Skip to main content

Abstract

In terms of chemical reaction kinetics, the efficiency of a catalyst can be characterized by its selectivity for a given product and its activity [1]. The activity refers to the rate at which it makes a reaction proceeds towards chemical equilibrium. It can be expressed as the number of reacted molecules per unit time and per active site, known as the turnover number. The selectivity measures the extent to which a catalyst accelerates the formation of a given product. It is defined as the percentage of the consumed reactant which is transformed to the desired product. Depending on the type of reaction being considered, a catalyst may be useful for its activity, its selectivity or both. If several products can possibly be formed, the selectivity is often the more important property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd Edition, McGraw-Hill, New-York (1990).

    Google Scholar 

  2. G.M. Paionk, Aerogels catalysts, Applied Catalysis, 72, 217 (1991)

    Article  Google Scholar 

  3. D.A. Ward, E.I. Ko, Preparing catalytic materials by the Sol-Gel Method, I & EC Research, 34, 421 (1995)

    CAS  Google Scholar 

  4. M.A. Cauqui, J.M. Rodriguez-Izquierdo, Application of the sol-gel methods to catalyst preparation, J. of Non-Cryst. Solids, 147&148, 724 (1992)

    Article  Google Scholar 

  5. T. Lopez, J. Navarette, R. Gomez, O. Novaro, F. Figueras, H. Armendariz, Preparation of sol-gel sulfated ZrO2-SiO2 and characterization of its surface acidity, Appl. Catalysis A: general, 125, 217 (1995)

    Article  CAS  Google Scholar 

  6. H. Kochkar, F. Figueras, Synthesis of hydrophobic TiO2-SiO2 mixed oxides for the epoxidation of cyclohexene, J. of Catalysis, 171, 420 (1997)

    Article  CAS  Google Scholar 

  7. P. Mars, D.W. van Krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sei., Special Supplement, 3, 41 (1954)

    CAS  Google Scholar 

  8. Z. Paal, P.G. Menon, Hydrogen effect in catalysis, Marcel Dekker, New-York (1988)

    Google Scholar 

  9. G.A. Nicolaon, S.J. Teichner, Sur une nouvelle méthode de préparation de xérogels et d’aérogels de silice et leurs propriétés texturales, Bull. Soc. Chim. Fr., 1900 (1968); and Préparation des aérogels de silice à partir d’orthosilicate de méthyle en milieu alcoolique et leurs propriétés, Bull. Soc. Chim. Fr, 1906 (1968)

    Google Scholar 

  10. R.T.K. Baker, S.J. Tauster, J.A. Dumesic, Strong metal-support interactions, American Chemical Symposium Series, 298 (1986)

    Book  Google Scholar 

  11. R.A. Caruso, M. Antonietti, M. Giersig, S.P. Hentze, J.G. Jia, Modification of TiO2 network structure using a polymer coating technique, Chem. of Mater., 13, 1114 (2001)

    Article  CAS  Google Scholar 

  12. M. Astier, A. Bertrand, D. Bianchi, A. Chenard, G.E.E. Gardes, G. Pajonk, M.B. Taghavi, S.J. Teichner, B. Villemin, in: Studies in Surface Science and Catalysis, Preparation of Catalysts, B. Delmon, P.A. Jacobs, G. Poncelet, (eds.), 1, 315 (1976)

    Google Scholar 

  13. G. Matis, F. Juillet, S.J. Teichner, Oxydation catalytique ménagée des paraffines de catalyseurs à base d’oxyde de nickel — Séléctivité de l’oxydation partielle de l’isobutane et du propane, Bull. Soc. Chim. Fr., 1633 (1976)

    Google Scholar 

  14. R.J. Willey, H. Lai, J.B. Peri, Investigation of iron oxide-chromia-alumina aerogels for the selective catalytic reduction of nitric oxide by ammonia, J. Catal., 130, 319 (1991)

    Article  CAS  Google Scholar 

  15. A.J. Fanelli, J.V. Burlew, G.B. Marsh, The polymerization of ethylene over TiCl4 supported on alumina aerogels: Low pressure results, J. Catal., 116, 318 (1988)

    Article  Google Scholar 

  16. F. Blanchard, B. Pommier, J.P. Reymond, S.J. Teichner, On the mechanism of the FischerTropsch synthesis involving unreduced iron catalyst, J. Mol. Catal., 17, 171 (1982)

    Article  CAS  Google Scholar 

  17. F. Blanchard, B. Pommier, J.P. Reymond, S.J. Teichner, New Fischer-Tropsch catalysts of the aerogel type, in: Studies in Surface Science and Catalysis, volume 16, Preparation of Catalysts III, G. Poncelet, P. Grange, P.A. Jacobs (editors), 395 (1983)

    Google Scholar 

  18. M.B. Taghavi, G.M. Pajonk, S.J. Teichner, On the structure-sensitive and structure-insensitive catalytic reactions and their new characteristics demonstrated with copper-supported attalysts, J. Colloid Interface Sei., 71, 451 (1979)

    Article  CAS  Google Scholar 

  19. D. Klavana, J. Chaouki, D. Kusohorski, C. Chavarie, G.M. Pajonk, Catalytic storage of hydrogen: Hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions, Appl. Catal., 42, 121 (1988)

    Google Scholar 

  20. M. Astier, A. Bertrand, S.J. Teichner, Activité, dans l’hydrogénation du benzène, de catalyseurs au platine déposé sur dioxyde de molybdène, Bull. Soc. Chim. Fr., 218 (1980)

    Google Scholar 

  21. J.N. Armor, E.J. Carlson, P.M. Zambri, Aerogels as hydrogenation catalysts, Appl. Catal., 19, 339 (1985)

    CAS  Google Scholar 

  22. M. Lacroix, G. Pajonk, S.J. Teichner, Activation for catalytic reactions of the silica gel by hydrogen spillover, in: Studies in Surface Science and Catalysis, volume 7, New Horizons in Catalysis, T. Seiyama, K. Tanabe (eds.), Elsevier Amsterdam, 279 (1981)

    Google Scholar 

  23. G.E.E. Gardes, G.M. Pajonk, S.J. Teichner, Préparation et propriétés des aerogels d’oxydes minéraux simples ou mixtes contenant le nickel métallique, Bull. Soc. Chim. Fr., 1327 (1976)

    Google Scholar 

  24. M. Astier, A. Bertrand, S.J. Teichner, Catalyseurs à base de dioxyde de molybdène sur nickel Mond et leur activité dans l’hydrogénation du benzène, Bull. Soc. Chim. Fr., 191 (1980)

    Google Scholar 

  25. G. Pajonk, M.B. Taghavi, S.J. Teichner, Nouveau catalyseur au cuivre pour l’hydrogénation sélective en phase gazeuse du cyclopentadiène en cyclopentène, Bull. Soc. Chim. Fr., 983 (1975)

    Google Scholar 

  26. M. Machida, K. Eguchi, H. Arai, Preparation of heat resistant ceramic support with large surface area from composite alkoxides, Chem. Letters (Japan), 1993 (1986)

    Google Scholar 

  27. M. Machida, K. Eguchi, H. Arai, High Temperature catalytic combustion over cation-substituted barium hexaaluminates, Chem. Letters (Japan), 767 (1987)

    Google Scholar 

  28. A. Dyer, An Introduction to zeolite molecular sieves, Wiley, Chichester (1988)

    Google Scholar 

  29. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 97, 2373 (1997)

    Article  CAS  Google Scholar 

  30. A. Corma, M.S. Grande, V. Gonzales-Alfaro, A.V Orchilles, Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite, J. Catal., 159, 375 (1996)

    Article  CAS  Google Scholar 

  31. A. Corma, M. Iglesias, F. Sanchez, Large pore bifunctional titanium-aluminosilicates: the inorganic non-enzymatic version of the epoxidase conversion of linalool to cyclic ethers, J. chem. Snc Chem. Commun.. 1635 (1995)

    Google Scholar 

  32. T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 378, 159 (1995)

    Article  CAS  Google Scholar 

  33. R. Burch, N. Cruise, D. Gleeson, S.Ch. Tsang, Surface-grafted manganese-oxo species on the walls of MCM-41 channels-a novel oxidation catalyst, J. Chem. Soc. Chem. Commun., 951 (1996)

    Google Scholar 

  34. A. Corma, M. Iglesias, C. del Pinto, F. Sanchez, New Rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes, J. Chem. Soc. chem. Commun., 1253 (1991)

    Google Scholar 

  35. S. Braun, D. Avnir, To our readers, J. Sol Gel Science and Technology, 7, 5 (1996)

    Article  Google Scholar 

  36. M. T. Reetz, A. Zonta, J. Simpelkamp, Efficient immobilization of lipases by entrapment in hydrolytic sol-gel materials, Biotech. and Bioeng., 49, 527 (1996)

    Article  CAS  Google Scholar 

  37. P. Audebert, C. Sanchez, Modified electrodes from hydrophobic alkoxide silica gels — insertion of electroactive compounds and glucose oxidase, J. Sol Gel Science and Technology, 2, 809 (1994)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pierre, A. (2004). Catalysts. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics