Monolithic Silica Glass Cylinders for Optical Fiber

  • J. B. MacChesney
  • D. W. JohnsonJr.


The emergence of optical communication in the 1970’s led to a search for a means to produce “waveguide quality silica”. Such silica is characterized by having extremely low loss resulting from the lack of a combination of optical absorption (Fe, Co, Ni, Cr, OH- contamination) and scattering (striations, bubbles, etc) as well as freedom from insoluble refractory oxide particles which induce low stress mechanical breaks in fiber. Vapor deposition techniques (OVD [1], MCVD [2], VAD [3]) were the early winners but the glass produced was expensive. So there ensued a search for other processing means. These included “double crucible” melts [4], microporous cylinders made by leaching of phase separated cast glass bodies [5], mechanical compaction [6], centrifugation [7] and sol-gel [8, 9]. Of these, only colloidal-gel bodies reached the stage of commercialization [10] and that after some time. However, there exists the belief that the processes initially developed for the most demanding application will find wider use in the future.


Optical Fiber Fumed Silica Colloidal Silica Glass Producer Methyl Formate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.B. Keck, P.C. Schultz, F. Zimar. Method of Forming Optical Waveguide Fibers, U.S. Patent No. 3737292 (1972)Google Scholar
  2. 2.
    J.B. MacChesney, P.G. O’Connor, F.V. Marcello, J.R. Simpson, P.D. Lazay. Preparation of Low-Loss Optical Fibers using Simultaneous Vapor-Phase Deposition and Fusion, in: Proc. 10th Int. Cong. On Glass Kyoto Japan, 6, (1974)Google Scholar
  3. 3.
    T. Izawa, N. Inagaki, Materials Technology of Optical Fibers, Mat. Sci. and Tech., 19, (1990)Google Scholar
  4. 4.
    K.J. Beals, C.R. Day, A Review of Glass Fibers for Optical Communications, Phys. Chem. Glass, 21, 5 (1980)Google Scholar
  5. 5.
    C.B. Bamford, D.G. Loukos, Development of Molecular Stuffing Process, Glass Tech., 20, 166 (1979)Google Scholar
  6. 6.
    K. Yoshida, T. Satoh, N. Enomoto, T. Yagi, H. Hihara, M. Oku, Fabrication of Large Preforms for Low Loss Single Mode Optical Fibers by Hybridized Process, Glastech Bericht (1996)Google Scholar
  7. 7.
    P.K. Bachmann, P. Geittner, H. Lydtin, Romanowski, M. Thelen, Preparation of quartz tubes by centrifugal deposition of silica particles, ECOC, Brighton (1988).Google Scholar
  8. 8.
    S. Sakka, K. Kamiya, I. Yananaka, Non-crystalline Solids of TiO2-SiO2 and Al2O3-SiO2 Systems Formed from Alkoxides, in: Proc. 10th Int. Cong Glass, 13, 44 (1974)Google Scholar
  9. 9.
    R. Clasen, Preparation of High-Purity Silica Glasses by Sintering of Colloidal Prticles, Glastech. Ber., 60, 125 (1987)Google Scholar
  10. 10.
    J.B. MacChesney, D.W. Johnson Jr., S.D. Bhandarkar, M.P. Bohrer, J.W. Fleming, E.M. Monberg, D.J. Trevor, Optical Fibers by a Hybrid Process Using Sol-Gel Silica Overcladding Tubes, J. Non-Cryst. Solids, 226, 232 (1998)CrossRefGoogle Scholar
  11. 11.
    I. Mori, M. Toki, M. M. Ikejiri, M. Takei, M. Aoki, S. Uchiyama, S. Kanbe, Silica Glass, Tubes by New Sol-Gel Methods, J. Non-Cryst. Solids, 100, 523 (1988)CrossRefGoogle Scholar
  12. 12..
    J. Livage, this volume, chapter 1.1.1Google Scholar
  13. 13.
    E.A. Chandross, D.W. Johnson Jr., J.B. MacChesney, Vitreous Silica Product via Sol-Gel Using Polymeric Additive, US Patent 5,379,364 (1995)Google Scholar
  14. 14..
    Stockert, T. F., unpublished data.Google Scholar
  15. 15.
    H.L. Chandan, R.D. Parker, D. Kalish, in: Fractography in Optical Fibers in Fractography of Glass, R.C. Brat, R.E. Tressler (eds), Plenum, 143 (1994)Google Scholar
  16. 16.
    S.D. Bhandarkar, H.L. Chandan, D.W. Johnson Jr., J.B. MacChesney, US Patent 5,344,475, (1994), S.D. Bhandarkar, US Patent 3,356,447 (1994)Google Scholar
  17. 17.
    J.B. MacChesney, D.W. Johnson Jr., P.J. Lemairc, L.G. Cohen, E.M. Rabinovich, Fluorosilicate Substrate Tubes to Eliminate Leaky-Mode Losses in MCVD Single-Mode Fibers with Depressed-index Cladding, in: Proceedings 1985 Optical Fiber Conf., San Diego, Pa 98 (1985)Google Scholar
  18. 18.
    S. Shibata, T. Kitagawa, M. Horiguch, Wholly Synthesized Fluorine Doped Optical Fibers by the Sol-Gel Method, J. Non-Cryst. Sol, 100, 269 (1988)CrossRefGoogle Scholar
  19. 19.
    E.M. Rabinovich, D.W. Johnson Jr., A. Mishkevish, E.A. Chandross, J. Thomson, paper GMB-012 at Am. Ceram. Soc. Fall Meeting of Glass and Optical Materials Division, Ceram. Bull., 76, 130 (1997)Google Scholar
  20. 20.
    R. Clasen, Herstellung sehr reiner Kieselglase durch Sintern submikroskopischer Glasteilchen, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • J. B. MacChesney
  • D. W. JohnsonJr.

There are no affiliations available

Personalised recommendations