Skip to main content

Aerogels for Thermal Insulation

  • Chapter

Abstract

The characteristic feature of aerogels which makes them suitable as efficient thermal insulations is their microporosity. Pore diameters within the aerogel structure in the range of 50 to 100 nm limit the mean free path of air molecules. Even at ambient air pressure the gaseous thermal conductivity within the aerogels is thus considerably lower than the conductivity of free air (0.026 W/mK). Fig. 1 depicts the variation of the thermal conductivity of a monolithic silica aerogel with the internal gas pressure [1] in comparison with an aerogel powder. The thermal conductivity of the monolithic aerogel is around 0.018 W/mK at ambient pressure (1 bar). When the sample is evacuated to pressures below 10 mbar, the gaseous conductivity is 0.007 W/mK.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Heinemann, R. Caps, Radiation-conduction interaction: an investigation on silica aerogel, Int. J. Heat Mass Transfer, 39, 2115 (1996)

    Article  CAS  Google Scholar 

  2. X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, Correlation between structure and thermal conductivity of organic aerogels, J. Non-Crystalline Solids, 188, 226 (1995)

    Article  CAS  Google Scholar 

  3. O. Nilsson, A. Fransson, O. Sandberg, Thermal Properties of Silica Aerogels, in: Aerogels, J. Fricke (editor), Springer-Verlag Berlin Heidelberg (1986)

    Google Scholar 

  4. X. Lu, P. Wang, M.C. Arduini-Schuster, J. Kuhn, D. Büttner, O. Nilsson, U. Heinemann, J. Fricke, Thermal Transport in Organic and Opacified Silica Monolithic Aerogels, J. NonCrystalline Solids, 145, 207 (1992)

    Article  CAS  Google Scholar 

  5. F. Hümmer, X. Lu, T. Rettelbach, J. Fricke, Heat Transfer in Opacified Aerogel Powders, J. Non-Crystalline Solids, 145, 211 (1992)

    Article  Google Scholar 

  6. Special Report “Innovative Heat Insulation with Aerogels”, HOECHST AG / Frankfurt (1997)

    Google Scholar 

  7. P.O. Braun, A. Goetzberger, J. Schmid, W. Stahl, Solar Energy, 49, 413 (1992)

    Article  CAS  Google Scholar 

  8. W. Zobel, R. Strähle, Heat Storage Battery for Car Application, in: Proc. Vehicle Thermal Management Systems Conf., London Institution of Mechanical Engineers, 379 (1995)

    Google Scholar 

  9. R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke, Structure of Carbon Aerogels Near the Gelation Limit of the Resorcinol-Formaldehyde Precursor, J. Non-Cryst. Solids, 225, 41 (1998)

    Article  CAS  Google Scholar 

  10. G. Biesmans, D. Randall, E. Francais, M. Perrut, Polyurethane-based Organic Aerogels Thermal Performance, J. Non-Cryst. Solids, 225, 36 (1998)

    Article  CAS  Google Scholar 

  11. J. Fricke, T. Tillotson, Aerogels: Production, Characterization and Applications, Thin Solid Films, 297, 212 (1997)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caps, R., Fricke, J. (2004). Aerogels for Thermal Insulation. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics