Biological Applications of Sol-Gel Glasses

  • J. Livage


The encapsulation of proteins within sol-gel silica glasses was reported in the early nineties by a group of scientists at the University of Jerusalem [1]. They showed that enzymes can be immobilized within silica gels. They retain their bio-activity and can react with small molecules through the pores of the gel. Many other biological species such as antibodies and even whole cells have been encapsulated within sol-gel matrices since then, opening new possibilities in the field of biotechnology.


Silica Matrice Increase Hydro Lysis Rate Entrap Lipase Porous Silica Network Modify Silica Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Braun, S. Rappoport, R. Zusman, D. Avnir, M. Ottolenghi, Biochemically active sol-gel glasses: the trapping of enzymes, Materials Letters, 10, 1 (1990)CrossRefGoogle Scholar
  2. 2.
    D. Avnir, S. Braun, O. Lev, M. Ottolenghi, Enzymes and other proteins entrapped in sol-gel materials, Chemistry of Materials Letters, 6, 1605 (1994)CrossRefGoogle Scholar
  3. 3.
    J.I. Zink, S.A. Yamanaka, L.M. Ellerby, J.S. Valentine, F.Nishida, B. Dunn, Biomolecular materials based on sol-gel encapsulated proteins, Journal of Sol-Gel Science and Technology, 2, 791 (1994)CrossRefGoogle Scholar
  4. 3a.
    B.C. Dave, B. Dunn, J.S. Valentine, J.I. Zink, Sol-gel encapsulation methods for biosensors, Analytical Chemistry, 66, 1120A (1994)CrossRefGoogle Scholar
  5. 4.
    J. Wang, Sol-gel materials for electrochemical biosensors, Analytica Chimica Acta, 399, 21 (1999)CrossRefGoogle Scholar
  6. 5.
    M.T. Reetz, Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry, Advanced Materials, 9, 943 (1997)CrossRefGoogle Scholar
  7. 6.
    A. Bronshtein, N. Aharonson, D. Avnir, A. Turniansky, M. Alstein, Sol-gel matrixes doped with atrazine antibodies: atrazine binding properties, Chemistry of Materials, 9, 2632 (1997)CrossRefGoogle Scholar
  8. 7.
    J. Livage, C. Roux, J.M. da Costa, I. Desportes, J.F. Quinson, Immunoassays in sol-gel matrices, Journal of Sol-Gel Science and Technology, 7, 45 (1996)CrossRefGoogle Scholar
  9. 8.
    S. Fennouh, S. Guyon, C. Jourdat, J. Livage, C. Roux, Encapsulation of bacteria in silica gels, Compte-Rendus Acad. Sci. Paris , Série IIc, 2, 625 (1999)Google Scholar
  10. 9.
    K.S. Finnic, J.R. Bartlett, J. Woolfrey, Encapsulation of sulfate-reducing bacteria in a silica host, Journal of Materials Chemistry, 10, 1099 (2000)CrossRefGoogle Scholar
  11. 10.
    E.J.A. Pope, K. Braun, C.M. Peterson, Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus, Journal of Sol-Gel Science and Technology, 8, 635 (1997)Google Scholar
  12. 11.
    G. Carturan, G. Dellagiacoma, M. Rossi, R. Dal Monte, M. Muraca, Encapsulation of viable animals cells for hybrid bioartificial organs by the biosil method, Sol-Gel Optics 1V, SPIE, 3136, 366 (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • J. Livage

There are no affiliations available

Personalised recommendations