Skip to main content

Abstract

The sol-gel process is based on the hydrolysis and condensation of molecular precursors. These molecular precursors are usually metal alkoxides. However, hydrolyzed metal ions in aqueous solutions exhibit also a sol-gel transition [1]. This technique is very convenient for the synthesis of oxides or multicomponent oxides such as ceramics or glasses. The crystalline structure and the atomic homogeneity can be tailored by controlling the process parameters. Usually, complete crystallized structures are obtained at lower temperatures than those of conventional ceramic processes. The preparation of thin films from sol-gel solutions is today one of the main applications of the sol-gel technique for the deposition of oxides with a wide variety of properties

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988)

    Article  CAS  Google Scholar 

  2. N. F. Mott, Reviews of Modern Physics, 40 (4), 677 (1968)

    Article  CAS  Google Scholar 

  3. D. Adler, Reviews of Modern Physics, 40(4), 714 (1968)

    Article  CAS  Google Scholar 

  4. F. J. Morin. Phys; Rev. Lett., 3, 34 (1959)

    Article  CAS  Google Scholar 

  5. C. H. Greenberg, Thin Solid Films, 110, 73 (1983)

    Article  CAS  Google Scholar 

  6. Y. Takahashi, M. Kanamori, H. Hashimoto, Y. Moritani, and Y. Masuda, J. Mater. Sci., 24, 192 (1989)

    Article  CAS  Google Scholar 

  7. K. R. Speck, H. S. Hu, M. E. Sherwin, R. S. Potember, Thin Solid Films, 165, 317 (1988)

    Article  CAS  Google Scholar 

  8. R. S. Potember, K. R. Speck, Sol-Gel Optics, SPIE, 1328, 364 (1990)

    CAS  Google Scholar 

  9. D. P. Partlow, S. R. Gurkovich, K. C. Radford, L. J. Denes, J. Appl. Phys., 70, 443 (1991)

    Article  CAS  Google Scholar 

  10. O. S. Lu, L. Hou and F. Gan. J. Mater. Sci., 28, 2169 (1993)

    Google Scholar 

  11. G. Guzman, R. Morineau, and J. Livage, J. Mater. Res. Bull., 29, 509 (1994)

    Article  CAS  Google Scholar 

  12. Y. Dachuan, X. Niankan. Z. Jingvu and Z. Xiuling, Mater. Res. Bull., 31(3), 335 (1996)

    Article  Google Scholar 

  13. Deki. S. Aoi and Y. Kaiinami, A, J. Mat. Sci., 32 (16), 4269 (1997)

    Article  Google Scholar 

  14. F. Beteille, J. Livage, J. Sol-Gel Sci. Techn., 13 (1–3), 915 (1998)

    Article  CAS  Google Scholar 

  15. F. Beteille, PhD Thesis, Université Pierre et Marie Curie, France, 1997

    Google Scholar 

  16. W Haidinger and D. Gross, Thin Solid Films, 12, 433 (1972)

    Article  CAS  Google Scholar 

  17. J. C. Lee, G. V. Jorgenson and R. J. Lin, Proc. SPIE, 692, 2 (1986)

    Google Scholar 

  18. P. Jin, M. Tazawa, T. Miki, and S. Tanemura, The 3rd IUMRS-ICAM (Int. Conf. On Advanced Materials) Aug. 31 — 4 Sept., Tokyo, in: Ecomaterial session, KP 57 (1993)

    Google Scholar 

  19. S. M. Babulanam, T. S. Eriksson, G. A. Niklasson and C. G. Granqvist, Solar Energy Mat., 16 (5), 347 (1987)

    Article  CAS  Google Scholar 

  20. K. Kuwabara, S. Ichikawa, and K. Sugiyama, J. Electrochem. Soc., 135, 2432 (1988)

    Article  CAS  Google Scholar 

  21. W. R. Roach, Appl. Phys. Lett., 19, 453 (1971)

    Article  CAS  Google Scholar 

  22. A. W. Smith, Appl. Phys. Lett., 23, 437 (1973)

    Article  CAS  Google Scholar 

  23. D. D. Eden, Opt. Eng., 20, 337 (1981)

    Google Scholar 

  24. M. Fukuma, S. Zembutsu and S. Miyazawa, Appl. Opt., 22 (2), 265 (1983)

    Article  CAS  Google Scholar 

  25. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, Appl. Phys. Lett., 65 (12), 1507 (1994)

    Article  CAS  Google Scholar 

  26. G. Guzman, F. Beteille, R. Morineau, and J. Livage, J. Mat. Chem., 6, 505 (1996)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guzman, G. (2004). Thermochromic Transition-Metal Oxides. In: Aegerter, M.A., Mennig, M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88953-5_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5455-8

  • Online ISBN: 978-0-387-88953-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics