Photovoltaic Coatings

  • C. J. Barbé
  • J. R. Bartlett


Photovoltaic devices commonly known as solar cells convert light to electricity. Traditional solid-state photovoltaic devices are based on p-n junctions in crystalline silicon and related intrinsic semiconductors. Electrons and holes, created by the absorption of light by the semiconductor, diffuse through the p and n regions before being harvested by electrodes on the outside of the cell. The semiconductor simultaneously absorbs photons and separates the electric charges. To minimize recombination between the holes and electrons (i.e. ensuring high conversion efficiency) the semiconductor material has to be of very high purity and defect-free. In practice, this is achieved by using silicon single crystal wafers. The use of such wafers and the associated production technology result in substantial production costs, limiting the widespread uptake of this intrinsically renewable energy source. In contrast, dye-sensitized solar cells (DYSC), such as those developed by Graetzel at EPFL [1], work on a drastically different principle inspired by natural photosynthesis. Such cells employ an organic dye to harvest incident photons, as well as a “multi-layer” strategy to enhance the conversion efficiencies.


Solar Cell Transparent Conducting Oxide Injection Efficiency Silicon Single Crystal Wafer Surface Photovoltage Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Scholar
  2. 2.
    J. M. Stipkala, F. N. Castellano, T.A. Heimer, C.A. Kelly, K.J.T. Livi, G.J. Meyer, Light induced charge separation at sensitized sol-gel processed semiconductors, Chemistry of Materials, 9, 2341 (1997)CrossRefGoogle Scholar
  3. 3.
    Y. Tachiniba, J.E. Moser, M. Graetzel, D.R. Klug, J.R. Durrant, Sub-picosecond interfacial charge separation in dye sensitized nanocrystalline titanium dioxide films, J. of Physical Chemistry, 100, 20056 (1996)CrossRefGoogle Scholar
  4. 4.
    C. Barbé, P. Bonhote, M. Graetzel, La vitre Panneau Solaire, Verre, 3(2). 3 (1997)Google Scholar
  5. 5.
    C. Von Planta, PhD Thesis #1537 EPFL, Die photoelektrische Charakterisierung der mit Farbstoff sensibilisierten nanokristallinen Solarzellen (1996)Google Scholar
  6. 6.
    G.P. Smestad, M. Graetzel, Demonstrating electron transfer and nanotechnology: a natural dye sensitized nanocrystalline energy transfer, J. Chem. Educ., 75. 752 (1998)CrossRefGoogle Scholar
  7. 7.
    J.H. Braun, Titanium dioxide — a review, Journal of Coatings Technology, 69 (868). 59 (1997)CrossRefGoogle Scholar
  8. 8.
    F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Graetzel, D. Gal, S. Ruhle, D. Cahhen, Surface photovoltage spectroscopy of dye sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states, Journal of Physical-Chemistry B. 105. 6347 (2001)CrossRefGoogle Scholar
  9. 9.
    A. Kay, PhD Thesis # 1214, Ecole Polytechnique Federale de Lausanne, Switzerland. Solar cells based on dye sensitized nanocrystalline TiO, electrodes. 27 (1994)Google Scholar
  10. 10.
    N. Vlachopoulos, P. Liska, J. Augustinski, M. Graetzel, Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films Journal of the American Chemical Society, 110, 1216 (1988)Google Scholar
  11. 11.
    B. O’Regan, M. Graetzel, Low cost high efficiency solar cells based on dye sensitized colloidal TiO2 films, Nature, 533. 737 (1991)CrossRefGoogle Scholar
  12. 12.
    M. Graetzel, M.K. Nazeeruddin, B. O’Regan, Photovoltaic Cells, Patent WO 9116719 (1991)Google Scholar
  13. 13.
    C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, Nanocrystalline TiO2 electrodes for photovoltaic applications, Journal of the American Ceramics Society, 12. 3157 (1997)Google Scholar
  14. 14.
    W. W. So, S.B. Park, K.J. Kim, S.J. Moon, Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titania sol, Journal of Colloid and Interface Science, 191 (2). 398 (1997)CrossRefGoogle Scholar
  15. 15.
    S. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks, M. Graetzel, Self organization of TiO2 nanoparticles in thin films, Chemistry of Materials, 10(9). 2419 (1998)CrossRefGoogle Scholar
  16. 16.
    K. Yanagisawa, Y. Yamamoto, Q. Feng, N. Yamasaki, Formation mechanism of fine anatase crystals from amorphous titania under hydrothermal condition. Journal of Materials Research Society, 13(4). 825 (1998)CrossRefGoogle Scholar
  17. 17.
    Q. W. Chen, Y.T. Qian, Z.Y. Chen, G.I. Zhou, Y.H. Zhang, Preparation of TiO2 powders with diffèrent morphologies by an oxidation hydrothermal combination method. Materials Letters, 22 (1–2). 77 (1995)CrossRefGoogle Scholar
  18. 18.
    L. Kavan, M. Graetzel, J. Rathousky, A Zukal, Nanocrystalline titania electrodes: surface morphology, adsorption and electrochemical properties, Journal of the electrochemical society, 143 (2). 394 (1996)CrossRefGoogle Scholar
  19. 19.
    N. Papageorgiou, C. J. Barbé, M. Graetzel, Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films, Journal of Physical Chemistry B, 102 (21). 4156 (1998)CrossRefGoogle Scholar
  20. 20.
    N: Papageorgiou, M. Graetzel, P.P. Infelta, On the relevance of mass-transport in thin layer nanocrystalline TiO2 films, Solar Energy Materials and Solar Cells, 44. 405 (1996)Google Scholar
  21. 21.
    N. G. Park, J. Van de Lagemaat, A.J. Frank, Comparison of dye sensitized rutile and anatase based TiO2 solar cells, Journal of Physical chemistry B, 104. 8989 (2000)CrossRefGoogle Scholar
  22. 22.
    J. Van de Lagemaat, K.D. Benkstein, A.J. Frank, Relation between particle coordination number and porosity in nanoparticles films: implications to the dye sensitized solar cells, Journal of Physical chemistry B, 105 (50). 12433 (2001)CrossRefGoogle Scholar
  23. 23.
    A. Zaban, S.T. Aruna, S. Tirosh, B.A. Gregg, Y. Mastai, The effect of the preparation conditions of TiO2 colloids on their surface structures, J. Phys Chem B., 104. 4130 (2000)CrossRefGoogle Scholar
  24. 24.
    N. G Park, G. Schlichthorl, J. van de Langemaat, 1 H.M. Cheong, A. Mascarenhas, A. J. Frank, Dye sensitized solar cells: structural and photoelectrochemical characterisation of nanocrystalline electrodes formed from the hydrolysis of TiC14, Journal of Physical Chemistry B, 103. 3308 (1999)CrossRefGoogle Scholar
  25. 25.
    M. Kurth, Solar module, PCT WO 0046860 (2000)Google Scholar
  26. 26.
    M. Graetzel, Perspective for dye sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and Applications, 8. 171 (2000)CrossRefGoogle Scholar
  27. 27. Scholar
  28. 28.
    A. Kay, German Patent P44162472Google Scholar
  29. 29.
    A Kay, M. Graetzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy and Solar Cells, 44. 99 (1996)CrossRefGoogle Scholar
  30. 30.
    S. Burnside, S. Winkel, K. Brooks, V. Shklover, M. Graetzel, A. Hinsch, R. Kinderman, C. Bradbury, A. Hagfeldt, H Pettersson, Deposition and characterisation of screen-printed porous multilaycr thick-film structures from semiconducting and conducting nanomaterials used in photovoltaic devices, Journal of materials science: Materials in Electronic, 11. 355 (2000)CrossRefGoogle Scholar
  31. 31.
    G. Smcstad, C. Bignozzi, R. Argazzi, Testing of dye sensitized TiO2 solar cells 1, Solar Energy Materials and Solar Cells, 32. 259 (1994)CrossRefGoogle Scholar
  32. 32.
    This hook chapter 2.4.2Google Scholar
  33. 33.
    J. S. Reed, in: Principles of ceramic processing edited by Wiley lnterscience 429 (1995)Google Scholar
  34. 34.
    M. Graetzel, Sol-gel processed TiO2 films for photovoltaic Applications, Journal of Sol-gel Science and Technology, 22. 7 (2001)CrossRefGoogle Scholar
  35. 35.
    A. Hinsch, J.M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber, Long term stability of dye sensitized solar cells, Progress in photovoltaics: Research and applications, 9. 425 (2001)CrossRefGoogle Scholar
  36. 36.
    A. Hinsch, M. Wolf, Method of manufacturing a module of photo-electrochemical cells with long term efficiency, Patent WO 9629715 (1996)Google Scholar
  37. 37.
    H. Weller, Quantized semiconductor particles: a novel state of matter for materials science, Advanced Materials, 5. 288 (1993)CrossRefGoogle Scholar
  38. 38.
    D. Grosso, G.J. Soler-Illia, F. Babonneau, C. Sanchez, P.A. Albouy, A. Brunet-Bruneau, A. R. Balkenende, Highly organised mesoporous titania thin films showing mono-oriented 2 Dhexagonal channels, Advanced Materials, 13(14). 1085 (2001)CrossRefGoogle Scholar
  39. 39.
    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Graetzel, Solid state dye sensitized mesoporous TiO2 solar cells with high photon to electron conversion efficiencies, Nature, 395 (8). 583 (1998)CrossRefGoogle Scholar
  40. 40.
    D. Lupo, J. Salbeck, Charge transporting cell for photovoltaic cell German Patent DE 19533850 (1997) and U. Bach, M. Graetzel, J. Salbeck, F. Weisshortel, D. Lupo, Photovoltaic cell with electrolyte redox system of hole conducting compound, German Patent DE 19711713 (1998)Google Scholar
  41. 41.
    M. Graetzel, R. Plass, U. Bach, Solid state p-n heterojunction sensitized photovoltaic solar cell with electron and hole conductors, European Patent Application 1176646 (2002)Google Scholar
  42. 42.
    F. Pichot, J.R. Pitts, B.A. Gregg, Low temperature sintering TiO2 colloids: Application to flexible dye sensitized solar cells, Langmuir, 16. 5626 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • C. J. Barbé
  • J. R. Bartlett

There are no affiliations available

Personalised recommendations