The characteristic feature of aerogels which makes them suitable as efficient thermal insulations is their microporosity. Pore diameters within the aerogel structure in the range of 50 to 100 nm limit the mean free path of air molecules. Even at ambient air pressure the gaseous thermal conductivity within the aerogels is thus considerably lower than the conductivity of free air (0.026 W/mK). Fig. 1 depicts the variation of the thermal conductivity of a monolithic silica aerogel with the internal gas pressure [1] in comparison with an aerogel powder. The thermal conductivity of the monolithic aerogel is around 0.018 W/mK at ambient pressure (1 bar). When the sample is evacuated to pressures below 10 mbar, the gaseous conductivity is 0.007 W/mK.


Effective Thermal Conductivity Silica Aerogel Carbon Aerogel Heat Transfer Mode Gaseous Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Heinemann, R. Caps, Radiation-conduction interaction: an investigation on silica aerogel, Int. J. Heat Mass Transfer, 39, 2115 (1996)CrossRefGoogle Scholar
  2. 2.
    X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, Correlation between structure and thermal conductivity of organic aerogels, J. Non-Crystalline Solids, 188, 226 (1995)CrossRefGoogle Scholar
  3. 3.
    O. Nilsson, A. Fransson, O. Sandberg, Thermal Properties of Silica Aerogels, in: Aerogels, J. Fricke (editor), Springer-Verlag Berlin Heidelberg (1986)Google Scholar
  4. 4.
    X. Lu, P. Wang, M.C. Arduini-Schuster, J. Kuhn, D. Büttner, O. Nilsson, U. Heinemann, J. Fricke, Thermal Transport in Organic and Opacified Silica Monolithic Aerogels, J. NonCrystalline Solids, 145, 207 (1992)CrossRefGoogle Scholar
  5. 5.
    F. Hümmer, X. Lu, T. Rettelbach, J. Fricke, Heat Transfer in Opacified Aerogel Powders, J. Non-Crystalline Solids, 145, 211 (1992)CrossRefGoogle Scholar
  6. 6.
    Special Report “Innovative Heat Insulation with Aerogels”, HOECHST AG / Frankfurt (1997)Google Scholar
  7. 7.
    P.O. Braun, A. Goetzberger, J. Schmid, W. Stahl, Solar Energy, 49, 413 (1992)CrossRefGoogle Scholar
  8. 8.
    W. Zobel, R. Strähle, Heat Storage Battery for Car Application, in: Proc. Vehicle Thermal Management Systems Conf., London Institution of Mechanical Engineers, 379 (1995)Google Scholar
  9. 9.
    R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke, Structure of Carbon Aerogels Near the Gelation Limit of the Resorcinol-Formaldehyde Precursor, J. Non-Cryst. Solids, 225, 41 (1998)CrossRefGoogle Scholar
  10. 10.
    G. Biesmans, D. Randall, E. Francais, M. Perrut, Polyurethane-based Organic Aerogels Thermal Performance, J. Non-Cryst. Solids, 225, 36 (1998)CrossRefGoogle Scholar
  11. 11.
    J. Fricke, T. Tillotson, Aerogels: Production, Characterization and Applications, Thin Solid Films, 297, 212 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • R. Caps
  • J. Fricke

There are no affiliations available

Personalised recommendations