Nanoscaled Powders for Coatings

  • C. Goebbert
  • M. A. Aegerter


Particles with a diameter from 1 to 100 nm are commonly known as nanoparticles. They can be distinguished from their corresponding bulk solid form by the size of their surface area in relation to their weight. When this ratio exceeds a particular value, a change in the physical and optical properties can be observed and the material behaves differently from its corresponding bulk solid form. This was already recognized in the early 90’s by Gleiter et al. [1] for nanoscaled metal clusters. Since then many metal, metal oxide and nitride nanoscaled systems have been studied. Nanoparticles have a high surface energy with specific surface area & 250m2/g and tend therefore to build agglomerates consisting of hundreds of nanoparticles, which usually cannot be separated by chemical, physical or mechanical forces. Such agglomerates behave like bulk material made of micrometer size particles and lose the unique properties of nanoscaled particles. The sol-gel method is one of the most powerful processes to circumvent this tendency and to allow the preparation of new materials containing dispersed nanoparticles. Such systems, called Nanomers ®, are interesting for the preparation of ceramics with improved properties but especially for the production of hybrid coatings which can be densified by polymerizing the organic network at low temperature opening the way to new applications.


Hydrothermal Synthesis Ceramic Powder Glass Producer Potassium Niobate Zr02 Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleiter, Structure and properties of nanometer-sized materials, Phase Transition, 24–26, 1526 (1990)Google Scholar
  2. 2.
    N. Icinose, Y. Ozaki, S. Kashu, Superfine Particle Technology, Sprinter-Verlag (1991)Google Scholar
  3. 3.
    C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors, J. Non-Cryst. Solids, 100, 65 (1988)CrossRefGoogle Scholar
  4. 4.
    P.W. Jones, Fundamental principles of sol-gel technology, London: Institute of Metals (1989)Google Scholar
  5. 5.
    E.U. Franck, Water and aqueous solutions at high temperatures, pressures and concentrations, in: Proc. 1st Internat. Symp. on Hydrothermal Reactions, S. Somiya, (Ed.), Tokyo, Assoc. Sci. Doc. Inform., 1 (1983)Google Scholar
  6. 6.
    W.B. Brown, R.C. Ball, Computer simulation of chemically limited aggregation, J. Phys., A18, L517 (1985)Google Scholar
  7. 7.
    W. J. Dawson, Hydrothermal synthesis of advanced ceramic powders, Ceramic Bulletin, 67, 1673 (1998)Google Scholar
  8. 8.
    H. Liu, T. Chin, L. Lai, S. Chin, K. Chung, C.S. Chang, M. Lui, ydroxyapatite synthesized by a simplified hydrothermal method, Ceram. Inter., 23, 19 (1997)Google Scholar
  9. 9.
    C. Lu, S. Lo, H. Lin, Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder, Mater. Lett., 34, 172 (1998)Google Scholar
  10. 10.
    R.S. Futagami, K. Ioku, H. Nishizawa, N. Yamasaki, Hydrothermal preparation of Na103Ti2(PO4)3 fine powders, J. Mater. Sci. Lett., 13 533 (1994)CrossRefGoogle Scholar
  11. 11.
    T.R.N. Kutty, P. Padmini, Synthesis of polytitanates from Ba(OH)2-ti02-H2O system through gel to crystallite conversion, J. Mater. Sci. Lett., 15, 1973 (1996)CrossRefGoogle Scholar
  12. 12.
    P. Padmini, T.R.N. Kutty, Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion, J. Mater. Chem., 4, 1875 (1994)CrossRefGoogle Scholar
  13. 13.
    P.K. Sharma, M., Jilavi, D. Burgard, R. Nass, H. Schmidt, Hydrothermal synthesis of nanosized a-Al2O3 from seeded aluminum hydroxide, J. Am. Ceram. Soc., 81, 2732 (1998)CrossRefGoogle Scholar
  14. 14.
    A.J. Fanelli, W.J. Burle, Preparation of fine alumina powder in alcohol, J. Am. Ceram. Soc., 69, C174 (1986)CrossRefGoogle Scholar
  15. 15.
    A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem., 97, 1017 (1985)Google Scholar
  16. 16.
    S. Saito, Fine Ceramics, Tokyo: Ohmsha Ltd. (1985)Google Scholar
  17. 17.
    N. Claussen, M. Rühle, Advances in ceramics, Am. Ceram. Soc., 12, 806 (1984)Google Scholar
  18. 18.
    R.R. Bacsa, M. Graetzel, Rutile formation in hydrothermally crystallized nanosized titania, J. Am. Ceram. Soc., 79, 2185 (1996)CrossRefGoogle Scholar
  19. 19.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7, 663 (1995)CrossRefGoogle Scholar
  20. 20.
    J. Lin, J. Duh, Coprecipitation and hydrothermal synthesis of ultrafine 5.5 mol% CeO2–2 mol% YO15-ZrO2 powders, J. Am. Ceram. Soc., 80, 92 (1997)CrossRefGoogle Scholar
  21. 21.
    M.M.R. Boutz, R.J.M.O. Scholtenhuis, A.J.A. Winnubst, A.J. Burggraaf, A hydrothermal route for production of dense, nanostructured Y-TZP, Mat. Res. Bull., 29, 31 (1994)CrossRefGoogle Scholar
  22. 22.
    S. Somiya, M. Yoshimura, Hydrothermal processing of ultrafine single-crystal zirconia and haftnia powders with homogeneous dopants, Adv. Ceram., Ceram. Powder Sci., Am. Ceram. Soc. Inc., 21, 43 (1987)Google Scholar
  23. 23.
    H. Cheng, L. Wu, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of nanosized cubic ZrO2 powders, J. Mater., 15, 895 (1996)Google Scholar
  24. 24.
    M. Hirano, E. Kato, Hydrothermal synthesis of cerium(IV) oxide, J. Am. Ceram. Soc., 79, 777 (1996)CrossRefGoogle Scholar
  25. 25.
    Y.C. Zhou, M.N. Rahaman, Hydrothermal synthesis and sintering of ultrafine CeO2 powders, J. Mater. Res., 8, 1680 (1993)CrossRefGoogle Scholar
  26. 26.
    M. Hirano, E. Kato, The hydrothermal synthesis of ultrafine cerium(IV) oxide powders, J. Mater. Sci. Lett., 15, 1249 (1996)CrossRefGoogle Scholar
  27. 27.
    L.L. Hench, D.R. Ulrich, Ultrastructure processing of ceramics, glasses and composites, New York: John Wiley & Sons, 334 (1984)Google Scholar
  28. 28.
    K. Abe, S. Matsumoto, Hydrothermal processing of functional ceramic powders, Ceram. Tran., Ceram. Powder Sci. IV, Am. Ceram. Soc. Inc., 22, 15 (1991)Google Scholar
  29. 29.
    C. Wang, Y. Hu, Y. Qian, G. Zhao, A novel method to prepare nanocrystalline Sn02, Nanostr. Mat., 7, 421 (1996)CrossRefGoogle Scholar
  30. 30.
    C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass H. Schmidt, Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled crystalline SnO2:Sb particles J. Mater. Sci., 9, 253 (1999)Google Scholar
  31. 31.
    T.R.N. Kutty, R. Vivekanandan, Precipitation of rutile and anatase (ti02) fine powders and their conversion to metal titanate (MtiO3) (M=barium, strontium, calcium) by the hydrothermal method, Mater. Chem. Phys., 19, 534 (1988)Google Scholar
  32. 32.
    T.R.N. Kutty, R. Vivekanandan, Preparation of CaTiO3 fine powders by the hydrothermal method, Mater. Lett., 5, 79 (1987)Google Scholar
  33. 33.
    K. Fukai, K. Idaka, M. Aoki, K. Abe, Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis, Ceram. Inter., 16, 285 (1990)Google Scholar
  34. 34.
    S. Komarneni, R. Roy, Q. Li, Microwave-Hydrothermal Synthesis of Ceramic Powders, Mat. Res. Bull., 27, 1393 (1992)CrossRefGoogle Scholar
  35. 35.
    P.K. Dutta, R. Asiaie, S.A. Akbar, W. Zhu, Hydrothermal synthesis and dielectric properties of tetragonal BaTiO3, Chem. Mater., 6, 1542 (1994)CrossRefGoogle Scholar
  36. 36.
    A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin, C.G. Levi, Low temperature/low pressure hydrothermal synthesis of barium titanate: powder and heteroepitaxial thin films, J. Mater. Res., 10, 1784 (1995)CrossRefGoogle Scholar
  37. 37.
    J.A. Kerchner, J. Moon, R.E. Chodelka, A.A. Morrone, J.H. Adair, Nucleation and Formation Mechanisms of 1ydrothermally Derived Barium Titanate, in: Synthesis and Characterization of Advanced Materials, M. A. Serio, D. M. Gruen, R. Malhotra (eds.), American Chemical Society, 681, 106 (1998)Google Scholar
  38. 38.
    D. Quon, S.S.B. Wang, T.A. Wheat, Hydrothermal synthesis of lead titanate, Interceram., 41, 257 (1992)Google Scholar
  39. 39.
    S. Sato, T. Murakata, H. Yanagi, F. Miyasaka, Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution, J. Mater. Sci., 29, 5657 (1994)CrossRefGoogle Scholar
  40. 40.
    H. Cheng, J. Ma, Z. Zhao L. Qi, Hydrothermal synthesis of PbTiO3 from PbO and ti02, J. Mater. Sci. Lett., 15, 1245 (1996)CrossRefGoogle Scholar
  41. 41.
    I. Petrovic, M.M. Lencka, A. Anderko, R.E. Riman, Hydrothermal synthesis of lead zirconiate titanate (PbZr0.52Ti04803) using organic mineralizers, ISAF’96, Proc. IEEE Int. Symp. Appl. Ferroelectr., 10, 735 (1997)Google Scholar
  42. 42.
    B.C. Beal, Precipitation of lead zirconate titanate solid solutions under hydrothermal conditions, Adv. Ceram., Ceram. Powder Sci.: Am. Ceram. Soc., Inc., 21, 33 (1987)Google Scholar
  43. 43.
    M. Yonezawa, T. Ohno, K. Iwase, T. Takasa, M. Kiyama, T. Akita, Lead zirconate-titanate powder of particle sizes between 0.02 and 0.2 micron, process for producing same, and highdensity piezoelectric ceramics made of powder, Patent US3963630Google Scholar
  44. 44.
    R. Vivekanandan, S. Philip, T.R.N. Kutty, Hydrothermal preparation of Ba(Ti, Zr)O3 fiine powders, Mat. Res. Bull., 22, 99 (1986)CrossRefGoogle Scholar
  45. 45.
    M. Rozman, M. Drofenik, Hydrothermal synthesis of manganese zinc ferrites, J. Am. Ceram. Soc., 78, 2449 (1995)CrossRefGoogle Scholar
  46. 46.
    K. Abe, S. Matsumoto, Hydrothermal processing of functional ceramic powders, Ceram. Tran., Ceram. Powder Sci. IV, Am. Ceram. Soc. Inc., 22, 15 (1991)Google Scholar
  47. 47.
    E. Matijevic, C.M. Simpson, N. Amin, S. Arajs, Preparation and magnetic properties of well-defined colloidal chromium ferrites, Colloids and Surf, 21, 101 (1986)CrossRefGoogle Scholar
  48. 48.
    T. Takamori, L.D. David, Controlled nucleation for hydrothermal growth of yttrium-aluminum garnet powders, Am. Ceram. Soc. Bull., 65, 1282 (1986)Google Scholar
  49. 49.
    S. Komarneni, R. Roy, E. Breval, M. Ollinen, Y. Suwa, Hydrothermal route to ultrafine powdersutilizing single and diphasic gels, Adv. Ceram. Mater., 1, 87 (1986)Google Scholar
  50. 50.
    W. Huang, P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of Ce1_xSmxO2_x/2 and Cc1_xCaxO2_x solid solutions, Chem. Mater., 9, 2240 (1997)CrossRefGoogle Scholar
  51. 51.
    Kanai, K. Harada, Y. Yamashita, K. Hasegawa, S. Mukaeda, K. Handa, Fine grained relaxor dielectric ceramics prepared by hydrothermally synthesized powder, Jap. J. Appl. Phys., 35, 5122 (1996)CrossRefGoogle Scholar
  52. 52.
    T. Attori, Y. Iwadate, T. Kato, Hydrothermal synthesis of hydroxyapatite from calcium pyrophosphate, J. Mater. Sci. Lett., 8, 305 (1989)Google Scholar
  53. 53.
    H. Liu, T. Chin, L. Lai, S. Chiu, K. Chung, C. Chang, M. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method, Ceram. Inter., 23, 19 (1997)Google Scholar
  54. 54.
    R.S. Futagami, L. Loku, H. Nishizawa, N. Yamasaki, Hydrothermal preparation of Na1.0 Ti2(PO4)3 line powders, J. Mater. Sci. Lett., 13, 533 (1994)CrossRefGoogle Scholar
  55. 55.
    F. Dogan, S. Orourke, M. Oian, M. Sarikaya, Low temperature hydrothermal synthesis of nanophase BaTiO3 and BaFe12O19 powders, Mater. Res. Soc. Symp. Proc., Nanophase and Nanocomposite Materials II, 457, 69 (1997)Google Scholar
  56. 56.
    R.L. Penn, J.F. Banfield, J. Voigt, Synthesis of nanocrystalline barium-hexaferrite from goethite using the hydrothermal method: particle size evolution and magnetic properties, Mater. Res. Soc. Symp. Proc., Aqueous chemistry and geochemistry of oxides, oxyhydroxides, and related materials, 432, 175 (1997)Google Scholar
  57. 57.
    E.P. Stammbaugh, J.F. Miller, Hydrothermal precipitation of high-quality inorganic oxides, in: Proc. 1st Internat. Symp. On Hydrothermal Reactions, S. Somiya (ed.), Tokyo, Assoc. Sci. Doc. Inform, 1, 859 (1983)Google Scholar
  58. 58.
    E.U. Frank, Int. Corros. Conf. Ser., 463 (1973)Google Scholar
  59. 59.
    E.U. Frank, Water and aqueous solutions at high pressures and temperatures, Pure Appl. Chem., 24, 13 (1970)Google Scholar
  60. 60.
    K. Toedheide, Water at high temperatures and pressures, in: Water, a comprehensive treatise, F. Franks (ed.), New York: Plenum, 1, 463 (1972)Google Scholar
  61. 61.
    H.C. Helgeson, Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures, Phys. Chem. Earth, 13/14, 133 (1981)CrossRefGoogle Scholar
  62. 62.
    A. Rabenau, L. Rau, Crystal growth and chemical synthesis under hydrothermal conditions, Philips Tech. Rundsch., 30, 53 (1969/70)Google Scholar
  63. 63.
    T.R.N. Kutty, P. Padmini, Wet chemical formation of nanoparticles of binary perovskites through isothermal gel to crystallite conversion, Mat. Res. Bull., 27, 945 (1992)CrossRefGoogle Scholar
  64. 64.
    E. Matijevic, Monodispersed metal (hydrous) oxides— a fascinating field of colloid science, Accounts of Chem. Res., 14, 22 (1981)Google Scholar
  65. 65.
    A. Kaiser, A. Berger, D. Sporn, H. Bertganolli, Lyothermal synthesis of nanocrystalline BaTiO3 and ti02 powders, Ceram. Trans., Ceram. Proc. Sci. Tech., Am. Ceram. Soc., Inc., 51, 51 (1995)Google Scholar
  66. 66.
    R.A. Laudise, Hydrothermal synthesis of single crystals, in: Progr. Inorg. Chem., F.A. Cotton (ed.), lntersci. Publ., 3, 1 (1962)CrossRefGoogle Scholar
  67. 67.
    T. Hattori, Y. Iwadate, T. Kato, Hydrothermal synthesis of hydroxyapatite from calcium pyrophosphate, J. Mater. Sci. Lett., 8, 305 (1989)CrossRefGoogle Scholar
  68. 68.
    J. Morse, M. Graetzel, Light-induced electron transfer in colloidal semiconductor dispersions, single vs. dielectronic reduction of acceptors by conduction-band electrons, J. Amer. Chem. Soc., 105, 6547 (1983)CrossRefGoogle Scholar
  69. 69.
    H.K. Schmidt, Relevance of sol-gel methods for synthesis of fine particles, KONA powder and particle, 14, 92 (1996)Google Scholar
  70. 70.
    H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry, Curr. Top. Mater. Sci., 8, 381 (1982)Google Scholar
  71. 71.
    M. Avudaithai M., T.R.N. Kutty, Ultrafine powders of SrTiO3 from the hydrothermal preparation and their catalytic activity in the photolysis of water, Mat. Res. Bull., 22, 641 (1987)CrossRefGoogle Scholar
  72. 72.
    D. Chen, R. Xu, Solvothermal synthesis and characterization of PbTiO3 powders, J. Mater. Chem., 8, 965 (1998)Google Scholar
  73. 73.
    A. Kaiser, D. Sporn, H. Bertagnolli, Phase transformations and control of habit in lyothermal synthesis of α-A12O3,J. Euro. Ceram. Soc., 14, 77 (1994)CrossRefGoogle Scholar
  74. 74.
    M.M. Lencka, R.E. Riman, Thermodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater., 5, 61 (1993)CrossRefGoogle Scholar
  75. 75.
    J. Hair, R.P. Denkewicz, D.L. Arriagada, K. Osseo-Asare, Precipitation and in-situ transformation in the hydrothermal synthesis of crystalline zirconium dioxide, Ceram. Trans., Ceramic powder science II, B,: the American Ceramic Society, Inc., 432, 135 (1988)Google Scholar
  76. 76.
    S. Komarneni, V.C. Menon, Q.H. Li, Synthesis of ceramic powders by novel microwavehydrothermal processing, in: Cerm. Trans., Science, technology and commercialization of powder synthesis and shape processing, 62, 37 (1996)Google Scholar
  77. 77.
    P. Strehlow, Thermodynamic stability of monodispersed particles in solution, J. Non-Cryst. Solids, 107, 55 (1988)CrossRefGoogle Scholar
  78. 78.
    B. K. Paul, S.P. Moulik, Microemulsions: An overview, J. Disper. Sci. & Techn., 18, 301 (1997)CrossRefGoogle Scholar
  79. 79.
    K. Shinoda, B. Lindman, Organized surfactant systems: microemulsions, Langmuir, 3, 135 (1987)CrossRefGoogle Scholar
  80. 80.
    J. Eastoe, B. Warne, Nanoparticle and polymer synthesis in microemulsions, Cun. Opin. Colloid Interface Sci., 1, 800 (1996)CrossRefGoogle Scholar
  81. 81.
    C. Goebbert, R. Nonninger, M. A. Aegerter,. Schmidt, Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions Thin Solid Film, 351, 79 (1999)Google Scholar
  82. 82.
    K.J. Lissant (ed.), Emulsion and emulsion technology, in: Emulsion and Emulsion Technology, Marcel Dekker Inc. (1984)Google Scholar
  83. 83.
    D. Burgard, Entwicklung eines Emulsionsverfahrens zur Herstellung nanokristalliner Pulver, Master Thesis, University of Saarbrücken, Germany (1992)Google Scholar
  84. 84.
    M. I. Schmidt, R. Nass, M. Aslan, K.-P. Schmitt, T. Benthien, S. Albayrak, Synthesis and processing of nanoscaled ceramics by chemical routes, J. de Physique, IV 3, 1251 (1993)Google Scholar
  85. 85.
    M.A. Aegerter, N. Al-Dahoudi, Wet chemical processing of transparent and antiglare conducting ITO coating on plastic substrates, J. Sol-Gel Science and Technology (Special Issue), 27, 81 (2003)CrossRefGoogle Scholar
  86. 86.
    C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass, H. Schmidt, Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline SnO2:Sb particles, J. Mater. Chem., 9, 253 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • C. Goebbert
  • M. A. Aegerter

There are no affiliations available

Personalised recommendations