Coatings for Increasing and Preserving the Bending Strength of Glass

  • A. Gier
  • K. Endres
  • D. Anschütz
  • M. Mennig
  • H. Schmidt


The practical strength of glass with a value of about 100 MPa is approximately 100 times smaller than its theoretical ones [1]. This is due to micro flaws on the glass surface, which amount up to 50.000 on one cm2[2]. During the handling of glass externals stresses are amplified by these flaws, like clefts, pores or inclusions [3]. The degree of amplification depends on the geometry of the crack tip, which can be strongly influenced by chemical interactions with the surroundings. Depending on the intensity of these external influences, a rather slow crack propagation is observed under subcritical load (static fatigue). However, when the applied tensile stress exceeds a critical value (Kic-factor) the crack grows spontaneously with almost the speed of sound [4,5], leading essentially to the breaking of the glass.


Glass Surface Float Glass Indenter Load Applied Tensile Stress Weibull Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    II. Müller-Simon, J. Wagner, A. Lenhardt, Practical strength of glass containers Part. 1: Influence of the type of defects, Glastechn. Ber. Glass Sci. Technol,67(5), 134 (1994)Google Scholar
  2. 2.
    F. M. Ernsberger, Advances in glass technology, New York, Plenum Press 511 (1962)Google Scholar
  3. 3.
    A. Griffith, Phil. Trans., A221, 163 (1920)Google Scholar
  4. 4.
    O. L Anderson, T. L. Preiser, Role of environment in stress corrosion cracking in silicate glasses, .1. Am. Ceram. Soc,61, 534 (1978)CrossRefGoogle Scholar
  5. 5.
    S. M. Wiederhorn, Influence of water vapor on crack propagation in solda-lime glass, J. Am. Soc,50, 407 (1967)Google Scholar
  6. 6.
    II. Richter, Festigkeit anorganischer, nichtmetallischer Werkstoffe, HVG Fortbildungskurs, Festigkeit von Glas, 1 (1987)Google Scholar
  7. 7.
    II. Scholze, Glas-Natur, Struktur und Eigenschaften, 3. Auflage, Springer Verlag Berlin (1988)Google Scholar
  8. 8.
    B. D. Fabes, D. R. Uhlmann, Strengthening of glass by sol-gel coatings, J. Am. Ceram. Soc,73,978(1990)CrossRefGoogle Scholar
  9. 9.
    H. Schmidt, Presentation at Soc. of Glass Tech. Symp. on Glass Strength, Harrowgate (1988)Google Scholar
  10. 10.
    P. Strehlow, II. Schmidt, Verfahren zur Herstellung von Gläsern mit erhöhter Bruchfestigkeit, EP 0294830 BlGoogle Scholar
  11. 11.
    A. Gier, M. Amlung, K. Endres, M. Mennig, H. Schmidt, Untersuchungen zur Festigkeit von Glas: Verhalten und Heilen von Mikrorissen unter gezielten chemischen, atmosphärischen und mechanischen Bedingungen, AiF Abschlussbericht, Nr. 10651, Institut für Neue Materialien, Saarbrücken (1998)Google Scholar
  12. 12.
    DIN 52 292, T 1 (April 1984): Bestimmung der Biegebruchfestigkeit: Doppelringbiegeversuch an platten form igen Proben mit kleiner Probenfläche. Berlin DIN 1984Google Scholar
  13. 13.
    W. A. Weibull, A statistical distribution of wide applicability, J. Appl. Mech.,18, 293 (1951)Google Scholar
  14. 14.
    M. Mennig, G. Jonschker, H. Schmidt, Sol-gel derived thick coatings and their thermochemical and optical properties, in: Spie Proc“Sol-Gel Optics H”, vol. 1758, 125 (1992)Google Scholar
  15. 15.
    M. Mennig, G. Jonschker, H. Schmidt, Verfahren zur Herstellung von Glas mit verbesserter Langzeitstandfestigkeit bei erhöhten Temperaturen, DE 4217432 AlGoogle Scholar
  16. 16.
    DIN 52 348 (Februar 1985) Prüfung von Glas und Kunststoff. Verschleißprüfung, Sandrieselver-fahren. Berlin DIN 1985Google Scholar
  17. 17.
    R. Hauk, G.H. Frischat, K. Ruppert, Sol-gel preparation of scratch resistant AI2O3coatings on float glass, in: Glastechnische Berichte. Glass Science and Technology,72, 386 (1999)Google Scholar
  18. 18.
    A. Gier, D. Anschütz, M. Mennig, H. Schmidt, Untersuchungen zur Festigkeit von Glas: Festigkeitserhaltende und festigkeitserhöhende Schichten auf Glas, AiF Abschlußbericht, Nr. 11685N, Institut für Neue Materialien, Saarbrücken, 2000Google Scholar
  19. 19.
    M. Mennig, A. Gier, D. Anschütz, H. Schmidt, Development of organic-inorganic coatings for strength-preserving of glass bottles, Glastechnische Berichte, Glass Science and Technology, 74, 217(2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • A. Gier
  • K. Endres
  • D. Anschütz
  • M. Mennig
  • H. Schmidt

There are no affiliations available

Personalised recommendations