Microprinting involves the delivering of a small volume of a fluid material, typically in the pico- to nanoliter range, onto a solid target. The technologies for spotting such fluids onto a substrate fall into two distinct categories: contact and non-contact dispensing [1].


Glass Producer Substrate Fall Transistor Circuit Piezoelectric Ceramic Transducer Continuous Inkjet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Rose, Microfluidic technologies and instrumentation for printing DNA microarrays, in: Microarray biochip technology, M. Schena (ed.), Eton International (2000)Google Scholar
  2. 2.
    H.P. Le, Progress and Trends in Ink-Jet Printing Technology, J. Imaging Sci. Technol. 42, 49 (1998)Google Scholar
  3. 3.
    D.B. Wallace, D.J. Hayes,
  4. 4.
    P. Calvert, Inkjet Printing for Materials and Devices, Chem. Mater. 13, 3299 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Yang, S.C. Chang, J. Bharathan, J. Liu, Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing, J. Mat. Science: Materials in Electronics, 11, 89 (2000)CrossRefGoogle Scholar
  6. 6.
    K. Stuffle, A. Mulligan, J. Lombardi, P. Calvert, B. Fabes, Solid freebody forming of ceramics from polymerizable slurry, Mat. Res. Soc. Symp., Proc, 346, 1027 (1994)CrossRefGoogle Scholar
  7. 7.
    J.R.G. Evans, M.J. Edirisinghe, P.V. Coveney, J. Eames, Combinatorial searches of inorganic materials using ink-jet printer: science, philosophy and technology, J. Europ. Ceram. Soc., 21, 2291 (2001)CrossRefGoogle Scholar
  8. 8.
    R. Danzebrink, M.A. Aegerter, Deposition of microsputtered coating using an ink-jet technique, Thin Solid Films, 351, 115 (1999)CrossRefGoogle Scholar
  9. 9.
    R. Danzebrink, M.A. Aegerter, Deposition of optical microlens arrays by ink-jet processes, Thin Solid Films, 392, 223 (2001)CrossRefGoogle Scholar
  10. 10.
    W.R. Cox, T. Chen, C. Guan, D.J. Hayes, R.E. Hoenigman, B.T. Teipen, D.L. Mac Farlane, Micro-jet printing of refractive microlenses, Proc. OSA Diffractive Optics and Microoptics Topical Meeting, Kailua-Kona, June 1998Google Scholar
  11. 11.
    A. Atkinson, J. Doorbar, A. Hudd, D.L. Segal, P.J. White, Continuous ink-jet printing using solgel “ceramic” inks, J. Sol-Gel Science and Technology, 8, 1093 (1997)Google Scholar
  12. 12.
    W.D. Teng, M.J. Edirisinghe, J.R.G. Evans, Optimization of dispersion and viscosity of a ceramic jet printing ink, J. Am. Ceram. Soc., 80, 486 (1997)CrossRefGoogle Scholar
  13. 13.
    M. Mott, J.-H. Song, J.R.G. Evans, Microengineering of ceramics by direct ink-jet printing, J. Am. Ceram. Soc., 82, 1653 (1999)CrossRefGoogle Scholar
  14. 14.
    J.H. Song, M.J. Edirisinghe, J.R.G. Evans, Formulation and multilayer jet printing of ceramic ink, J. Am. Ceram. Soc., 82, 3374 (1999)CrossRefGoogle Scholar
  15. 15.
    B.Y. Tay, M..I. Edirisinghe, Investigation of some phenomena occurring during continuous inkjet printing of ceramics, J. Mater. Res., 16, 373 (2001)CrossRefGoogle Scholar
  16. 16.
    M.J. Wright, J.R.G. Evans, Ceramic deposition using an electromagnetic jet printer station, J. Materials Science Letters, 18, 99 (1999)CrossRefGoogle Scholar
  17. 17.
    H. Sirringhaus, T. Kawase, R.H. Friend, High-resolution ink-jet printing of all polymer transistor circuits, in: MRS Bulletin, July issue, 539 (2001)Google Scholar
  18. 18.
    D.B. Wallace, D.J. Hayes, Solder jet printing of micropads and vertical interconnects, Proc. SMTA’s Emerging Technology Symposium, Minneapolis/Minn., October 1997Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • M. A. Aegerter

There are no affiliations available

Personalised recommendations