Incorporation of dyes in sol-gel matrices

  • B. Dunn
  • J. Zink


The sol-gel process is based on the hydrolysis and condensation of molecular precursors, such as metal alkoxides, and enables one to prepare transparent, inorganic amorphous solids at ambient temperatures. The ambient temperatures also enable one to incorporate numerous organic, organometallic and even biological molecules within these sol-gel derived matrices. The resulting properties of the material, whether it be as a monolith, a film, a fiber or a powder, are determined by the nature of the dopant molecules. This synthetic approach is well recognized as an important direction for the design and synthesis of a wide range of novel materials, especially in the areas of photonics and chemical sensors.


Reverse Saturable Absorption Excimer Emission Dopant Molecule Azobenzene Derivative Photochromic Molecule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Dunn, J.I. Zink, Probes of pore environment and molecule — matrix interactions in sol-gel materials, Chem. Mater., 9, 2280 (1997)CrossRefGoogle Scholar
  2. 2.
    See for example, Sol-Gel Optics V, ed. by B. Dunn, E. Pope, H. Schmidt, M. Yamane, Proc SPIE, volume 3943 and earlier volumes in this seriesGoogle Scholar
  3. 3.
    V.R. Kaufman, D. Avnir, D. Pines-Rojanski, D. Huppert, Water consumption during the early stages of the sol-gel tetramethylorthosilicate polymerization as probed by excited state proton transfer, J. Non-Cryst. Solids, 99, 379 (1988)CrossRefGoogle Scholar
  4. 4.
    J.C. Pouxviel, B. Dunn, J.I. Zink, Fluorescence study of aluminosilicate sols and gels doped with hydroxy trisulfonated pyrene, J. Phys. Chem., 93, 2134 (1989)CrossRefGoogle Scholar
  5. 5.
    F. Nishida, J.M. McKiernan, B. Dunn, J.I. Zink, C.J. Brinker, A. J. Hurd, In situ fluorescence probing of the chemical changes during sol-gel thin film formation, J. Am. Ceram. Soc., 78, 1640 (1995)Google Scholar
  6. 6.
    K. Matsui, T. Nakazawa, Fluorescence probes of pyrene and pyrene-3-carboxaldehyde for the sol-gel process, Bull. Chem. Soc. Jpn., 63, 11 (1990)CrossRefGoogle Scholar
  7. 7.
    K. Matsui, T. Nakazawa, H. Morisaki, Micellar formation of sodium dodecyl sulfate in sol-gel glasses probed by pyrene fluorescence, J. Phys. Chem., 95, 976 (1991)CrossRefGoogle Scholar
  8. 8.
    R.C. Chambers, Y. Haruvy, M.A. Fox, Excited state dynamics in the structural characterization of solid alkyltrimethoxysilane-derived sol-gel films and glasses containing bound or unbound chromophores, Chem. Mater., 6, 1351 (1994)CrossRefGoogle Scholar
  9. 9.
    K. Matsui, M. Tomonaga, Y. Arai, H. Satoh, M. Kyoto, Fluorescence of pyrene in sol-gel silica derived from triethoxysilane, J. Non-Cryst. Solids, 169, 295 (1994)CrossRefGoogle Scholar
  10. 10.
    C. Rottman, G.S. Grader, Y. DeHazan, D. Avnir, Sol-gel entrapment of E(30) in ormosils. Interfacial polarity-fractility correlation, Langmuir, 12, 5505 (1996)CrossRefGoogle Scholar
  11. 11.
    O. Lev, M. Tsionsky, L. Rabinovich, V. Gletzer, S. Sampath, I. Pankratove, J. Gun, Organically modified so-gel sensors, Anal. Chem., 67, 22A (1995)Google Scholar
  12. 12.
    R. Winter, D. Hua, X. Song, W. Mantulin, J. Jonas, Structural and dynamical properties of the sol-gel transition, J. Phys. Chem., 94, 2706 (1990)CrossRefGoogle Scholar
  13. 13.
    U. Narang, R. Wang, P.N. Prassad, F. V. Bright, Effects of aging on the dynamics of rhodamine6G in tetramethyl orthosilicate-derived sol-gels, J. Phys. Chem., 98, 17 (1994)CrossRefGoogle Scholar
  14. 14.
    U. Narang, J. Jordan, F.V. Bright, P.N. Prassad, Probing the cybotactic region of prodan in tetramethyl orthosilicate-derived sol-gels, J. Phys. Chem., 98, 8101 (1994)CrossRefGoogle Scholar
  15. 15.
    D. L’Esperance, E.L. Chronister, Electronic energy transfer and trapping in quinizarin doped aluminosilicate sol-gel glasses, Chem. Phys. Lett., 222, 217 (1994)CrossRefGoogle Scholar
  16. 16.
    D. L’Esperance, E.L. Chronister, Rotational dynamics of quinizarin in silicate and aluminosilicate solutions, gels, and glasses, Chem. Phys. Lett., 201, 229 (1993)CrossRefGoogle Scholar
  17. 17.
    D. L’Esperance, E.L. Chronister, Optical energy transfer in quinizarin doped sol-gel glasses, J. Opt. Soc. Am. B, 9, 2041 (1992)CrossRefGoogle Scholar
  18. 18.
    M.H. Huang, H.M. Soyez, B. Dunn, J.I. Zink, In situ fluorescence probing of molecular mobility and chemical changes during formation of dip-coated sol-gel silica thin films, Chem. Mater., 12, 231 (2000)Google Scholar
  19. 19.
    J. McKiernan, J.C. Pouxviel, B. Dunn, J.I. Zink, Study of aluminosilicate sols and gels doped with hydroxy trisulfonates, J. Phys. Chem., 93, 2129 (1989)CrossRefGoogle Scholar
  20. 20.
    S.D. Hanna, B. Dunn, J.I. Zink, The use of the rigidochromism of ReCl(CO)3–2,2’-bipyridine as a probe of gelation, aging and drying in sol-gel-derived ormosils, J. Non-Cryst. Solids, 167, 239 (1994)CrossRefGoogle Scholar
  21. 21.
    M. Ueda, H.-B. Kim, T. Ideda, K. Ichimura, Photoisomerization of an azobenzene in sol-gel glass films, Chem. Mater., 4, 1229 (1992)CrossRefGoogle Scholar
  22. 22.
    M. Ueda, H.-B. Kim, T. Ideda and K. Ichimura, Photoisomerizability of an azobezene covalently attached to silica-gel matrix, J. Non-Cryst. Solids, 163, 125 (1993)CrossRefGoogle Scholar
  23. 23.
    M. Ueda, H.-B. Kim, K. Ichimura, Photochemical and thermal isomerization of azobenzene derivatives in sol-gel bulk materials, Chem. Mater., 6, 1771 (1994)CrossRefGoogle Scholar
  24. 24.
    V.R. Kautman, D. Avnir, Structural changes along the sol-gel-xerogel transition in silica as probed by pyrene excited-state emission, Langmuir, 2, 717 (1986)CrossRefGoogle Scholar
  25. 25.
    U. Narang, F.V. Bright, Conformational flexibility of 1,3-Bis(1-pyrenyl)propane throughout the sol-gel to xerogel process, Chem. Mater., 8, 1410 (1996)CrossRefGoogle Scholar
  26. 26.
    M. Ueda, H.-B. Kim, T. Ideda, K. Ichimura, Photochemical behaviour of tethered dianthryl compounds in sol-gel glass, J. Mater. Chem., 5, 889 (1995)CrossRefGoogle Scholar
  27. 27.
    D. Levy, D. Avnir, The effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behaviour of trapped spiropyranes, J. Phys. Chem., 92, 4734 (1988)CrossRefGoogle Scholar
  28. 28.
    D. Levy, S. Einhorn, D. Avnir, Applications of the sol-gel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms, J. Non-Cryst. Solids, 113, 137 (1989)CrossRefGoogle Scholar
  29. 29.
    D. Preston, J.C. Pouxviel, T. Novinson, W.Kaska, B. Dunn, J.I. Zink, Effects of the changes in the properties of silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans, J. Phys. Chem., 94, 4167 (1990)CrossRefGoogle Scholar
  30. 30.
    M. Ueda, H.-B. Kim, K. Ichimura, Photocontrolled aggregation of colloidal silica, J. Mater. Chem., 4, 883 (1994)CrossRefGoogle Scholar
  31. 31.
    B. Dunn, J.I. Zink, Optical properties of sol-gel glasses doped with organic molecules, J. Mater. Chem., 1, 903 (1991)CrossRefGoogle Scholar
  32. 32.
    Y. Kobayashi, Y. Kurokawa, Y. Imai, S. Muto, A transparent alumina film doped with laser dye and its emission properties, J. Non-Cryst. Solids, 105, 198 (1988)CrossRefGoogle Scholar
  33. 33.
    F. Salin, G. LeSaux, P. Georges, A. Brun C. Bagnall, J. Zarzycki, Efficient tunable solid-state laser around 630 nm using sulforhodamine 640 doped silica-gel, Opt. Letts., 14, 785 (1989)CrossRefGoogle Scholar
  34. 34.
    R. Reisfeld, D. Brusilovsky, M. Eyal. E. Miron, Z. Burstein J. Ivri, A new solid-state tunable laser in the visible, Chem. Phys. Letts., 160, 43 (1989)CrossRefGoogle Scholar
  35. 35.
    J.M. McKiernan, S.A. Yamanaka, B. Dunn, J.I. Zink, Spectroscopy and laser action of rhodamine 6G doped aluminosilicate xerogels, J. Phys. Chem., 94, 5652 (1990)CrossRefGoogle Scholar
  36. 36.
    E.T. Knobbe, B. Dunn, P.D. Fuqua, F. Nishida, Laser behavior and photostability characteristics of organic dye doped silicate gel materials, Appl. Optics, 29, 2729 (1990)CrossRefGoogle Scholar
  37. 37.
    M.D. Rahn, T.A. King, Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media, Appl. Optics, 34, 8260 (1995)Google Scholar
  38. 38.
    M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, J.-P. Boilot, Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels, Appl. Optics., 36, 6760 (1997)Google Scholar
  39. 39.
    T.G. Pavlopoulos, J.H. Boyer, M. Shah, K. Thangaraj, M-L. Soong, Laser action from 2,6,8position trisubstituted 1,3,5,7-tetramethyl-pyrromethene-BF2 complexes: part 1, Appl. Optics., 29, 3885 (1990)Google Scholar
  40. 40.
    R.E. Hermes, T.H. Allik, S. Chandra, J.A. Hutchinson, High-efficiency pyrromethene doped solid-state dye lasers, Appl. Phys. Lett., 63, 877 (1993)Google Scholar
  41. 41.
    B. Dunn, F. Nishida, R. Toda, J.I. Zink, T.H. Allik, S. Chandra, J.A. Hutchinson, Advances in dyedoped sol-gel lasers, Mat. Res. Soc. Symp. Proc., 329, 267 (1994)Google Scholar
  42. 42.
    E. Yariv, R. Reisfeld, Laser properties of pyrromethene dyes in sol-gel glasses, Opt. Maters., 13, 49 (1999)CrossRefGoogle Scholar
  43. 43.
    L.R. Dalton, W.H. Steier, B.H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, A. Jen, From molecules to opto-chips: organic electro-optic materials, J. Mater. Chem., 9, 1905 (1999)CrossRefGoogle Scholar
  44. 44.
    C. Sanchez, F. Ribot, B. Lebeau, Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry, J. Mater. Chem., 9, 35 (1999)CrossRefGoogle Scholar
  45. 45.
    P. Griesmar, C. Sanchez, G. Pucetti, I. Ledoux and J. Zyss, Second-harmonic generation from organic-molecules incorporated in sol-gel matrices, Mol. Eng., 1, 205 (1991)CrossRefGoogle Scholar
  46. 46.
    H. Hayashi, H. Nakayama, O. Sugihara, N. Okamoto, Thermally stable and large second-order nonlinearity in poled silica films doped with disperse red 1 in high concentration, Opt. Lett., 20, 2264 (1996)CrossRefGoogle Scholar
  47. 47.
    B. Lebeau, C. Sanchez, S. Brasselet, Design, characterization and processing of hybrid organicinorganic coatings with very high second-order optical nonlinearities, J. Zyss, Chem. Mater., 9, 1012 (1997)CrossRefGoogle Scholar
  48. 48.
    H. K Kim, SJ. Kang, S.K. Choi, Y.H. Min, C.S. Yoon, Highly efficient organic/inorganic hybrid nonlinear optic materials via sol-gel process: synthesis, optical properties, and photobleaching for channel waveguides, Chem. Mater., 11, 779 (1999)CrossRefGoogle Scholar
  49. 49.
    Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, Low (sub-1 volt) halfwave voltage polymeric electrooptic modulators achieved by control of chromophore shape, Science, 288, 119 (2000)CrossRefGoogle Scholar
  50. 50.
    F. Bentivegna, M. Canve, P. Georges, A. Brun, F. Chaput, L. Mailer, J.-C. Boilot, Reverse saturable absorption in solid xerogel matrices, Appl. Phys. Lett., 62, 1721 (1993)CrossRefGoogle Scholar
  51. 51.
    P.D. Fuqua, K. Mansour, D. Alvarez, S.R. Marder, J.W. Perry , B. Dunn, Synthesis and nonlinear optical properties of sol-gel materials containing phthalocyanines, Proc SPIE, 1758, Sol-Gel Optics II, J.D. Mackenzie (ed.), 499 (1992)Google Scholar
  52. 52.
    J. Schell, D. Brinkmann, D. Ohlmann, B. Hönerlage, R. Levy, M. Joucla, J.L. Rehspringer, J. Serughetti, C. Bovier, Optical limiting properties and dynamics of induced absorption in C60doped solid xerogel matrices, J. Chem. Phys., 108, 8599 (1998)CrossRefGoogle Scholar
  53. 53.
    D. Felder, D. Guillon, R. Levy, A. Mathis, .1.F. Nicoud, J.F. Nierengarten, J.L. Rehspringer, J. Schell, A water soluble methanofullerene derivative: synthesis, miscellar aggregation in aqueous solutions, and incorporation in sol-gel glasses for optical limiting applications, J. Mater. Chem., 10, 887 (2000)CrossRefGoogle Scholar
  54. 54.
    D. Levy, D. Avnir, The effects of the changes in. the properties of silica cage along the gel/xerogel transition on the photochromic behaviour of trapped spiropyranes, J. Phys. Chem., 92, 734 (1988)CrossRefGoogle Scholar
  55. 55.
    L. Hou, B. Hoffman, H. Schmidt, M. Mennig, Effect of heat treatment and additives on the photochromic and mechanical properties of sol-gel derived photochromic coatings containing spirooxazine, J. Sol-Gel Sci. and Technology, 8, 923 (1997)Google Scholar
  56. 56.
    J. Biteau, F. Chaput, J.-P. Boilot, Photochromismof spirooxazine-doped gels, J. Phys. Chem. , 100, 9024 (1996)CrossRefGoogle Scholar
  57. 57.
    F. Chaput, K. Lahlil, J. Biteau, J.P. Boilot, B. Darracq, Y. Levy, J. Peretti, V.I. Safarov, J.M. Lehn, A. Fernandez-Acebes, Design of optical components and optical data storage in photochromic sol-gel films containing dithienylethene or azobenzene derivatives, Proc. SPIE, 3943, Sol-Gel Optics V, B. Dunn, E. Pope, H. Schmidt, M. Yamane (eds.), 32 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • B. Dunn
  • J. Zink

There are no affiliations available

Personalised recommendations