There is a great need for non-linear optical materials that can be used with low intensity light sources for applications in phase-conjugation, image processing and optical switching. Such nonlinear materials may be prepared by incorporating organic dyes, metal and semiconductor nanoparticles into glass bulks. Organic materials in sol-gel glasses for nonlinear optics have been of great interest in recent years. The origin of the large nonlinear susceptibility of organic molecules at room temperature which have good singlet-triplet transfer, and incorporated in a glass matrix is as follows. Optical excitation from the ground state of the molecule S0 to first excited state S1 is followed by an intersystem crossing transfer to the lowest lying triplet state T1. Provided that the energy difference ΔE between the first excited singlet S1 and the triplet state T1 is of appropriate value, delayed fluorescence from the excited single state occurs after a back intersystem crossing that returns the population to the excited singlet state from vibrational excited states of the lowest lying triplet manifold. Many of the relaxation mechanisms that can quench the triplet state do not exist when the dye is held rigidly in a solid sol-gel matrix, and hence the lowest-lying triplet state has a very long lifetime, resulting in significant population trapped in that state even by weak optical pumping. The saturation intensity I1 is therefore quite small, less than 100 mWcm-2, and since the non-linear susceptibility Xeff varies inversely with Is, the nonlinear Xeff susceptibility is extremely large, about 0.1 esu.


Triplet State Silica Glass Cadmium Sulfide Nonlinear Susceptibility Saturation Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Avnir, V.R. Kaufman, R. Reisfeld, Organic fluorescent dyes trapped in silica and silica-titania thin films by the sol-gel method. Photophysical, film and cage properties. J. Non-Cryst. Solids, 74, 395 (1985)CrossRefGoogle Scholar
  2. 1a.
    R. Reisfeld, Prospects of Sol-Gel Technology Towards Luminescent Materials Optical Materials, 16 (1–21) (2001)Google Scholar
  3. 1b.
    R. Reisfeld, Minti, M., Eyal, V. Chernyak, Nonlinear properties of semiconductor quantum dots and organic molecules in glasses, prepared by the sol-gel method, J. Nonlinear Optics, 5, 339 (1993)Google Scholar
  4. 2.
    R. Reisfeld, New Materials for nonlinear optics, C.K. Jorgensen, R. Reisfeld (editors), Structure and Bonding, 85, 99 (1996)Google Scholar
  5. 3.
    D. Levy, R. Reisfeld, D. Avnir, Fluorescence of europium(I11) trapped in silica gel-glass as a probe for cation binding and for changes in cage symmetry during gel dehydration. Chem. Phys. Lett., 109, 593 (1984)CrossRefGoogle Scholar
  6. 3a.
    Y. Sorek, R. Reisfeld. I. Finkelstein, R. Ruschin, Light Amplification in a Dye-doped Glass Planar Waveguide, Appl. Phys. Letter, 66, 1169 (1995)CrossRefGoogle Scholar
  7. 3b.
    S.V. Gaponenko, V.P. Gribkovskii, L.G. Zimin, V.Y. Lebed, I.E. Malinovskii, S. Graham, C. Klingshirn, M. Eyal, D. Brusilovsky, R. Reisfeld, Nonlinear phenomena of acridine orange in inorganic classes at nanosecond scale, J. Optical Materials, 2, 53 (1993)CrossRefGoogle Scholar
  8. 3b.
    S.V. Gaponenko, I.N. Germanenko, A.P. Stupak, N. Eyal, D. Brusilovsky, R. Reisfeld, S. Graham, C. Klingshim, Fluorescence of acridine orange in inorganic glass matrices, App. Phys. B, 58, 283 (1994) ,CrossRefGoogle Scholar
  9. 4.
    X.D. Sun, X.-J. Wang, W. Shan, J.J. Song, M.G. Fan, E.T. Knobbe, Nonlinear errects in cnromophorc doped sol-gel photonic materials, J. of Sol-Gel Science and Technology, 9, 169 (1997)Google Scholar
  10. 5.
    B.A. Smith, D.M. Waters, A.E. Faulhaber, M.A. Kreger, T.W. Roberti, J.Z. Zhang, Preparation and Ultrafast Optical Characterization of Metal and Semiconductor Colloidal; Nanoparticles, J. of Sol-Gel Science and Technology, 9, 125 (1997)Google Scholar
  11. 6.
    M. Mennig, M. Schmitt, U. Becker, G. Jung,. Schmidt, Gold colloids in sol-gel derived SiO2 coating on glass and their linear and nonlinear optical properties, Sol-Gel Optics III, SPIE, 2288, 130 (1994)Google Scholar
  12. 7.
    M. Mennig, L. Spanhel, H. Schmidt and S. Betzholz, Photoinduced formation of silver colloids in a borosilicate sol-gel system, J. of Non-Crystalline Solids, 147/148, 326 (1992)CrossRefGoogle Scholar
  13. 8.
    G. De, A. Licciulli, C. Massaro, L. Tapfer, M. Catalano, G. Battaglin, C. Meneghini, P. Mazzoldi, Silver nanocrystals in silica by sol-gel processing, J. of Non-Crystalline Solids, 194, 225 (1996)CrossRefGoogle Scholar
  14. 9.
    S. Tamil, Selvan, Y. Ono, M. Nogami, Polymer-protected gold clusters in silica glass, Materials Letters, 37, 156 (1998)CrossRefGoogle Scholar
  15. 10.
    K. Chida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y.. Asahara, A.J. Ikushima, Optimal nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles, J. Opt. Soc. Am. B, 11, 1236 (1994)CrossRefGoogle Scholar
  16. 11.
    Y. Hlosoya, T. Suga, T. Yanagawa, Y. Kurokawa, Linear and nonlinear optical properties of solgel-derived Au nanometer-particle-doped alumina, J. Appl. Phys., 81, 1475 (1997)CrossRefGoogle Scholar
  17. 12.
    M. Nogami, K. Nagaska, E. Kato, Preparation of small-particle-size, semiconductor CdS-doped silica glasses by the sol-gel process, J. Am. Cerm. Soc., 73, 2097 (1990)CrossRefGoogle Scholar
  18. 13.
    Y. Kao, K. Hayashi, L. Yu, M. Yamane, J.D. Mackenzie, Preparation of narrow size distribution CdS quantum dots in sodium borosilicate glass by the sol-gel process, Sol-Gel Optics III, SPIE, 2288, 753 (1994)Google Scholar
  19. 14.
    G. Li, M. Nogami, Y. Abe, Preparation by a sol-gel process of borosilicate glasses containing microcrystals of tellurium and zinc telluride, J. Am. Cerm. Soc., 77, 2885 (1994)CrossRefGoogle Scholar
  20. 15.
    M. Nogami, S. Suzuki, K. Nagasaka, Sol-gel processing of small-sized CdSe crystal-doped silica glasses, J. of Non-Crystalline Solids, 135, 182 (1991)CrossRefGoogle Scholar
  21. 16.
    M. Nogami, Y. Abe, Formation of small-sized CdSxSe1_x crystals in sol-gel-derived SiO2 glasses, J. Am. Cermm. Soc., 78, 1066 (1995)CrossRefGoogle Scholar
  22. 17.
    M. Nogami, K. Nagasaka, T. Suzuki, Sol-gel synthesis of cadmium telluride-microcrystal-doped silica glasses, J. Am. Cerm. Soc., 75, 220 (1992)CrossRefGoogle Scholar
  23. 18.
    G. Li, M. Nogami, Preparation and optical properties of sol-gel derived ZnSe crystallites doped in glass films, J. Appl. Phys., 75, 4276 (1994)CrossRefGoogle Scholar
  24. 18a.
    M. Zelner, H. Minti, R. Reisfeld, H. Cohen, Y. Feldman, S.R. Cohen, R. Tenne, Preparation and characterization of CdTe nanoparticles in zirconia films prepared by the sol-gel method, J. of Sol-Gel Science and Technology, 20, 153 (2001)CrossRefGoogle Scholar
  25. 19.
    T. Hashimoto, K. Lshibashi, T. Yoko, Third-order nonlinear optical properties and dielectric properties of Pb-complex perovskite thin films prepared by sol-gel method, J. of Sol-Gel Science and Technology, 9, 211 (1997)Google Scholar
  26. 20.
    G. Li, M. Nogami, Formation of quantum-size PbTe microcrystals in sol-gel derived silica and horosilicate glasses, J. of Sol-Gel Science and Technology, 1, 79 (1993)CrossRefGoogle Scholar
  27. 21.
    M. Nogami, Y. Abe, A. Nakamura, Cu microcrystals in sol-gel derived glasses, J. Mater. Res., 10, 2648 (1995)CrossRefGoogle Scholar
  28. 22.
    M. Nogami, Asuha, Preparation of y-Fe2O3-containing silica glasses by the sol-gel process, J. of Materials science Letters, 12, 1705 (1993)CrossRefGoogle Scholar
  29. 23.
    M. Nogami, Y. Abe, Sol-gel synthesis of Ge Nanocrystals-doped glass and its photoluminescence, J. of Sol-Gel Science and Technology 9, 139 (1997)Google Scholar
  30. 24.
    S. Sakka, Sol-gel coating films for optical and electronic application, C.K. Jrgensen, R. Reisfeld (editors), Structure and Bonding, 85, 1 (1996)Google Scholar
  31. 25.
    R. Reisfeld, Semiconductor quantum dots in amorphous materials, B. Di Bartolo (editor), Optical Properties of Excited States in Solids, 301, 601 (1992)CrossRefGoogle Scholar
  32. 26.
    R. Reisfeld, Nanoparticles in amorphous solids and their nonlinear properties, B. Di Bartolo, B. Bowlby (editors), Nonlinear Spectroscopy of Solids: Advances and Applications, 339, 491 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • R. Reisfeld

There are no affiliations available

Personalised recommendations