Skip to main content
  • 3537 Accesses

Abstract

Particles with a diameter from 1 to 100 nm are commonly known as nanoparticles. They can be distinguished from their corresponding bulk solid form by the size of their surface area in relation to their weight. When this ratio exceeds a particular value, a change in the physical and optical properties can be observed and the material behaves differently from its corresponding bulk solid form. This was already recognized in the early 90’s by Gleiter et al. [1] for nanoscaled metal clusters. Since then many metal, metal oxide and nitride nanoscaled systems have been studied. Nanoparticles have a high surface energy with specific surface area & 250m2/g and tend therefore to build agglomerates consisting of hundreds of nanoparticles, which usually cannot be separated by chemical, physical or mechanical forces. Such agglomerates behave like bulk material made of micrometer size particles and lose the unique properties of nanoscaled particles. The sol-gel method is one of the most powerful processes to circumvent this tendency and to allow the preparation of new materials containing dispersed nanoparticles. Such systems, called Nanomers ®, are interesting for the preparation of ceramics with improved properties but especially for the production of hybrid coatings which can be densified by polymerizing the organic network at low temperature opening the way to new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gleiter, Structure and properties of nanometer-sized materials, Phase Transition, 24–26, 1526 (1990)

    Google Scholar 

  2. N. Icinose, Y. Ozaki, S. Kashu, Superfine Particle Technology, Sprinter-Verlag (1991)

    Google Scholar 

  3. C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors, J. Non-Cryst. Solids, 100, 65 (1988)

    Article  CAS  Google Scholar 

  4. P.W. Jones, Fundamental principles of sol-gel technology, London: Institute of Metals (1989)

    Google Scholar 

  5. E.U. Franck, Water and aqueous solutions at high temperatures, pressures and concentrations, in: Proc. 1st Internat. Symp. on Hydrothermal Reactions, S. Somiya, (Ed.), Tokyo, Assoc. Sci. Doc. Inform., 1 (1983)

    Google Scholar 

  6. W.B. Brown, R.C. Ball, Computer simulation of chemically limited aggregation, J. Phys., A18, L517 (1985)

    Google Scholar 

  7. W. J. Dawson, Hydrothermal synthesis of advanced ceramic powders, Ceramic Bulletin, 67, 1673 (1998)

    Google Scholar 

  8. H. Liu, T. Chin, L. Lai, S. Chin, K. Chung, C.S. Chang, M. Lui, ydroxyapatite synthesized by a simplified hydrothermal method, Ceram. Inter., 23, 19 (1997)

    Google Scholar 

  9. C. Lu, S. Lo, H. Lin, Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder, Mater. Lett., 34, 172 (1998)

    CAS  Google Scholar 

  10. R.S. Futagami, K. Ioku, H. Nishizawa, N. Yamasaki, Hydrothermal preparation of Na103Ti2(PO4)3 fine powders, J. Mater. Sci. Lett., 13 533 (1994)

    Article  CAS  Google Scholar 

  11. T.R.N. Kutty, P. Padmini, Synthesis of polytitanates from Ba(OH)2-ti02-H2O system through gel to crystallite conversion, J. Mater. Sci. Lett., 15, 1973 (1996)

    Article  CAS  Google Scholar 

  12. P. Padmini, T.R.N. Kutty, Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion, J. Mater. Chem., 4, 1875 (1994)

    Article  CAS  Google Scholar 

  13. P.K. Sharma, M., Jilavi, D. Burgard, R. Nass, H. Schmidt, Hydrothermal synthesis of nanosized a-Al2O3 from seeded aluminum hydroxide, J. Am. Ceram. Soc., 81, 2732 (1998)

    Article  CAS  Google Scholar 

  14. A.J. Fanelli, W.J. Burle, Preparation of fine alumina powder in alcohol, J. Am. Ceram. Soc., 69, C174 (1986)

    Article  Google Scholar 

  15. A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem., 97, 1017 (1985)

    CAS  Google Scholar 

  16. S. Saito, Fine Ceramics, Tokyo: Ohmsha Ltd. (1985)

    Google Scholar 

  17. N. Claussen, M. Rühle, Advances in ceramics, Am. Ceram. Soc., 12, 806 (1984)

    Google Scholar 

  18. R.R. Bacsa, M. Graetzel, Rutile formation in hydrothermally crystallized nanosized titania, J. Am. Ceram. Soc., 79, 2185 (1996)

    Article  CAS  Google Scholar 

  19. H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7, 663 (1995)

    Article  CAS  Google Scholar 

  20. J. Lin, J. Duh, Coprecipitation and hydrothermal synthesis of ultrafine 5.5 mol% CeO2–2 mol% YO15-ZrO2 powders, J. Am. Ceram. Soc., 80, 92 (1997)

    Article  CAS  Google Scholar 

  21. M.M.R. Boutz, R.J.M.O. Scholtenhuis, A.J.A. Winnubst, A.J. Burggraaf, A hydrothermal route for production of dense, nanostructured Y-TZP, Mat. Res. Bull., 29, 31 (1994)

    Article  CAS  Google Scholar 

  22. S. Somiya, M. Yoshimura, Hydrothermal processing of ultrafine single-crystal zirconia and haftnia powders with homogeneous dopants, Adv. Ceram., Ceram. Powder Sci., Am. Ceram. Soc. Inc., 21, 43 (1987)

    CAS  Google Scholar 

  23. H. Cheng, L. Wu, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of nanosized cubic ZrO2 powders, J. Mater., 15, 895 (1996)

    CAS  Google Scholar 

  24. M. Hirano, E. Kato, Hydrothermal synthesis of cerium(IV) oxide, J. Am. Ceram. Soc., 79, 777 (1996)

    Article  CAS  Google Scholar 

  25. Y.C. Zhou, M.N. Rahaman, Hydrothermal synthesis and sintering of ultrafine CeO2 powders, J. Mater. Res., 8, 1680 (1993)

    Article  CAS  Google Scholar 

  26. M. Hirano, E. Kato, The hydrothermal synthesis of ultrafine cerium(IV) oxide powders, J. Mater. Sci. Lett., 15, 1249 (1996)

    Article  CAS  Google Scholar 

  27. L.L. Hench, D.R. Ulrich, Ultrastructure processing of ceramics, glasses and composites, New York: John Wiley & Sons, 334 (1984)

    Google Scholar 

  28. K. Abe, S. Matsumoto, Hydrothermal processing of functional ceramic powders, Ceram. Tran., Ceram. Powder Sci. IV, Am. Ceram. Soc. Inc., 22, 15 (1991)

    CAS  Google Scholar 

  29. C. Wang, Y. Hu, Y. Qian, G. Zhao, A novel method to prepare nanocrystalline Sn02, Nanostr. Mat., 7, 421 (1996)

    Article  CAS  Google Scholar 

  30. C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass H. Schmidt, Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled crystalline SnO2:Sb particles J. Mater. Sci., 9, 253 (1999)

    CAS  Google Scholar 

  31. T.R.N. Kutty, R. Vivekanandan, Precipitation of rutile and anatase (ti02) fine powders and their conversion to metal titanate (MtiO3) (M=barium, strontium, calcium) by the hydrothermal method, Mater. Chem. Phys., 19, 534 (1988)

    Google Scholar 

  32. T.R.N. Kutty, R. Vivekanandan, Preparation of CaTiO3 fine powders by the hydrothermal method, Mater. Lett., 5, 79 (1987)

    CAS  Google Scholar 

  33. K. Fukai, K. Idaka, M. Aoki, K. Abe, Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis, Ceram. Inter., 16, 285 (1990)

    CAS  Google Scholar 

  34. S. Komarneni, R. Roy, Q. Li, Microwave-Hydrothermal Synthesis of Ceramic Powders, Mat. Res. Bull., 27, 1393 (1992)

    Article  CAS  Google Scholar 

  35. P.K. Dutta, R. Asiaie, S.A. Akbar, W. Zhu, Hydrothermal synthesis and dielectric properties of tetragonal BaTiO3, Chem. Mater., 6, 1542 (1994)

    Article  CAS  Google Scholar 

  36. A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin, C.G. Levi, Low temperature/low pressure hydrothermal synthesis of barium titanate: powder and heteroepitaxial thin films, J. Mater. Res., 10, 1784 (1995)

    Article  CAS  Google Scholar 

  37. J.A. Kerchner, J. Moon, R.E. Chodelka, A.A. Morrone, J.H. Adair, Nucleation and Formation Mechanisms of 1ydrothermally Derived Barium Titanate, in: Synthesis and Characterization of Advanced Materials, M. A. Serio, D. M. Gruen, R. Malhotra (eds.), American Chemical Society, 681, 106 (1998)

    Google Scholar 

  38. D. Quon, S.S.B. Wang, T.A. Wheat, Hydrothermal synthesis of lead titanate, Interceram., 41, 257 (1992)

    CAS  Google Scholar 

  39. S. Sato, T. Murakata, H. Yanagi, F. Miyasaka, Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution, J. Mater. Sci., 29, 5657 (1994)

    Article  CAS  Google Scholar 

  40. H. Cheng, J. Ma, Z. Zhao L. Qi, Hydrothermal synthesis of PbTiO3 from PbO and ti02, J. Mater. Sci. Lett., 15, 1245 (1996)

    Article  CAS  Google Scholar 

  41. I. Petrovic, M.M. Lencka, A. Anderko, R.E. Riman, Hydrothermal synthesis of lead zirconiate titanate (PbZr0.52Ti04803) using organic mineralizers, ISAF’96, Proc. IEEE Int. Symp. Appl. Ferroelectr., 10, 735 (1997)

    Google Scholar 

  42. B.C. Beal, Precipitation of lead zirconate titanate solid solutions under hydrothermal conditions, Adv. Ceram., Ceram. Powder Sci.: Am. Ceram. Soc., Inc., 21, 33 (1987)

    CAS  Google Scholar 

  43. M. Yonezawa, T. Ohno, K. Iwase, T. Takasa, M. Kiyama, T. Akita, Lead zirconate-titanate powder of particle sizes between 0.02 and 0.2 micron, process for producing same, and highdensity piezoelectric ceramics made of powder, Patent US3963630

    Google Scholar 

  44. R. Vivekanandan, S. Philip, T.R.N. Kutty, Hydrothermal preparation of Ba(Ti, Zr)O3 fiine powders, Mat. Res. Bull., 22, 99 (1986)

    Article  Google Scholar 

  45. M. Rozman, M. Drofenik, Hydrothermal synthesis of manganese zinc ferrites, J. Am. Ceram. Soc., 78, 2449 (1995)

    Article  CAS  Google Scholar 

  46. K. Abe, S. Matsumoto, Hydrothermal processing of functional ceramic powders, Ceram. Tran., Ceram. Powder Sci. IV, Am. Ceram. Soc. Inc., 22, 15 (1991)

    CAS  Google Scholar 

  47. E. Matijevic, C.M. Simpson, N. Amin, S. Arajs, Preparation and magnetic properties of well-defined colloidal chromium ferrites, Colloids and Surf, 21, 101 (1986)

    Article  CAS  Google Scholar 

  48. T. Takamori, L.D. David, Controlled nucleation for hydrothermal growth of yttrium-aluminum garnet powders, Am. Ceram. Soc. Bull., 65, 1282 (1986)

    CAS  Google Scholar 

  49. S. Komarneni, R. Roy, E. Breval, M. Ollinen, Y. Suwa, Hydrothermal route to ultrafine powdersutilizing single and diphasic gels, Adv. Ceram. Mater., 1, 87 (1986)

    CAS  Google Scholar 

  50. W. Huang, P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of Ce1_xSmxO2_x/2 and Cc1_xCaxO2_x solid solutions, Chem. Mater., 9, 2240 (1997)

    Article  CAS  Google Scholar 

  51. Kanai, K. Harada, Y. Yamashita, K. Hasegawa, S. Mukaeda, K. Handa, Fine grained relaxor dielectric ceramics prepared by hydrothermally synthesized powder, Jap. J. Appl. Phys., 35, 5122 (1996)

    Article  CAS  Google Scholar 

  52. T. Attori, Y. Iwadate, T. Kato, Hydrothermal synthesis of hydroxyapatite from calcium pyrophosphate, J. Mater. Sci. Lett., 8, 305 (1989)

    Google Scholar 

  53. H. Liu, T. Chin, L. Lai, S. Chiu, K. Chung, C. Chang, M. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method, Ceram. Inter., 23, 19 (1997)

    Google Scholar 

  54. R.S. Futagami, L. Loku, H. Nishizawa, N. Yamasaki, Hydrothermal preparation of Na1.0 Ti2(PO4)3 line powders, J. Mater. Sci. Lett., 13, 533 (1994)

    Article  CAS  Google Scholar 

  55. F. Dogan, S. Orourke, M. Oian, M. Sarikaya, Low temperature hydrothermal synthesis of nanophase BaTiO3 and BaFe12O19 powders, Mater. Res. Soc. Symp. Proc., Nanophase and Nanocomposite Materials II, 457, 69 (1997)

    Google Scholar 

  56. R.L. Penn, J.F. Banfield, J. Voigt, Synthesis of nanocrystalline barium-hexaferrite from goethite using the hydrothermal method: particle size evolution and magnetic properties, Mater. Res. Soc. Symp. Proc., Aqueous chemistry and geochemistry of oxides, oxyhydroxides, and related materials, 432, 175 (1997)

    CAS  Google Scholar 

  57. E.P. Stammbaugh, J.F. Miller, Hydrothermal precipitation of high-quality inorganic oxides, in: Proc. 1st Internat. Symp. On Hydrothermal Reactions, S. Somiya (ed.), Tokyo, Assoc. Sci. Doc. Inform, 1, 859 (1983)

    Google Scholar 

  58. E.U. Frank, Int. Corros. Conf. Ser., 463 (1973)

    Google Scholar 

  59. E.U. Frank, Water and aqueous solutions at high pressures and temperatures, Pure Appl. Chem., 24, 13 (1970)

    Google Scholar 

  60. K. Toedheide, Water at high temperatures and pressures, in: Water, a comprehensive treatise, F. Franks (ed.), New York: Plenum, 1, 463 (1972)

    Google Scholar 

  61. H.C. Helgeson, Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures, Phys. Chem. Earth, 13/14, 133 (1981)

    Article  Google Scholar 

  62. A. Rabenau, L. Rau, Crystal growth and chemical synthesis under hydrothermal conditions, Philips Tech. Rundsch., 30, 53 (1969/70)

    Google Scholar 

  63. T.R.N. Kutty, P. Padmini, Wet chemical formation of nanoparticles of binary perovskites through isothermal gel to crystallite conversion, Mat. Res. Bull., 27, 945 (1992)

    Article  CAS  Google Scholar 

  64. E. Matijevic, Monodispersed metal (hydrous) oxides— a fascinating field of colloid science, Accounts of Chem. Res., 14, 22 (1981)

    Google Scholar 

  65. A. Kaiser, A. Berger, D. Sporn, H. Bertganolli, Lyothermal synthesis of nanocrystalline BaTiO3 and ti02 powders, Ceram. Trans., Ceram. Proc. Sci. Tech., Am. Ceram. Soc., Inc., 51, 51 (1995)

    CAS  Google Scholar 

  66. R.A. Laudise, Hydrothermal synthesis of single crystals, in: Progr. Inorg. Chem., F.A. Cotton (ed.), lntersci. Publ., 3, 1 (1962)

    Chapter  Google Scholar 

  67. T. Hattori, Y. Iwadate, T. Kato, Hydrothermal synthesis of hydroxyapatite from calcium pyrophosphate, J. Mater. Sci. Lett., 8, 305 (1989)

    Article  CAS  Google Scholar 

  68. J. Morse, M. Graetzel, Light-induced electron transfer in colloidal semiconductor dispersions, single vs. dielectronic reduction of acceptors by conduction-band electrons, J. Amer. Chem. Soc., 105, 6547 (1983)

    Article  Google Scholar 

  69. H.K. Schmidt, Relevance of sol-gel methods for synthesis of fine particles, KONA powder and particle, 14, 92 (1996)

    CAS  Google Scholar 

  70. H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry, Curr. Top. Mater. Sci., 8, 381 (1982)

    CAS  Google Scholar 

  71. M. Avudaithai M., T.R.N. Kutty, Ultrafine powders of SrTiO3 from the hydrothermal preparation and their catalytic activity in the photolysis of water, Mat. Res. Bull., 22, 641 (1987)

    Article  CAS  Google Scholar 

  72. D. Chen, R. Xu, Solvothermal synthesis and characterization of PbTiO3 powders, J. Mater. Chem., 8, 965 (1998)

    Google Scholar 

  73. A. Kaiser, D. Sporn, H. Bertagnolli, Phase transformations and control of habit in lyothermal synthesis of α-A12O3,J. Euro. Ceram. Soc., 14, 77 (1994)

    Article  CAS  Google Scholar 

  74. M.M. Lencka, R.E. Riman, Thermodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater., 5, 61 (1993)

    Article  CAS  Google Scholar 

  75. J. Hair, R.P. Denkewicz, D.L. Arriagada, K. Osseo-Asare, Precipitation and in-situ transformation in the hydrothermal synthesis of crystalline zirconium dioxide, Ceram. Trans., Ceramic powder science II, B,: the American Ceramic Society, Inc., 432, 135 (1988)

    Google Scholar 

  76. S. Komarneni, V.C. Menon, Q.H. Li, Synthesis of ceramic powders by novel microwavehydrothermal processing, in: Cerm. Trans., Science, technology and commercialization of powder synthesis and shape processing, 62, 37 (1996)

    Google Scholar 

  77. P. Strehlow, Thermodynamic stability of monodispersed particles in solution, J. Non-Cryst. Solids, 107, 55 (1988)

    Article  CAS  Google Scholar 

  78. B. K. Paul, S.P. Moulik, Microemulsions: An overview, J. Disper. Sci. & Techn., 18, 301 (1997)

    Article  CAS  Google Scholar 

  79. K. Shinoda, B. Lindman, Organized surfactant systems: microemulsions, Langmuir, 3, 135 (1987)

    Article  CAS  Google Scholar 

  80. J. Eastoe, B. Warne, Nanoparticle and polymer synthesis in microemulsions, Cun. Opin. Colloid Interface Sci., 1, 800 (1996)

    Article  CAS  Google Scholar 

  81. C. Goebbert, R. Nonninger, M. A. Aegerter,. Schmidt, Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions Thin Solid Film, 351, 79 (1999)

    CAS  Google Scholar 

  82. K.J. Lissant (ed.), Emulsion and emulsion technology, in: Emulsion and Emulsion Technology, Marcel Dekker Inc. (1984)

    Google Scholar 

  83. D. Burgard, Entwicklung eines Emulsionsverfahrens zur Herstellung nanokristalliner Pulver, Master Thesis, University of Saarbrücken, Germany (1992)

    Google Scholar 

  84. M. I. Schmidt, R. Nass, M. Aslan, K.-P. Schmitt, T. Benthien, S. Albayrak, Synthesis and processing of nanoscaled ceramics by chemical routes, J. de Physique, IV 3, 1251 (1993)

    Google Scholar 

  85. M.A. Aegerter, N. Al-Dahoudi, Wet chemical processing of transparent and antiglare conducting ITO coating on plastic substrates, J. Sol-Gel Science and Technology (Special Issue), 27, 81 (2003)

    Article  CAS  Google Scholar 

  86. C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass, H. Schmidt, Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline SnO2:Sb particles, J. Mater. Chem., 9, 253 (1999)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goebbert, C., Aegerter, M.A. (2004). Nanoscaled Powders for Coatings. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics