Advertisement

Hydrophilic Coating Materials

  • H. Schneider
  • N. Niegisch
  • M. Mennig
  • H. Schmidt

Abstract

Hydrophilic as well as hydrophobic surfaces offer advantages for cleaning of technical surfaces. The following properties of hydrophilic coatings are interesting: less dirt, easy to clean, antifogging and inhibition of growth for vegetation and bacteria. Particularly the soiling of a transparent surface causes light scattering and lots of brilliancy. The good wettability by water (very thin water film, no formation of water drops) of hydrophilic coatings inhibits the scattering of light and prevents fogging on the surface. The resulting very glossy and clean surface reduces also the growth of microorganisms.

Keywords

Abrasion Resistanee Amphoteric Surfactant Transparent Coating Hydrophilic Coating Thin Water Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Young, Philos. Trans. R. Soc. London 95, 65, 1805CrossRefGoogle Scholar
  2. 2.
    R. Knapikowski, U. Messow, K. Quitzsch, H.-G. Hauthal, Wetting behavior of the binary system water sodiumdodecylsulfate on solid surfaces, Chefn. Technik, 44, Heft 10 (1992), 339Google Scholar
  3. 3.
    H. Radisch, W. Scholz, Transparent, anti-fogging coating comprised of plastic material containing a surface active agent, US 4609688 (1986)Google Scholar
  4. 4.
    R. Parker, J. Howes, Coated articles and methods for the preparation thereof, US 4844983, 1989Google Scholar
  5. 5.
    S. Watanabe, I. Ibuki, Polyisocyanate composition having high emulsifiability and stability, and aqueous coating composition comprising the composition, US 5852111 (1998)Google Scholar
  6. 6.
    J. Kaetsu, M. Yoshida, New coating materials and their preparation by radiation polymerization -antifogging coating composition, Journal of Applied Polymer Science, 24 (1) (1979), 235CrossRefGoogle Scholar
  7. 7.
    R. Kasemann, H. Schmidt, Coatings for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites, New Journal of Chemistry, 18 (10), (1994) 1117Google Scholar
  8. 8.
    J.R. Kleer, Aqueous compositions containing colloidal silica and compounds with alkoxysilane and/or silanol groups, US 6063863 (2000)Google Scholar
  9. 9.
    J.M. Bravet, Process for producing a transparent polyurethane film with energy-absorbing and antifogging properties, US 5116442 (1992)Google Scholar
  10. 10.
    R. Neeb, Beschichtungszusammensetzung mit beschlagverhindernden Eigenschaften, Patent DE 10002059A1 (2001)Google Scholar
  11. 11.
    Prolan Oberflächentechnik GmbH, Schwäbisch Gmünd, Transparent Antifog coating for Polycarbonate, Company brochureGoogle Scholar
  12. 12.
    Y. Yamamoto, H. Doya, T. Izumi, K. Kumazawa, H. Ohmura, Y. Oshibe, Anti-fogging resin film-forming composition, EP 339909 (1989)Google Scholar
  13. 13.
    Y. Oshibe, K. Kumazawa, Y. Yamamoto, H. Omura, Ultraviolet ray curing type coating composition and preparation of ultraviolet ray cured film, JP 3247672 (1991)Google Scholar
  14. 14.
    H. Raedisch, W. Scholz, Transparent, anti-fogging coating comprised of plastic material containing a surface active agent, US 0004609688AGoogle Scholar
  15. 15.
    W. S. Creasy, Transparent anti-fog coating compositions, US 4467073 (1984)Google Scholar
  16. 16.
    H. Schmidt, Grundlagen und Anwendungsmöglichkeiten von ORMOCERen In: Proceedings Symposium Materialforschung 1988, Bd.1, Hrgs.: B. Vierkorn-Rodolph, D. Lillak, PLR/KF Jülich, 722Google Scholar
  17. 17.
    H. Schmidt, Organically Modified Ceramics, Materials with “History” or “Future”?, In: Ultra-structure Processing Ceramics of Advanced Materials, John Wiley & Sons, (1992) 409Google Scholar
  18. 18.
    H. Schmidt, D. Uhlmann, D. Ulrich (eds.), Thin films, the chemical processing up to gelation, Chemistry, Spectroscopy and Applications on Sol-Gel Glasses, Springer, Berlin (1992) 120Google Scholar
  19. 19.
    R. Kasemann, H. Schmidt, E. Wintrich, A new type of a sol-gel derived inorganic-organic nanocomposite, Mat. Res. Soc. Symp. Proc, 346, VI (1994) 915CrossRefGoogle Scholar
  20. 20.
    R. Kasemann, H. Schmidt, In: First European Workshop on hybrid organic-inorganic materials (synthesis, properties, applications), 171 (1993)Google Scholar
  21. 21.
    H. Schmidt, G. Philipp, Inorganic/organic polymers for lenses by the sol-gel process, in: „Glass … Current Issues“ by A. F. Wright, J. Dupuy (Eds.), Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster (1985) 580CrossRefGoogle Scholar
  22. 22.
    H. Schmidt, G. Philipps, New materials for contact lenses prepared from Si- and Ti-Alkoxides by the sol-gel process, Journal of Non-Cryst. Sol., 63 (1984) 283CrossRefGoogle Scholar
  23. 23.
    R. Kascmann, H. Schmidt, S. Brück, Functional coatings on glass surfaces by the sol-gel process Bol. Soc. Esp. Ceram. Vid., 31-C, vol. 7 (1992) 75Google Scholar
  24. 24.
    H. Arpac, G. Jonschker, H. Schirra, H. Schmidt, Nanostrukturierte Formkörper und Schichten und deren Herstellung über stabile wasserlösliche Vorstufen, DE 19816136 (1999)Google Scholar
  25. 25.
    E. Arpac, G. Jonschker, H. Schirra, H. Schmidt, Nanostructured forms and layers and method for producing them using stable water-soluble precursors, EP 1086162 (2001)Google Scholar
  26. 26.
    A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis, Fundamentals and Applications, BKC,” Inc. (1999)Google Scholar
  27. 27.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphilic surfaces, Nature, 388 (1997) 431CrossRefGoogle Scholar
  28. 28.
    A. Biedermann, Verfahren und Vorrichtung zum Aufbringen von transparenten Schutzschichten auf Gegenstände, danach hergestellte Gegenstände, Patent DE 19708808 (1998)Google Scholar
  29. 29.
    M. Hayakawa, M. Chikuni, T. Watanabe, Photocatalytic Functional Material and Method of Production thereof, Patent EP 792687 (1997)Google Scholar
  30. 30.
    R.J. Kostelnik, F.C. Wen, Very High Solids TiO2 Slurries, Patent WO 9957075 (1999)Google Scholar
  31. 31.
    P. Boire, X. Talpaert, Photocatalytic Coating Substrate, Patent WO 9710186 (1997)Google Scholar
  32. 32.
    A. Biedermann, Leicht zu reinigende und selbstreinigende glatte Oberflächen, Keramische Zeitschrift, 51 (1999) 874Google Scholar
  33. 33.
    N. Niegisch, M. Akarsu, Z. Csögör, M. Elises, H. Schmidt, TiO2 nanoparticle coatings for self-cleaning and antimicrobial application, Proceedings of Hygienic Coatings Conference, paper 20 (2002)Google Scholar
  34. 34.
    H. Schmidt, M. Mennig, Th. Burkhart, C. Fink-Straube, G. Jonschker, M. Schmitt, A. Bauer, Verfahren zur Herstellung von funktionellen glasartigen Schichten, INM-Patent EP 729442 (1996)Google Scholar
  35. 35.
    G. Jonschker, PhD Thesis, INM and University of Saarland, Saarbruecken/Germany (1998)Google Scholar
  36. 36.
    M. Mennig, G. Jonschker, H. Schmidt, Verfahren zur Herstellung von Glassubstraten mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen, INM-Patent EP 642475Google Scholar
  37. 37.
    M. Mennig, G. Jonschker, H. Schmidt, Verfahren zur Herstellung von Glassubstraten mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen, INM-Patent WO 93/24424 (1993)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • H. Schneider
  • N. Niegisch
  • M. Mennig
  • H. Schmidt

There are no affiliations available

Personalised recommendations