004). Guidelines for food safety control in European restaurants. Dublin: Tegasc (ISBN 1 84170 360 5).Google Scholar
  10. Buncic, S. (2006). Integrated food safety and veterinary public health (pp. 275–280). Wallingford, Oxfordshire, UK: CABI International Publishing (ISBN 0-85199-908-5).Google Scholar
  11. Collis, V. J., Reid, C.-A., Hutchison, M. L., Davies, M. H., Wheeler, K. P. A., Small, A., et al. (2004). Hide contamination with marker bacteria in cattle in a simulated livestock market and at an abattoir. Journal of Food Protection, 67, 2397–2402.Google Scholar
  12. Cray, W. C., Jr., Casey, T. A., Bosworth, B. T., & Rasmussen, M. A. (1998). Effect of dietary stress on fecal shedding of Escherichia coli O157:H7 in calves. Applied and Environmental Microbiology, 64, 1975–1979.Google Scholar
  13. Dahlgren, D., Axelsson Olsson, D., Broman, T., Waldenström, J., Holmberg, M., & Olsen, B. (2003). Survival of Campylobacter jejuni within Acantamoeba polyphaga: A possible transmission route. 12th international workshop on campylobacter, helicobacter and related organisms. Aarhus, Denmark.Google Scholar
  14. Delazari, I., Iaria, S. T., Riemann, H., Cliver, D. O., & Jothikumar, N. (1998). Removal of Escherichia coli O157:H7 from surface tissues of beef carcasses inoculated with wet and dry manure. Journal of Food Protection, 61, 1265–1268.Google Scholar
  15. Duffy, G., Walsh, C., Blair, I. S., & McDowell, D. A. (2006). Survival of antibiotic and antibiotic sensitive strains of E. coli O157 and E. coli O26 in food matrices. International Journal of Food Microbiology, 109, 179–186.CrossRefGoogle Scholar
  16. EFSA. (2007a). The community summary report on trends and sources of zoonoses, zoonotic agents and antimicrobial resistance and foodborne outbreaks in the European Union in 2006. The EFSA Journal, 130, 3–352. Google Scholar
  17. EFSA. (2007b). Report of the task force on zoonoses data collection on the analysis of the baseline study on the prevalence of Salmonella in holdings of laying flocks of Gallus gallus, Part A. The EFSA Journal, 98, 1–85. Google Scholar
  18. EFSA. (2007c). Scientific opinion of the panel on biological hazards on a request from EFSA on monitoring of verotoxigenic Escherichia coli (VTEC) and identification of human pathogenic VTEC types. The EFSA Journal, 579, 1–61.Google Scholar
  19. EFSA. (2007d). Scientific opinion of the panel on BIOHAZ on a request from EFSA on monitoring and identification of human enteropathogenic Yersinia spp. The EFSA Journal, 595, 1–30.Google Scholar
  20. EFSA. (2008). Scientific opinion of the panel on biological hazards on a request from the European Commission on a quantitative microbiological risk assessment on Salmonella in meat: Source attribution for human salmonellosis from meat. The EFSA Journal, 625, 1–32.Google Scholar
  21. Elder, R. O., Keen, J. E., Siragusa, G. R., Barkocy-Gallagher, G. A., Koohmaraie, M., & Laegried, W. W. (2000). Correlation of enterohaemorrhagic Escherichia coli O157 prevalence in feces, hides and carcasses of beef cattle during processing. Proceedings of the National Academy of Science, 97, 2999–3003.CrossRefGoogle Scholar
  22. FAO/WHO. (2002). Risk assessment of Campylobacter spp. in broiler chickens and Vibrio spp. in seafood. Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand.Google Scholar
  23. Fravalo, P., Rose, V., Eveno, E., Salvat, G., & Madec, F. (1999). Définition bactériologique du statut de porcs charcutiers vis-à-vis d'une contamination par Salmonella. Journal of Recherche Porcine, 31, 383–389.Google Scholar
  24. Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365–378.Google Scholar
  25. Graves Delmore, L. R., Sofos, J. N., Schmidt, G. R., & Smith, G. C. (1998). Decontamination of inoculated beef with sequential spraying treatments. Journal of Food Science, 63, 890–893.CrossRefGoogle Scholar
  26. Hauschild, A. H. W. (1989). Clostridium botulinum. In M. P. Doyle (Ed.), Foodborne bacterial pathogens. New York, NY: Marcel Dekker.Google Scholar
  27. House, J. K., Ontiveros, M. M., Blackmer, N. M., Dueger, E. L., Fitchhorn, J. B., McArthur, G. R., et al. (2001). Evaluation of an autogenous Salmonella bacterin and a modified live Salmonella serotype choleraesuis vaccine on a commercial dairy farm. American Journal of Veterinary Research, 62, 1897–1902.CrossRefGoogle Scholar
  28. Hutchison, M. L., Walters, L. D., Avery, S. M., & Moore, A. (2004). Levels of zoonotic agents in British livestock manures. Letters of Applied Microbiology, 39, 207–214.CrossRefGoogle Scholar
  29. Hutchison, M. L., Nicholson, F. A., Smith, K. A., Keevil, C. W., & Moore, A. (2000). A study on farm manure applications to agricultural land and an assessment of the risks of pathogen transfer into the food chain (MAFF Project No. FS2596). Ministry of Agriculture, Fisheries and Food, U.K. (
  30. ICMSF. (1996). Microorganisms in foods. Characteristics of microbial pathogens (Vol. 5). London: Blackie Academic & Professional.Google Scholar
  31. ICMSF. (1998). Microorganisms in foods. Microbial ecology of food commodities (Vol. 6). London: Blackie Academic & Professional.Google Scholar
  32. Jacobs-Reitsma, W. (2000). Campylobacter in the food supply. In I. Nachamkin & M. J. Blaser (Eds.), Campylobacter (2nd ed., pp. 467–481). Washington, DC: ASM Press.Google Scholar
  33. Jones, K. (2001). Campylobacters in water, sewage and the environment. Journal of Applied Microbiology, 90, 68S–79S.CrossRefGoogle Scholar
  34. Klytmans, J. A. J. W., & Wertheim, H. F. L. (2005). Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection, 33, 3–7.CrossRefGoogle Scholar
  35. Koohmaraie, M., Arthur, T. M., Bosilevac, J. M., Guerini, M., Shackelford, S. D., & Wheeler, T. L. (2005). Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Science, 71, 79–91.CrossRefGoogle Scholar
  36. Kudva, I. T., Jelacic, S., Tarr, P. I., Youderian, P., & Hovde, C. J. (1999). Biocontrol of Escherichia coliO157 with O157-specific bacteriophages. Applied and Environmental Microbiology, 65, 3767–3773.Google Scholar
  37. Labbè, R. G. (2000). Clostridium perfringens. In B. M. Lund, T. C. Baird-parker, & G. W. Gould (Eds.), The microbiological safety and quality of foods (Vol. II). Gaithersburg, MD: Aspen Publishers.Google Scholar
  38. Lambertz, S. T., Granath, K., Fredriksson-Ahomaa, M., Johansson, K. E., & Danielsson-Tham, M.-L. (2007). Evaluation of a combined culture and PCR-method (NMKL-163A) for detection of presumptive pathogenic Yersinia enterocolitica in pork products. Journal of Food Protection, 70, 335–340.Google Scholar
  39. Lawrynowiez-Paciorek, M., Kockman, M., Piekarska, K., Grochowska, A., & Windyga, B. (2007). The distribution of enterotoxin and enterotoxin-like genes in Staphylococcus aureus strains isolated from nasal carriers and food samples. International Journal of Food Microbiology, 117, 319–323.CrossRefGoogle Scholar
  40. Lund, B. M., & Peck, M. W. (2000). Clostridium botulinum. In B. M. Lund, T. C. Baird-parker, & G. W. Gould (Eds.), The microbiological safety and quality of foods (Vol. II). Gaithersburg, MD: Aspen Publishers.Google Scholar
  41. Meisel, C., Gehlen, K. H., Fischer, A., & Hammes, W. P. (1989). Inhibition of Staphylococcus in dry sausage by Lactobacillus curvatus, Micrococcus varians and Debaryomyces hansenii. Food Biotechnology, 3, 145–168.CrossRefGoogle Scholar
  42. Nesbakken, T., Eckner, K., Høidal, H. K., & Røtterud, O. J. (2003). Occurrence of Yersinia enterocolitica and Campylobacter spp. in slaughter pigs and consequences for meat inspection, slaughtering, and dressing procedures. International Journal of Food Microbiology, 80, 231–240.CrossRefGoogle Scholar
  43. Niskanen, A., & Nurmi, E. (1976). Effect of starter culture on staphylococcal enterotoxin and thermonuclease production in dry sausage. Applied and Environmental Microbiology, 31, 11–20.Google Scholar
  44. Nørrung, B., & Buncic, S. (2008). Microbial safety of meat in the European Union. Meat Science, 78, 14–24.CrossRefGoogle Scholar
  45. Nurmi, E., Nuotio, L., & Schneitz, C. (1992). The competitive exclusion concept: development and future. International Journal of Food Microbiology, 15, 237–240.Google Scholar
  46. Nychas, G. E. J., & Arkoudelos, J. S. (1990). Staphylococci: Their role in fermented sausages. Journal of Applied Bacteriology, 69(Suppl), 167s–188s.Google Scholar
  47. Otero, A., García, M. L., García, M. C., Moreno, B., & Bergdoll, M. S. (1990). Production of staphylococcal enterotoxins C1 and C2 and thermonuclease throughout the growth cycle. Applied and Environmental Microbiology, 56, 555–559.Google Scholar
  48. Park, S. F. (2002). The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. International Journal of Food Microbiology, 74, 177–188.CrossRefGoogle Scholar
  49. Pepperell, R., Reid, C. A., Nicolau Solano, S., Hutchison, M. L., Walters, L. D., Johnston, A. M., et al. (2005). Experimental comparison of excision and swabbing microbiological sampling methods for carcasses. Journal of Food Protection, 68, 2165–2168.Google Scholar
  50. Pezzotti, G., Serafin, A., Luzzi, I., Mioni, R., Milan, M., & Perin, R. (2003). Occurrence and resistance to antibiotics of Campylobacter jejuni and Campylobacter coli in animals and meat in northeastern Italy. International Journal of Food Microbiology, 82, 281–287.CrossRefGoogle Scholar
  51. Rodrigues-Palacios, A., Stämpfli, H. R., Duffield, T., Peregrine, A. S., Troz-Williams, L. A., Arroyo, L. G., et al. (2006). Clostridium difficile PCR ribotypes in calves, Canada. Emerging Infectious Diseases, 12, 1730–1736.Google Scholar
  52. Rosec, J. P., Guiraud, J. P., Dalet, C., & Richard, N. (1997). Enterotoxin production by staphylococci isolated from foods in France. International Journal of Food Microbiology, 35, 213–221.CrossRefGoogle Scholar
  53. Small, A., Reid, C.-A., & Buncic, S. (2003). Survey of conditions in lairages at Abattoirs in South West of England and in vitro assessment the fate of Escherichia coli O157, Salmonella Kedougou, and Campylobacter jejuni on lairage-related substrates. Journal of Food Protection, 66, 1750–1755.Google Scholar
  54. Smulders, F. J. M., & Greer, G. G. (1998). Integrating microbial decontamination with organic acids in HACCP programmes for muscle foods: Prospects and controversies. International Journal of Food Microbiology, 44, 149–169.CrossRefGoogle Scholar
  55. Sobel, J., Tucker, N., Sulka, A., McLaughlin, J., & Maslanka, S. (2004). Foodborne botulism in the United States, 1999–2000. Emerging Infectious Diseases, 10, 1606–1611.Google Scholar
  56. Sofos, J. N., & Smith, G. C. (1998). Non-acid meat decontamination technologies: Model studies and commercial applications. International Journal of Food Microbiology, 44, 171–188.CrossRefGoogle Scholar
  57. Songer, J. G. (2004). The emergence of Clostridium difficile as a pathogen of food animals. Animal Health Research Reviews, 5, 321–326.CrossRefGoogle Scholar
  58. Steer, T., Carpenter, H., Tuohy, K., & Gibson, G. R. (2000). Perspectives on the role of the human gut microbiota and its modulation by pro and prebiotics. Nutrition Research Reviews, 13, 229–254.CrossRefGoogle Scholar
  59. Swanenburg, M., van der Wolf, P. J., Urlings, H. A., Snijders, J. M., & van Knapen, F. (2001). Salmonella in slaughter pigs: The effect of logistic slaughter procedures of pigs on the prevalence of Salmonella in pork. International Journal of Food Microbiology, 70, 231–242.CrossRefGoogle Scholar
  60. Therre, H. (1999). Botulism in the European Union. Euro Surveill, 4, 2–7.Google Scholar
  61. Tutenel, A. V., Pierard, D., Van Hoof, J., & De Zutter, L. (2003). Molecular characterization of Escherichia coli O157 contamination routes in a cattle slaughterhouse. Journal of Food Protection, 66, 1564–1569.Google Scholar
  62. Unterman, F., & Mueller, C. (1992). Influence of aw value and storage temperature on the multiplication and enterotoxin formation by staphylococci in dry-cured hams. International Journal of Food Microbiology, 16, 109–115.CrossRefGoogle Scholar
  63. USDA. (1996). Nationwide pork microbiological baseline data collection program: Market hogs, April 1995–March 1996. Washington, DC: United States Department of Agriculture, Food Safety and Inspection Service.Google Scholar
  64. USDA. (2003). Interpretive summary: Quantitative assessment of the relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-eat foods. Washington, DC: Center for applied Nutrition, Food and Drug Administration, US Department of Health and Human Services; Food Safety and Inspection Service, US Department of Agriculture.Google Scholar
  65. Walker, W. A., & Duffy, L. C. (1998). Diet and bacterial colonization: Role of probiotics and prebiotics. Journal of Nutrition Biochemistry, 9, 668–675.CrossRefGoogle Scholar
  66. Willshaw, G. A., Chaesty, T., & Smith, H. R. (2000). In B. M. Lund, T. Baird-Parker, & G. W. Gould (Eds.), The microbiological safety and quality of food. Gaithersburg, MD: Aspen Publishers.Google Scholar
  67. Witte, W. (2000). Selective pressure by antibiotic use in livestock. International Journal of Antimicrobial Agents, 16, 19–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Birgit Nørrung
    • 1
  • Jens Kirk Andersen
    • 2
  • Sava Buncic
    • 3
  1. 1.Department of Veterinary PathobiologyFaculty of Life Sciences, University of CopenhagenDenmark
  2. 2.National Food InstituteTechnical University of DenmarkDenmark
  3. 3.Department of Veterinary MedicineSerbia

Personalised recommendations