Colored Coatings on Glass Based on Noble Metal Colloids

  • M. Mennig
  • M. Schmitt
  • C. Fink-Straube
  • H. Schmidt


It is known from the Drude theory [1] that the color shown by nano-sized metal particles in a dielectric matrix is due to a surface plasmon resonance effect of the conductive electrons, which leads to a selective absorbance in the visible spectrum. The molar coefficient of the absorbance is in the range of 105 to 106 1/mole cm, which makes metal colloids very interesting and efficient dyes to obtain colored sol-gel coatings with thickness around 1 urn. Furthermore their extremely high UV and thermal stability are favorable for practical applications.


Surface Plasmon Resonance Effect Half Band Width Propyl Trimethoxy Silane Si02 Coating Propyl Triethoxy Silane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Sakka, H. Kozuka, Sol-gel preparation of coating films containing noble metal colloids, J. Sol-Gel Science and Technology,13, 701 (1998)CrossRefGoogle Scholar
  2. 2.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Verlag Berlin/Heidelberg/New York (Springer Series in Materials Science, volume 25) 1995Google Scholar
  3. 3.
    G. Mie, Beiträge zur Optik trüber Medien; speziell kolloidaler Metallsägen, Ann. Phys.,25, 377 (1908)CrossRefGoogle Scholar
  4. 4.
    U. Kreibig, Small silver particles in photosensitive glass: their nucleation and growth, Appl. Phys.,10, 255(1976)CrossRefGoogle Scholar
  5. 5.
    U. Kreibig, C. von Fragstein, Kramers-Kronig analysis of the optical properties of small silver particles, Z. Phys.,234, 307 (1970)CrossRefGoogle Scholar
  6. 6.
    B. Dusemund, ESR-spektroskopische Untersuchungen Strahlen-indizierter freier Radikale in polykristallinen Nukleotiden und Nukleotid-Gemischen: Einfluß der Strahlenqualität, M.Sc. Thesis, University of Saarland, Saarbrücken (1991)Google Scholar
  7. 7.
    M. Mennig, M. Schmitt, H. Schmidt, K.-J. Berg, J. Porstendorfer, Growth and deformation of gold colloids in lead crystal glass, in: Fundamentals of Glass Science and Technology, Stazione Sperimentale del Vetro, Murano/Italia, Supplement to “Rivista della Stazione Sperimentale del Vetro”,XXIII, 357(1993)Google Scholar
  8. 8.
    J. Porstendorfer, Numerische Berechnung von Extinktions- und Streuspektren sphäroidaler Metallpartikel beliebiger Größe in dielektrischer Matrix, Ph.D. thesis, Martin-Luther-Universität Halle-WITTENBERG (1997)Google Scholar
  9. 9.
    K.-J. Berg, A. Berger, H. Hofmeister, Small silver particles in glass surface layers produced by sodium-silver ion exchange — their concentration and size depth profile, Z. Phys. D-Atoms, Molecules and Clusters,20, 309 (1991)CrossRefGoogle Scholar
  10. 10.
    F. Fröhlich, K.J. Berg, Physics and Applications,9, 31 (1982)Google Scholar
  11. 11.
    M. Mennig, L. Spanhel, H. Schmidt, S. Betzholz, Photoinduced formation of silver colloids in a borosilicate sol-gel system, J. Non-Cryst. Solids,147 & 148, 326 (1992)CrossRefGoogle Scholar
  12. 12.
    M. Mennig, M. Schmitt, U. Becker, G. Jung, H. Schmidt, Gold colloids in sol-gel derived SiO2 coatings on glass and their linear and nonlinear optical properties, in: SPIE Prooceedings, Sol-Gel Optics III, J. D. Mackenzie (ed.),2288, 130 (1994)Google Scholar
  13. 13.
    M. Mennig, Zur Verformung sphärischer Silberkolloide durch plastische Deformation des sie umgebenden Glases, Ph.D. Thesis, Halle 1984Google Scholar
  14. 14.
    J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, T. Sakaguchi, M. Miya, Sol-gel processing and optical nonlinearity of gold colloid-doped silica glass, Cer.Soc.Jap. J., Int. Ed.,101, 55(1993)Google Scholar
  15. 15.
    J. M. F. Navarro, M. A. Villegas, Preparation of gold ruby glasses by the sol-gel method, Glastechn. Berichte,65, 32(1992)Google Scholar
  16. 16.
    S. Sakka, H. Kozuka, Sol-gel preparation of coating films containing noble metal colloids, Sol-Gel Science and Technology,13, 701 (1998)CrossRefGoogle Scholar
  17. 17.
    J. Y. Tseng, C. Y. Li, T. Takada, C. Lechner, J. D. Mackenzie, Optical properties of metal-cluster-doped ORMOSIL nanocomposites, Sol-Gel-Optics II, SPIE Proceedings,1758, 612 (1992)CrossRefGoogle Scholar
  18. 18.
    S. Datta, S. G. C. Das, Preparation of glass-silver microcomposites by sol-gel route, Bull. Mater. Sci.,15, 363(1992)CrossRefGoogle Scholar
  19. 19.
    R. Reisfeld, M. Eyal, D. Brusilovsky, Luminescence enhancement of Rhodamine 6G in sol-gel films containing silver aggregates, Chem. Phys. Lett.,153, 210 (1988)CrossRefGoogle Scholar
  20. 20.
    A. Hinsch, A. Zastrow, V. Wittwer, Sol-gel glasses: a new material for solar fluorescent planar concentrators, Solar Energy Materials,21, 151 (1990)CrossRefGoogle Scholar
  21. 21.
    S. Sakka, H. Kozuka, G. Zhao, Sol-gel preparation of metal particle/oxide nanocomposites, in: SPIE, Sol-Gel Optics III, J. D. Mackenzie (ed.),2288, 108 (1994)Google Scholar
  22. 22.
    A. Henglein, Mechanism of reactions of colloidal microelectrodes and size quantization effects, fop. Curr. Chem.,143, 113 (1988)CrossRefGoogle Scholar
  23. 23.
    A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev.,89, 1861 (1989)CrossRefGoogle Scholar
  24. 24.
    A. Henglein, Quantitative Materie: Eigenschaften extrem kleiner kolloidaler Halbleiter- und Metallteichen, in: Labor 2000, Special Edition of Labor Praxis, 110 (1992)Google Scholar
  25. 25.
    G. Schmid, Large clusters and colloids, Metals in the embryonic state, Chem. Rev.,92, 1709 (1992)CrossRefGoogle Scholar
  26. 26.
    G. Schmid, A. Lehnert, J. O. Malm, J. O. Bovin, Ligand-stabilized bimetallic colloids identified by high-resolution transmission electron microscopy and energy dispersive x-ray micoranalysis, Angew. Chem. Int. Ed. Engl.,30, 874 (1991)CrossRefGoogle Scholar
  27. 27.
    H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joußen, B. Korall, Erzeugung von kolloiden Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse, Angew. Chem.,103, 1344(1991)CrossRefGoogle Scholar
  28. 28.
    H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Jonßen, B. Korall, Erzeugung von kolloiden Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse, Angew. Chem. Int. Ed. Eng.,30, 1312 (1991)CrossRefGoogle Scholar
  29. 29.
    Y. N. Cheong Chan, R. R. Schrock, R.E. Cohen, Synthesis of Silver and Gold Nanoclusters Within Microphase- Separated Diblock Copolymers, Chem. Mater.,4, 24 (1992)CrossRefGoogle Scholar
  30. 30.
    Y. N. Cheong Chan, G. S. W. Craig, R. R. Schrock, R. E. Cohen, Synthesis of Palladium and Platinum Nanoclusters Within Microphase-Separated Diblock Copolymers, Chem. Mater.,4, 885(1992)CrossRefGoogle Scholar
  31. 31.
    U. Schubert, S. Amberg-Schwab, B. Breitscheidel, H. Schmidt, Process for the preparation of composite materials which contain small particles of metal or metal oxide in an oxide matrix and the composite materials prepared by the process U.S. Patent 07/482 864 (1990)Google Scholar
  32. 32.
    B. Breitscheidel, J. Zieder, U. Schubert, Nanometer-Sized, Uniform Metal Particles in a SiO2 Matrix by Sol-Gel Processing of Metal Complexes, Chem. Mater.,3, 559 (1991)CrossRefGoogle Scholar
  33. 33.
    L. Spanhel, M. Mennig, H. Schmidt, Sol-gel synthesis of metal nanocomposites, Bol. Soc. Esp. Ceram. Vid.,31-C, 7, 9 (1992)Google Scholar
  34. 34.
    M. Mennig, U. Becker, M. Schmitt, H. Schmidt, Au-colloids containing optical active waveguides by sol-gel processing and (nonlinear) optical properties, in: Advanced Materials in Optics, Electro-Optics and Communication Technologies, ed. P. Vincenzini and G.C. Righini, Technasrl.,11, 39(1995)Google Scholar
  35. 35.
    T. Burkhart, M. Mennig, H. Schmidt, A. Licciulli, Nano sized Pd particles in a SiO2 matrix by sol-gel processing, Mat. Res. Soc. Symp. Proa, 346, 779 (1994)CrossRefGoogle Scholar
  36. 36.
    M. Catalano, L. Tapfer, A. Licciulli, T. Burkhart, M. Mennig, H. Schmidt, TEM characterization of Pd colloids in Ormocer matrix, in: Proc. ICEM 13, Paris, 425 (1994)Google Scholar
  37. 37.
    M. Mennig, M. Schmitt, B. Kutsch, H. Schmidt, SiO2 coatings on glass containing copper colloids using the sol gel technique, SPIE Proceedings, Sol-Gel Optics III, J. D. Mackenzie (ed.),2288, 120(1994)Google Scholar
  38. 38.
    M. Mennig, M. Schmitt, H. Schmidt, Synthesis of Ag-colloids in sol-gel derived SiO2-coatings on glass, J. Sol-Gel Science and Technology,8, 1035 (1997)Google Scholar
  39. 39.
    M. Mennig, M. Schmitt, B. Kutsch, H. Schmidt, Sol-gel synthesis and Ag colloid containing lead-silica coatings and investigation of their optical properties, in: Extended Abstracts of the Fourth SAAR-LOR-LUX Meeting on Functional Advanced Materials, G. Kugel (ed.), CLOES-SUPELEC, Technopole de Metz/Frankreich (1994)Google Scholar
  40. 40.
    M. Schmitt, Grundlegende Untersuchungen zur Herstellung von Gold-, Silber- und Kupferkolloiden in glasartigen Beschichtungen über das Sol-Gel-Verfahren, PhD thesis, University of Saarland, Saarbrücken (1997)Google Scholar
  41. 41.
    J. Brinker, G. W. Scherer, in: Sol-Gel Science — The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston/San Diego/New York/Sydney (1990)Google Scholar
  42. 42.
    H. Schmidt, M. Mennig, T. Burkhard, C. Fink-Straube, G. Jonschker, M. Schmitt, A. Bauer, Process for producing functional vitreous layers, Patent WO 95/12349Google Scholar
  43. 43.
    B. Kutsch, O. Lyon, M. Schmitt, M. Mennig, H. Schmidt, Small-Angle X-ray Scattering Experiments in Grazing Incidence on Sol-Gel Coatings Containing Nano-Scaled Gold Colloids: a New Technique for Investigating Thin Coatings and Films, J. Appl. Cryst.,30, 948 (1997)CrossRefGoogle Scholar
  44. 44.
    B. Kutsch, O. Lyon, M. Schmitt, M. Mennig, H. Schmidt, Investigations of the electronic structure of nanoscaled gold-colloids in sol-gel coatings, J. Non-Cryst. Solids,217, 143 (1997)CrossRefGoogle Scholar
  45. 45.
    M. Mennig, M. Pietsch, K. Endres, C. Fink-Straube, H. Schmidt, Proc. 67th Annual Meeting of the Deutsche Glastechnische Gesellschaft, Bayreuth, extended abstract book (oral), 202 (1997)Google Scholar
  46. 46.
    M. Mennig, C. Fink-Straube, M. Pietsch, G. Jung, H. Schmidt, Preparation and characterisation of AG colloids in ceramic matrices by the sol-gel-process, 9th Cimtec-World Ceramics Congress, Ceramics: Getting into the 2000’s-Part E, P. Vincenzini (ed.), 533 (1999)Google Scholar
  47. 47.
    M. Mennig, K. Endres, M. Schmitt, H. Schmidt, Colored coatings on eye glass lenses by noble metal colloids, J. Non-Cryst. Sol.,218, 373 (1997)CrossRefGoogle Scholar
  48. 48.
    M. Mennig, K. Endres, M. Pietsch, H. Schmidt, Proc. 67th Annual Meeting of the Deutsche Glastechnische Gesellschaft, Bayreuth, extended abstract book (poster), 81 (1997)Google Scholar
  49. 49.
    C. Fink-Straube, A. Kalleder, Th. Koch, M. Mennig, H. Schmidt, Method for the production of optical layers having uniform layer thickness, WO 00/14023, PCT/EP 99 968 660.Google Scholar
  50. 50.
    K. Endres, M. Mennig, S. Meilchen, H. Schmidt, Zur Herstellung optischer Beschichtungen auf Glas über den Flexodruck, Proc. 75th Annual Meeting of the Deutsche Glastechnische Gesellschaft, Wernigerode, extended abstract book (oral), 53 (2001)Google Scholar
  51. 51.
    K. Endres, M. Lindenstruth, M. Mennig, M. Pietsch, H. Schmidt, Method for manufacturing substrates with transparent and colour coatings stable at high temperatures and in the presence of ultraviolet, coating composition and use, WO 98/18736, PCT/EP 0 938 457 BlGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • M. Mennig
  • M. Schmitt
  • C. Fink-Straube
  • H. Schmidt

There are no affiliations available

Personalised recommendations