In terms of chemical reaction kinetics, the efficiency of a catalyst can be characterized by its selectivity for a given product and its activity [1]. The activity refers to the rate at which it makes a reaction proceeds towards chemical equilibrium. It can be expressed as the number of reacted molecules per unit time and per active site, known as the turnover number. The selectivity measures the extent to which a catalyst accelerates the formation of a given product. It is defined as the percentage of the consumed reactant which is transformed to the desired product. Depending on the type of reaction being considered, a catalyst may be useful for its activity, its selectivity or both. If several products can possibly be formed, the selectivity is often the more important property.


Selective Catalytic Reduction High Specific Surface Area Vanadium Oxide Glass Producer Alumina Aerogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd Edition, McGraw-Hill, New-York (1990).Google Scholar
  2. 2.
    G.M. Paionk, Aerogels catalysts, Applied Catalysis, 72, 217 (1991)CrossRefGoogle Scholar
  3. 3.
    D.A. Ward, E.I. Ko, Preparing catalytic materials by the Sol-Gel Method, I & EC Research, 34, 421 (1995)Google Scholar
  4. 4.
    M.A. Cauqui, J.M. Rodriguez-Izquierdo, Application of the sol-gel methods to catalyst preparation, J. of Non-Cryst. Solids, 147&148, 724 (1992)CrossRefGoogle Scholar
  5. 5.
    T. Lopez, J. Navarette, R. Gomez, O. Novaro, F. Figueras, H. Armendariz, Preparation of sol-gel sulfated ZrO2-SiO2 and characterization of its surface acidity, Appl. Catalysis A: general, 125, 217 (1995)CrossRefGoogle Scholar
  6. 6.
    H. Kochkar, F. Figueras, Synthesis of hydrophobic TiO2-SiO2 mixed oxides for the epoxidation of cyclohexene, J. of Catalysis, 171, 420 (1997)CrossRefGoogle Scholar
  7. 7.
    P. Mars, D.W. van Krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sei., Special Supplement, 3, 41 (1954)Google Scholar
  8. 8.
    Z. Paal, P.G. Menon, Hydrogen effect in catalysis, Marcel Dekker, New-York (1988)Google Scholar
  9. 9.
    G.A. Nicolaon, S.J. Teichner, Sur une nouvelle méthode de préparation de xérogels et d’aérogels de silice et leurs propriétés texturales, Bull. Soc. Chim. Fr., 1900 (1968); and Préparation des aérogels de silice à partir d’orthosilicate de méthyle en milieu alcoolique et leurs propriétés, Bull. Soc. Chim. Fr, 1906 (1968)Google Scholar
  10. 10.
    R.T.K. Baker, S.J. Tauster, J.A. Dumesic, Strong metal-support interactions, American Chemical Symposium Series, 298 (1986)CrossRefGoogle Scholar
  11. 11.
    R.A. Caruso, M. Antonietti, M. Giersig, S.P. Hentze, J.G. Jia, Modification of TiO2 network structure using a polymer coating technique, Chem. of Mater., 13, 1114 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Astier, A. Bertrand, D. Bianchi, A. Chenard, G.E.E. Gardes, G. Pajonk, M.B. Taghavi, S.J. Teichner, B. Villemin, in: Studies in Surface Science and Catalysis, Preparation of Catalysts, B. Delmon, P.A. Jacobs, G. Poncelet, (eds.), 1, 315 (1976)Google Scholar
  13. 13.
    G. Matis, F. Juillet, S.J. Teichner, Oxydation catalytique ménagée des paraffines de catalyseurs à base d’oxyde de nickel — Séléctivité de l’oxydation partielle de l’isobutane et du propane, Bull. Soc. Chim. Fr., 1633 (1976)Google Scholar
  14. 14.
    R.J. Willey, H. Lai, J.B. Peri, Investigation of iron oxide-chromia-alumina aerogels for the selective catalytic reduction of nitric oxide by ammonia, J. Catal., 130, 319 (1991)CrossRefGoogle Scholar
  15. 15.
    A.J. Fanelli, J.V. Burlew, G.B. Marsh, The polymerization of ethylene over TiCl4 supported on alumina aerogels: Low pressure results, J. Catal., 116, 318 (1988)CrossRefGoogle Scholar
  16. 16.
    F. Blanchard, B. Pommier, J.P. Reymond, S.J. Teichner, On the mechanism of the FischerTropsch synthesis involving unreduced iron catalyst, J. Mol. Catal., 17, 171 (1982)CrossRefGoogle Scholar
  17. 17.
    F. Blanchard, B. Pommier, J.P. Reymond, S.J. Teichner, New Fischer-Tropsch catalysts of the aerogel type, in: Studies in Surface Science and Catalysis, volume 16, Preparation of Catalysts III, G. Poncelet, P. Grange, P.A. Jacobs (editors), 395 (1983)Google Scholar
  18. 18.
    M.B. Taghavi, G.M. Pajonk, S.J. Teichner, On the structure-sensitive and structure-insensitive catalytic reactions and their new characteristics demonstrated with copper-supported attalysts, J. Colloid Interface Sei., 71, 451 (1979)CrossRefGoogle Scholar
  19. 19.
    D. Klavana, J. Chaouki, D. Kusohorski, C. Chavarie, G.M. Pajonk, Catalytic storage of hydrogen: Hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions, Appl. Catal., 42, 121 (1988)Google Scholar
  20. 20.
    M. Astier, A. Bertrand, S.J. Teichner, Activité, dans l’hydrogénation du benzène, de catalyseurs au platine déposé sur dioxyde de molybdène, Bull. Soc. Chim. Fr., 218 (1980)Google Scholar
  21. 21.
    J.N. Armor, E.J. Carlson, P.M. Zambri, Aerogels as hydrogenation catalysts, Appl. Catal., 19, 339 (1985)Google Scholar
  22. 22.
    M. Lacroix, G. Pajonk, S.J. Teichner, Activation for catalytic reactions of the silica gel by hydrogen spillover, in: Studies in Surface Science and Catalysis, volume 7, New Horizons in Catalysis, T. Seiyama, K. Tanabe (eds.), Elsevier Amsterdam, 279 (1981)Google Scholar
  23. 23.
    G.E.E. Gardes, G.M. Pajonk, S.J. Teichner, Préparation et propriétés des aerogels d’oxydes minéraux simples ou mixtes contenant le nickel métallique, Bull. Soc. Chim. Fr., 1327 (1976)Google Scholar
  24. 24.
    M. Astier, A. Bertrand, S.J. Teichner, Catalyseurs à base de dioxyde de molybdène sur nickel Mond et leur activité dans l’hydrogénation du benzène, Bull. Soc. Chim. Fr., 191 (1980)Google Scholar
  25. 25.
    G. Pajonk, M.B. Taghavi, S.J. Teichner, Nouveau catalyseur au cuivre pour l’hydrogénation sélective en phase gazeuse du cyclopentadiène en cyclopentène, Bull. Soc. Chim. Fr., 983 (1975)Google Scholar
  26. 26.
    M. Machida, K. Eguchi, H. Arai, Preparation of heat resistant ceramic support with large surface area from composite alkoxides, Chem. Letters (Japan), 1993 (1986)Google Scholar
  27. 27.
    M. Machida, K. Eguchi, H. Arai, High Temperature catalytic combustion over cation-substituted barium hexaaluminates, Chem. Letters (Japan), 767 (1987)Google Scholar
  28. 28.
    A. Dyer, An Introduction to zeolite molecular sieves, Wiley, Chichester (1988)Google Scholar
  29. 29.
    A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 97, 2373 (1997)CrossRefGoogle Scholar
  30. 30.
    A. Corma, M.S. Grande, V. Gonzales-Alfaro, A.V Orchilles, Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite, J. Catal., 159, 375 (1996)CrossRefGoogle Scholar
  31. 31.
    A. Corma, M. Iglesias, F. Sanchez, Large pore bifunctional titanium-aluminosilicates: the inorganic non-enzymatic version of the epoxidase conversion of linalool to cyclic ethers, J. chem. Snc Chem. Commun.. 1635 (1995)Google Scholar
  32. 32.
    T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 378, 159 (1995)CrossRefGoogle Scholar
  33. 33.
    R. Burch, N. Cruise, D. Gleeson, S.Ch. Tsang, Surface-grafted manganese-oxo species on the walls of MCM-41 channels-a novel oxidation catalyst, J. Chem. Soc. Chem. Commun., 951 (1996)Google Scholar
  34. 34.
    A. Corma, M. Iglesias, C. del Pinto, F. Sanchez, New Rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes, J. Chem. Soc. chem. Commun., 1253 (1991)Google Scholar
  35. 35.
    S. Braun, D. Avnir, To our readers, J. Sol Gel Science and Technology, 7, 5 (1996)CrossRefGoogle Scholar
  36. 36.
    M. T. Reetz, A. Zonta, J. Simpelkamp, Efficient immobilization of lipases by entrapment in hydrolytic sol-gel materials, Biotech. and Bioeng., 49, 527 (1996)CrossRefGoogle Scholar
  37. 37.
    P. Audebert, C. Sanchez, Modified electrodes from hydrophobic alkoxide silica gels — insertion of electroactive compounds and glucose oxidase, J. Sol Gel Science and Technology, 2, 809 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • A. Pierre

There are no affiliations available

Personalised recommendations