Advertisement

Intrinsically Conducting Polymers (ICPs)

  • Yi Li
  • Daniel Lu
  • C. P. Wong

Abstract

Synthetic polymers, whose long molecules string together hundreds of identical structural units, have been insulating electric equipment since the turn of the century. The later fabrication, in the 1970s, of polymers with usefully high electrical conductivity stirred intense interest in the research and development community. By now these polymers are showing commercial promise in such areas as power equipment, batteries, microelectronics, shielding against electromagnetic interference, and coatings, not to mention micromachines and adhesives

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Conducting Polymer Electronic Nose Singlet Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    A.-J. Attias, “Polymères Conjugués et Polymères Conducteurs Electroniques,”Techniques de l'Ingénieur – Traité Électronique, 1862, 1–20, 2002.Google Scholar
  2. [2]
    H. Naarmann and N. Theophilou, “New Process for the Production of Metal-Like, Stable Polyacetylene,”Synthetic Metals, 22, 1–8, 1987.CrossRefGoogle Scholar
  3. [3]
    V. Shaktawat, N. Jain, R. Saxena, N. S. Saxena, K. Sharma, and T. P. Sharma, “Temperature Dependence of Electrical Conduction in Pure and Doped Polypyrrole,”Polymer Bulletin, 57, 535–543, 2006.CrossRefGoogle Scholar
  4. [4]
    A. J. Epstein, H. Rommelmann, R. Bigelow, H. W. Gibson, D. M. Hoffmann, and D. B. Tanner, “Role of Solitons in Nearly Metallic Polyacetylene,”Physical Review Letters, 50, 1866–1869, 1983.CrossRefGoogle Scholar
  5. [5]
    N. Basescu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarmann, and N. Theophilou, “High Electrical-Conductivity in Doped Polyacetylene,”Nature, 327, 403–405, 1987.CrossRefGoogle Scholar
  6. [6]
    A. G. MacDiarmid, “Synthetic Metals: A Novel Role for Organic Oolymers (Nobel lecture),”Angewandte Chemie-International Edition, 40, 2581–2590, 2001.CrossRefGoogle Scholar
  7. [7]
    H. Bai and G. Q. Shi, “Gas Sensors Based on Conducting Polymers,”Sensors, 7, 267–307, 2007.CrossRefGoogle Scholar
  8. [8]
    T. Ito, H. Shirakawa, and S. Ikeda, “Thermal cis-trans isomerization and decomposition of polyacetylene,”Journal of Polymer Science, Polymer Chemistry, 13, 1943–1950, 1975.CrossRefGoogle Scholar
  9. [9]
    S. Roth, G. Mahler, Y. Shen, and F. Coter, “Molecular Electronics of Conducting Polymers,”Synthetic Metals, 28, C815–C822, 1989.CrossRefGoogle Scholar
  10. [10]
    S. Pekker and A. Janossay, Chapter 2, “Chemistry of Doping in Polyacetylene,” Handbook of Conducting Polymers, T. A. Skotherm, Ed., Marcel Dekker, New York, vol. 2, 1986.Google Scholar
  11. [11]
    K. Akagi, H. Shirakawa, K. Araya, A. Mukoh, and T. Narahara, “Highly Conducting Polyacetylene Films Prepared in a Liquid-Crystal Solvent,”Polymer Journal, 19, 185–189, 1987.CrossRefGoogle Scholar
  12. [12]
    J. L. Ribet, M. Rolland, A. Montaner, M. Galtier, Z. Lakhliai, J. L. Sauvajol, M. Brunet, R. Almairac, and P. Bernier, “Synthesis and Characterization of Oriented Polyacetylene Films,”Synthetic Metals, 24, 1–5, 1988.CrossRefGoogle Scholar
  13. [13]
    M. Aldissi, “Molecular and Supramolecular Orientation in Polyacetylene,”Journal of Polymer Science Part C-Polymer Letters, 27, 105–110, 1989.CrossRefGoogle Scholar
  14. [14]
    T. Schimmel, G. Denninger, W. Riess, J. Voit, M. Schwoerer, W. Schoepe, and H. Naarmann, “High-Sigma Polyacetylene – Dc Conductivity between 14-Mk and 300-K,”Synthetic Metals, 28, D11–D18, 1989.CrossRefGoogle Scholar
  15. [15]
    J. Tsukamoto, A. Takahashi, and K. Kawasaki, “Structure and Electrical-Properties of Polyacetylene Yielding a Conductivity of 105 S/Cm,”Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 29, 125–130, 1990.Google Scholar
  16. [16]
    E. Reichmanis, S. A. MacDonald, and T. Iwayanagi, Eds., “Polymers in Microlithography: Materials and Processes,”ACS Symposium Series, American Chemical Society, Washington, DC, 1989.Google Scholar
  17. [17]
    J. M. Shaw, “Imaging for Microfabrication, Imaging Processes and Materials,” J. Sturge, V. Walworth, and A. Shepp, Eds., Van Nostrand Reinhold Co., New York, pp. 567–586, 1989.Google Scholar
  18. [18]
    B. Chapman, Ed., “Glow Discharge Processes,” John Wiley & Sons, Inc., New York, 1980.Google Scholar
  19. [19]
    J. M. Ryan, A. C. F. Hoole, and A. N. Broers, “A Study of the Effect of Ultrasonic Agitation during Development of Poly(methylmethacrylate) for Ultrahigh Resolution Electron-Beam Lithography,”Journal of Vacuum Science & Technology B, 13, 3035–3039, 1995.CrossRefGoogle Scholar
  20. [20]
    H. C. Pfeiffer, R. S. Dhaliwal, S. D. Golladay, S. K. Doran, M. S. Gordon, T. R. Groves, R. A. Kendall, J. E. Lieberman, P. F. Petric, D. J. Pinckney, R. J. Quickle, C. F. Robinson, J. D. Rockrohr, J. J. Senesi, W. Stickel, E. V. Tressler, A. Tanimoto, T. Yamaguchi, K. Okamoto, K. Suzuki, T. Okino, S. Kawata, K. Morita, S. C. Suziki, H. Shimizu, S. Kojima, G. Varnell, W. T. Novak, D. P. Stumbo, and M. Sogard, “Projection Reduction Exposure with Variable Axis Immersion Lenses: Next Generation Lithography,”Journal of Vacuum Science & Technology B, 17, 2840–2846, 1999.CrossRefGoogle Scholar
  21. [21]
    D. L. Laird, R. L. Engelstad, D. M. Puisto, R. E. Acosta, K. D. Cummings, and W. A. Johnson, “Predicting In-plane Distortion from Electron-Beam Lithography on X-ray Mask Membranes,”Journal of Vacuum Science & Technology B, 14, 4308–4313, 1996.CrossRefGoogle Scholar
  22. [22]
    H. Todokoro, S. Fukuhara, and T. Komoda, “Electron-Beam Lsi Tester,”Japan Annual Reviews in Electronics Computers & Telecommunications, 13, 373–382, 1984.Google Scholar
  23. [23]
    Y. Todokoro, A. Kajiya, and H. Watanabe, “Conductive 2-Layer Resist System for Electron-Beam Lithography,”Journal of Vacuum Science & Technology B, 6, 357–360, 1988.CrossRefGoogle Scholar
  24. [24]
    H. Watanabe, E. Sugiura, T. Imoriya, Y. Todokoro, and M. Inoue, “Repair Technique for Phase-Shifting Masks Using Silicon-Containing Resist,”IEEE Transactions on Electron Devices, 40, 2211–2215, 1993.CrossRefGoogle Scholar
  25. [25]
    W. S. Huang, “Synthesizing and Processing Conducting Polythiophene Derivatives for Charge Dissipation in Electron-Beam Lithography,”Polymer, 35, 4057–4064, 1994.CrossRefGoogle Scholar
  26. [26]
    A. G. Macdiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, “Polyaniline – a New Concept in Conducting Polymers,”Synthetic Metals, 18, 285–290, 1987.CrossRefGoogle Scholar
  27. [27]
    A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W. S. Huang, and A. G. Macdiarmid, “Insulator-to-Metal Transition in Polyaniline,”Synthetic Metals, 18, 303–309, 1987.CrossRefGoogle Scholar
  28. [28]
    M. Angelopoulos, A. Ray, A. G. Macdiarmid, and A. J. Epstein, “Polyaniline – Processability from Aqueous-Solutions and Effect of Water-Vapor on Conductivity,”Synthetic Metals, 21, 21–30, 1987.CrossRefGoogle Scholar
  29. [29]
    M. Angelopoulos, G. E. Asturias, S. P. Ermer, A. Ray, E. M. Scherr, A. G. Macdiarmid, M. Akhtar, Z. Kiss, and A. J. Epstein, “Polyaniline – Solutions, Films and Oxidation-State,”Molecular Crystals and Liquid Crystals, 160, 151–163, 1988.CrossRefGoogle Scholar
  30. [30]
    L. W. Shacklette, “Dipole and Hydrogen-Bonding Interactions in Polyaniline – a Mechanism for Conductivity Enhancement,”Synthetic Metals, 65, 123–130, 1994.CrossRefGoogle Scholar
  31. [31]
    L. W. Shacklette, “Electrical Applications of Conducting Polymers,”Abstracts of Papers of the American Chemical Society, vol. 207, pp. 246-Poly, 1994.Google Scholar
  32. [32]
    K. T. Tzou and R. V. Gregory, “Improved Solution Stability and Spinnability of Concentrated Polyaniline Solutions Using N,N'-Dimethyl Propylene Urea as the Spin Bath Solvent,”Synthetic Metals, 69, 109–112, 1995.CrossRefGoogle Scholar
  33. [33]
    A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri, and A. J. Epstein, “Polyaniline: Synthesis and Characterization of the Emeraldine Oxidation State by Element Analysis,” in Conducting Polymers, L. Alcacer, Ed., Reidel, Dordrecht, pp. 105–120, 1987.Google Scholar
  34. [34]
    J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, and A. G. Macdiarmid, “Effect of Sulfonic-Acid Group on Polyaniline Backbone,”Journal of the American Chemical Society, 113, 2665–2671, 1991.CrossRefGoogle Scholar
  35. [35]
    J. Yue, A. J. Epstein, and A. G. Macdiarmid, “Sulfonic-Acid Ring-Substituted Polyaniline, a Self-Doped Conducting Polymer,”Molecular Crystals and Liquid Crystals, 189, 255–261, 1990.CrossRefGoogle Scholar
  36. [36]
    C. Dearmitt, S. P. Armes, J. Winter, F. A. Uribe, S. Gottesfeld, and C. Mombourquette, “A Novel N-Substituted Polyaniline Derivative,”Polymer, 34, 158–162, 1993.CrossRefGoogle Scholar
  37. [37]
    M. T. Nguyen, P. Kasai, J. L. Miller, and A. F. Diaz, “Synthesis and Properties of Novel Water-Soluble Conducting Polyaniline Copolymers,”Macromolecules, 27, 3625–3631, 1994.CrossRefGoogle Scholar
  38. [38]
    Y. Wei, R. Hariharan, and S. A. Patel, “Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-Substituted Anilines,”Macromolecules, 23, 758–764, 1990.CrossRefGoogle Scholar
  39. [39]
    M. Leclerc, J. Guay, and L. H. Dao, “Synthesis and Characterization of Poly(Alkylanilines),”Macromolecules, 22, 649–653, 1989.CrossRefGoogle Scholar
  40. [40]
    Y. H. Liao, M. Angelopoulos, and K. Levon, “Ring-Substituted Polyaniline Copolymers Combining High Solubility with High-Conductivity,”Journal of Polymer Science Part A-Polymer Chemistry, 33, 2725–2729, 1995.CrossRefGoogle Scholar
  41. [41]
    M. Angelopoulos, S. P. Ermer, S. K. Manohar, A. G. Macdiarmid, and A. J. Epstein, “Pseudo-Protonic Acid Doping of Polyaniline,”Molecular Crystals and Liquid Crystals, 160, 223–223, 1988.CrossRefGoogle Scholar
  42. [42]
    Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, “Solution-Cast Films of Polyaniline – Optical-Quality Transparent Electrodes,”Applied Physics Letters, 60, 2711–2713, 1992.CrossRefGoogle Scholar
  43. [43]
    Y. Cao, P. Smith, and A. J. Heeger, “Counterion Induced Processibility of Conducting Polyaniline and of Conducting Polyblends of Polyaniline in Bulk Polymers,”Synthetic Metals, 48, 91–97, 1992.CrossRefGoogle Scholar
  44. [44]
    M. Angelopoulos, N. Patel, and R. Saraf, “Amic Acid Doping of Polyaniline – Characterization and Resulting Blends,”Synthetic Metals, 55, 1552–1557, 1993.CrossRefGoogle Scholar
  45. [45]
    E. W. Paul, A. J. Ricco, and M. S. Wrighton, “Resistance of Polyaniline Films as a Function of Electrochemical Potential and the Fabrication of Polyaniline-Based Microelectronic Devices,”Journal of Physical Chemistry, 89, 1441–1447, 1985.CrossRefGoogle Scholar
  46. [46]
    W. S. Huang, B. D. Humphrey, and A. G. Macdiarmid, “Polyaniline, a Novel Conducting Polymer – Morphology and Chemistry of Its Oxidation and Reduction in Aqueous-Electrolytes,”Journal of the Chemical Society-Faraday Transactions I, 82, 2385–2400, 1986.CrossRefGoogle Scholar
  47. [47]
    M. Angelopoulos and J. M. Shaw, “Polyanilines – In situ Induced Conductivity and Applications Thereof,”Synthetic Metals, 41, 1109–1109, 1991.CrossRefGoogle Scholar
  48. [48]
    M. Angelopoulos, J. M. Shaw, R. D. Kaplan, and S. Perreault, “Conducting Polyanilines – Discharge Layers for Electron-Beam Lithography,”Journal of Vacuum Science & Technology B, 7, 1519–1523, 1989.CrossRefGoogle Scholar
  49. [49]
    M. Angelopoulos, J. M. Shaw, M. A. Lecorre, and M. Tissier, “Conducting Polyaniline – Removable Sem Discharge Layer,”Microelectronic Engineering, 13, 515–518, 1991.CrossRefGoogle Scholar
  50. [50]
    S. A. Chen and G. W. Hwang, “Synthesis of Water-Soluble Self-Acid-Doped Polyaniline,”Journal of the American Chemical Society, 116, 7939–7940, 1994.CrossRefGoogle Scholar
  51. [51]
    S. A. Chen and G. W. Hwang, “Water-Soluble Self-Acid-Doped Conducting Polyaniline – Structure and Properties,”Journal of the American Chemical Society, 117, 10055–10062, 1995.CrossRefGoogle Scholar
  52. [52]
    A. O. Patil, Y. Ikenoue, F. Wudl, and A. J. Heeger, “Water-Soluble Conducting Polymers,”Journal of the American Chemical Society, 109, 1858–1859, 1987.CrossRefGoogle Scholar
  53. [53]
    Y. Ikenoue, N. Uotani, A. O. Patil, F. Wudl, and A. J. Heeger, “Electrochemical Studies of Self-Doped Conducting Polymers – Verification of the Cation-Popping Doping Mechanism,”Synthetic Metals, 30, 305–319, 1989.CrossRefGoogle Scholar
  54. [54]
    S. A. Chen and M. Y. Hua, “Structure and Doping Level of the Self-Acid-Doped Conjugated Conducting Polymers – Poly[N-(3'-Thienyl)Alkanesulfonic Acid]S,”Macromolecules, 26, 7108–7110, 1993.CrossRefGoogle Scholar
  55. [55]
    S. X. Cai, J. F. W. Keana, J. C. Nabity, and M. N. Wybourne, “Conducting Polymers as Deep-UV and Electron-Beam Resists – Direct Production of Micrometer Scale Conducting Structures from Poly(3-Octylthiophene),”Journal of Molecular Electronics, 7, 63–68, 1991.Google Scholar
  56. [56]
    S. X. Cai, M. Kanskar, J. C. Nabity, J. F. W. Keana, and M. N. Wybourne, “Fabrication of Submicron Conducting and Chemically Functionalized Structures from Poly(3-Octylthiophene) by an Electron-Beam,”Journal of Vacuum Science & Technology B, 10, 2589–2592, 1992.CrossRefGoogle Scholar
  57. [57]
    J. Lowe and S. Holdcroft, “Synthesis and Photolithography of Polymers and Copolymers Based on Poly(3-(2-(Methacryloyloxy) Ethyl)Thiophene),”Macromolecules, 28, 4608–4616, 1995.CrossRefGoogle Scholar
  58. [58]
    W. S. Huang, M. Angelopoulos, J. R. White, and J. M. Park, “Metallization of Printed-Circuit Boards Using Conducting Polyaniline,”Molecular Crystals and Liquid Crystals, 189, 227–235, 1990.CrossRefGoogle Scholar
  59. [59]
    S. Gottesfeld, F. A. Uribe, and S. P. Armes, “The Application of a Polypyrrole Precoat for the Metallization of Printed-Circuit Boards,”Journal of the Electrochemical Society, 139, L14–L15, 1992.CrossRefGoogle Scholar
  60. [60]
    J. Fjelstad, Printed Wiring Board Technology: Current Capabilities and Limitations, in Electronics Materials Handbook, C. A. Dostal, Ed., ASM International, Materials Park, OH, pp. 507–512, 1989.Google Scholar
  61. [61]
    L. Lynch and R. A. Nesbitt, Rigid Printed Wiring Board Fabrication Techniques, in Electronics Materials Handbook, C. A. Dostal, Ed., ASM International, Materials Park, OH, pp. 538–555, 1989.Google Scholar
  62. [62]
    D. P. Seraphim, D. E. Barr, W. T. Chen, G. P. Schmitt, and R. R. Tummala, Printed Circuit Board Packaging, in Microelectronics Packaging Handbook, R. R. Tummala and E. J. Rymaszewski, Eds., Van Nostrand Reinhold, New York, pp. 853–922, 1989.Google Scholar
  63. [63]
    J. J. Steppan, J. A. Roth, L. C. Hall, D. A. Jeannotte, and S. P. Carbone, “A Review of Corrosion Failure Mechanisms During Accelerated Tests – Electrolytic Metal Migration,”Journal of the Electrochemical Society, 134, 175–190, 1987.CrossRefGoogle Scholar
  64. [64]
    V. Brusic, M. A. Frisch, B. N. Eldridge, F. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, “Copper Corrosion with and Without Inhibitors,”Journal of the Electrochemical Society, 138, 2253–2259, 1991.CrossRefGoogle Scholar
  65. [65]
    V. Brusic, G. S. Frankel, J. Roldan, and R. Saraf, “Corrosion and Protection of a Conductive Silver Paste,”Journal of the Electrochemical Society, 142, 2591–2594, 1995.CrossRefGoogle Scholar
  66. [66]
    G. S. Frankel, C. V. Jahnes, V. Brusic, and A. J. Davenport, “Repassivation Transients Measured with the Breaking-Electrode Technique on Aluminum Thin-Film Samples,”Journal of the Electrochemical Society, 142, 2290–2295, 1995.CrossRefGoogle Scholar
  67. [67]
    V. Brusic, M. Angelopoulos, and T. Graham, “Use of Polyaniline and its Derivatives in Corrosion Protection of Copper and Silver,”Journal of the Electrochemical Society, 144, 436–442, 1997.CrossRefGoogle Scholar
  68. [68]
    D. W. Deberry, “Modification of the Electrochemical and Corrosion Behavior of Stainless-Steels with an Electroactive Coating,”Journal of the Electrochemical Society, 132, 1022–1026, 1985.CrossRefGoogle Scholar
  69. [69]
    D. A. Wrobleski, B. C. Benicewicz, K. G. Thompson, and C. J. Byran, “Corrosion-Resistant Coatings from Conducting Polymers,”Polymer Preprint, (Am. Chem. Soc, Div. Polym. Chem.), 35, 265–266, 1994.Google Scholar
  70. [70]
    S. Sathiyanarayanan, S. K. Dhawan, D. C. Trivedi, and K. Balakrishnan, “Soluble Conducting Polyethoxy Aniline as an Inhibitor for Iron in Hcl,”Corrosion Science, 33, 1831–1841, 1992.CrossRefGoogle Scholar
  71. [71]
    B. Wessling, “Passivation of Metals by Coating with Polyaniline – Corrosion Potential Shift and Morphological-Changes,”Advanced Materials, 6, 226–228, 1994.CrossRefGoogle Scholar
  72. [72]
    W. K. Lu, R. L. Elsenbaumer, and B. Wessling, “Corrosion Protection of Mild-Steel by Coatings Containing Polyaniline,”Synthetic Metals, 71, 2163–2166, 1995.CrossRefGoogle Scholar
  73. [73]
    S. Jasty and A. J. Epstein, “Corrosion Prevention Capability of Polyaniline (Emeraldine Base and Salt) – an XPS Study,”Polymeric Material Science & Engineering, 72, 565–566, 1995.Google Scholar
  74. [74]
    C. Duvvury and A. Amerasekera, “ESD – a Pervasive Reliability Concern for IC Technologies,”Proceedings of the IEEE, vol. 81, pp. 690–702, 1993.CrossRefGoogle Scholar
  75. [75]
    R. V. Gregory, W. C. Kimbrell, and H. H. Kuhn, “Conductive Textiles,”Synthetic Metals, 28, C823–C835, 1989.CrossRefGoogle Scholar
  76. [76]
    H. H. Kuhn,Characterization and Application of Polypyrrole-Coated Textiles, Intrinsically Conducting Polymers: An Emerging Technology, M. Aldissi, Ed., Kluwer Academic Publishers, Dordrecht, p. 25, 1993.Google Scholar
  77. [77]
    N. F. Colaneri and L. W. Shacklette, “EMI Shielding Measurements of Conductive Polymer Blends,”IEEE Transactions on Instrumentation and Measurement, 41, 291–297, 1992.CrossRefGoogle Scholar
  78. [78]
    L. W. Shacklette, C. C. Han, and M. H. Luly, “Polyaniline Blends in Thermoplastics,”Synthetic Metals, 57, 3532–3537, 1993.CrossRefGoogle Scholar
  79. [79]
    V. G. Kulkarni, J. C. Campbell, and W. R. Mathew, “Transparent Conductive Coatings,”Synthetic Metals, 57, 3780–3785, 1993.CrossRefGoogle Scholar
  80. [80]
    V. G. Kulkarni, Processing of Polyanilines, in Intrinsically Conducting Polymers: An Emerging Technology, M. Aldissi, Ed., Kluwer Academic Publishers, Dordrecht, p. 45, 1993.Google Scholar
  81. [81]
    C. Y. Yang, Y. Cao, P. Smith, and A. J. Heeger, “Morphology of Conductive, Solution-Processed Blends of Polyaniline and Poly(Methyl Methacrylate),”Synthetic Metals, 53, 293–301, 1993.CrossRefGoogle Scholar
  82. [82]
    O. T Ikkala, J. Laakso, K. Väkiparta, E. Virtanen, H. Ruohonen, H. Järvinen, T. Taka, P. Passiniemi, J. –E. Österholm, Y. Cao, A. Andreatta, P. Smith and A. J. Heeger, “Counter-ion Induced Processibility of Polyaniline: Conducting Melt Processible Polymer Blends,”Synthetic Metals, 69, 97–100, 1995.CrossRefGoogle Scholar
  83. [83]
    F. Xue, Y. Su, and K. Varahramyan, “Conducting Polypyrrole-based Field Effect Transistors Fabricated by Spin Coating and Inkjet Printing,”Spring MRS Conference Symposium I, 2004.Google Scholar
  84. [84]
    J. A. Covington, J. W. Gardner, P. N. Bartlett, and C. S. Toh, “Conductive Polymer Gate FET Devices for Vapour Sensing,”IEE Proceedings-Circuits Devices and Systems, vol. 151, pp. 326–334, 2004.CrossRefGoogle Scholar
  85. [85]
    S. Ashizawa, Y. Shinohara, H. Shindo, Y. Watanabe, and H. Okuzaki, “Polymer FET with a Conducting Channel,”Synthetic Metals, 153, 41–44, 2005.CrossRefGoogle Scholar
  86. [86]
    Y. Liu, K. Varahramyan, and T. H. Cui, “Low-Voltage All-Polymer Field-Effect Transistor Fabricated using an Inkjet Printing Technique,”Macromolecular Rapid Communications, 26, 1955–1959, 2005.CrossRefGoogle Scholar
  87. [87]
    V. C. Nguyen and K. Potje-Kamloth, “Electrical and Chemical Sensing Properties of Doped Polypyrrole/Gold Schottky Barrier Diodes,”Thin Solid Films, 338, 142–148, 1999.CrossRefGoogle Scholar
  88. [88]
    C. N. Van and K. Potje-Kamloth, “Electrical and NOx Gas Sensing Properties of Metallophthalocyanine-doped Polypyrrole/Silicon Heterojunctions,”Thin Solid Films, 392, 113–121, 2001.CrossRefGoogle Scholar
  89. [89]
    D. Xie, Y. D. Jiang, W. Pan, D. Li, Z. M. Wu, and Y. R. Li, “Fabrication and Characterization of Polyaniline-Based Gas Sensor by Ultra-Thin Film Technology,”Sensors and Actuators B-Chemical, 81, 158–164, 2002.CrossRefGoogle Scholar
  90. [90]
    S. V. Mello, P. Dynarowicz-Latka, A. Dhanabalan, R. F. Bianchi, R. Onmori, R. A. J. Janssen, and O. N. Oliveira, “Langmuir and Langmuir-Blodgett Films from the N-hexyl-pyrrole-thiophene (AB) Semi-Amphiphilic Copolymer,”Colloids and Surfaces a-Physicochemical and Engineering Aspects, 198, 45–51, 2002.CrossRefGoogle Scholar
  91. [91]
    N. V. Bhat, A. P. Gadre, and V. A. Bambole, “Investigation of Electropolymerized Polypyrrole Composite Film: Characterization and Application to Gas Sensors,”Journal of Applied Polymer Science, 88, 22–29, 2003.CrossRefGoogle Scholar
  92. [92]
    K. H. An, S. Y. Jeong, H. R. Hwang, and Y. H. Lee, “Enhanced Sensitivity of a Gas Sensor Incorporating Single-walled Carbon Nanotube-Polypyrrole Nanocomposites,”Advanced Materials, 16, 1005–1009, 2004.CrossRefGoogle Scholar
  93. [93]
    G. F. Li, M. Josowicz, J. Janata, and S. Semancik, “Effect of Thermal Excitation on Intermolecular Charge Transfer Efficiency in Conducting Polyaniline,”Applied Physics Letters, 85, 1187–1189, 2004.CrossRefGoogle Scholar
  94. [94]
    J. Elizalde-Torres, H. L. Hu, and A. Garcia-Valenzuela, “NO2-Induced Optical Absorbance Changes in Semiconductor Polyaniline Thin Films,”Sensors and Actuators B-Chemical, 98, 218–226, 2004.CrossRefGoogle Scholar
  95. [95]
    M. K. Ram, O. Yavuz, and M. Aldissi, “NO2 Gas Sensing Based on Ordered Ultrathin Films of Conducting Polymer and its Nanocomposite,”Synthetic Metals, 151, 77–84, 2005.CrossRefGoogle Scholar
  96. [96]
    D. Blackwood and M. Josowicz, “Work Function and Spectroscopic Studies of Interactions Between Conducting Polymers and Organic Vapors,”Journal of Physical Chemistry, 95, 493–502, 1991.CrossRefGoogle Scholar
  97. [97]
    A. A. Athawale, S. V. Bhagwat, and P. P. Katre, “Nanocomposite of Pd-Polyaniline as a Selective Methanol Sensor,”Sensors and Actuators B-Chemical, 114, 263–267, 2006.CrossRefGoogle Scholar
  98. [98]
    J. Janata and M. Josowicz, “Conducting Polymers in Electronic Chemical Sensors,”Nature Materials, 2, 19–24, 2003.CrossRefGoogle Scholar
  99. [99]
    H. Chen, M. Josowicz, and J. Janatax, “Chemical Effects in Organic Electronics,”Chemistry of Materials, 16, 4728–4735, 2004.CrossRefGoogle Scholar
  100. [100]
    A. G. Shrivas, R. G. Bavane, and A. M. Mahajan, “Electronic Nose: A Toxic Gas Sensor by Polyaniline Thin Film Conducting Polymer,”International Workshop on Physics of Semiconductor Devices, pp. 621–623, 2007.Google Scholar
  101. [101]
    E. Pringsheim, D. Zimin, and O. S. Wolfbeis, “Fluorescent Beads Coated with Polyaniline: A Novel Nanomaterial for Optical Sensing of pH,”Advanced Materials, 13, 819–822, 2001.CrossRefGoogle Scholar
  102. [102]
    A. Bossi, S. A. Piletsky, E. V. Piletska, P. G. Righetti, and A. P. F. Turner, “An Assay for Ascorbic Acid Based on Polyaniline-Coated Microplates,”Analytical Chemistry, 72, 4296–4300, 2000.CrossRefGoogle Scholar
  103. [103]
    S. Sukeerthi and A. Q. Contractor, “Molecular Sensors and Sensor Arrays Based on Polyaniline Microtubules,”Analytical Chemistry, 71, 2231–2236, 1999.CrossRefGoogle Scholar
  104. [104]
    Z. X. Wei, Z. M. Zhang, and M. X. Wan, “Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes,”Langmuir, 18, 917–921, 2002.CrossRefGoogle Scholar
  105. [105]
    X. Y. Zhang, W. J. Goux, and S. K. Manohar, “Synthesis of Polyaniline Nanofibers by “Nanofiber Seeding”,”Journal of the American Chemical Society, 126, 4502–4503, 2004.CrossRefGoogle Scholar
  106. [106]
    N. R. Chiou and A. J. Epstein, “Polyaniline Nanofibers Prepared by Dilute Polymerization,”Advanced Materials, 17, 1679–1683, 2005.CrossRefGoogle Scholar
  107. [107]
    J. X. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors,”Journal of the American Chemical Society, 125, 314–315, 2003.CrossRefGoogle Scholar
  108. [108]
    J. X. Huang, “Syntheses and Applications of Conducting Polymer Polyaniline Nanofibers,”Pure and Applied Chemistry, 78, 15–27, 2006.CrossRefGoogle Scholar
  109. [109]
    J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Nanostructured Polyaniline Sensors,”Chemistry-A European Journal, 10, 1315–1319, 2004.CrossRefGoogle Scholar
  110. [110]
    S. Virji, J. X. Huang, R. B. Kaner, and B. H. Weiller, “Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms,”Nano Letters, 4, 491–496, 2004.CrossRefGoogle Scholar
  111. [111]
    J. X. Huang and R. B. Kaner, “Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study,”Angewandte Chemie-International Edition, 43, 5817–5821, 2004.CrossRefGoogle Scholar
  112. [112]
    L. Cai, A. Kovalev, and T. S. Mayer, “Conducting Polymer Nanofibers for Gas Sensor,”Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, pp. 196–198, 2008.Google Scholar
  113. [113]
    K. Krishnamoorthy, R. S. Gokhale, A. Q. Contractor, and A. Kumar, “Novel Label-Free DNA Sensors Based on Poly(3,4-ethylenedioxythiophene),”Chemical Communications, 7, 820–821, 2004.CrossRefGoogle Scholar
  114. [114]
    J. Wang, Y. L. Bunimovich, G. D. Sui, S. Savvas, J. Y. Wang, Y. Y. Guo, J. R. Heath, and H. R. Tseng, “Electrochemical Fabrication of Conducting Polymer Nanowires in an Integrated Microfluidic System,”Chemical Communications, 29, 3075–3077, 2006.CrossRefGoogle Scholar
  115. [115]
    K. Ramanathan, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Bioaffinity Sensing using Biologically Functionalized Conducting-Polymer Nanowire,”Journal of the American Chemical Society, 127, 496–497, 2005.CrossRefGoogle Scholar
  116. [116]
    E. S. Forzani, H. Q. Zhang, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A Conducting Polymer Nanojunction Sensor for Glucose Detection,”Nano Letters, 4, 1785–1788, 2004.CrossRefGoogle Scholar
  117. [117]
    E. Komarova, M. Aldissi, and A. Bogomolova, “Direct Electrochemical Sensor for Fast Reagent-Free DNA Detection,”Biosensors & Bioelectronics, 21, 182–189, 2005.CrossRefGoogle Scholar
  118. [118]
    H. Peng, C. Soeller, M. B. Cannell, G. A. Bowmaker, R. P. Cooney, and J. Travas-Sejdic, “Electrochemical Detection of DNA Hybridization Amplified by Nanoparticles,”Biosensors & Bioelectronics, 21, 1727–1736, 2006.CrossRefGoogle Scholar
  119. [119]
    T. Livache, A. Roget, E. Dejean, C. Barthet, G. Bidan, and R. Teoule, “Preparation of a DNA Matrix Via an Electrochemically Directed Copolymerization of Pyrrole and Oligonucleotides Bearing a Pyrrole Group,”Nucleic Acids Research, 22, 2915–2921, 1994.CrossRefGoogle Scholar
  120. [120]
    N. Lassalle, P. Mailley, E. Vieil, T. Livache, A. Roget, J. P. Correia, and L. M. Abrantes, “Electronically Conductive Polymer Grafted with Oligonucleotides as Electrosensors of DNA – Preliminary Study of Real Time Monitoring by in situ Techniques,”Journal of Electroanalytical Chemistry, 509, 48–57, 2001.CrossRefGoogle Scholar
  121. [121]
    H. Peng, C. Soeller, N. Vigar, P. A. Kilmartin, M. B. Cannell, G. A. Bowmaker, R. P. Cooney, and J. Travas-Sejdic, “Label-Free Electrochemical DNA Sensor Based on Functionalised Conducting Copolymer,”Biosensors & Bioelectronics, 20, 1821–1828, 2005.CrossRefGoogle Scholar
  122. [122]
    P. Godillot, H. KorriYoussoufi, P. Srivastava, A. ElKassmi, and F. Garnier, “Direct Chemical Functionalization of as-grown Electroactive Polypyrrole Film Containing Leaving Groups,”Synthetic Metals, 83, 117–123, 1996.CrossRefGoogle Scholar
  123. [123]
    G. Bidan, M. Billon, K. Galasso, T. Livache, C. Mathis, A. Roget, L. M. Torres-Rodriguez, and E. Vieil, “Electropolymerization as a Versatile Route for Immobilizing Biological Species onto Surfaces – Application to DNA Biochips,”Applied Biochemistry and Biotechnology, 89, 183–193, 2000.CrossRefGoogle Scholar
  124. [124]
    F. Garnier, H. Korri-Youssoufi, P. Srivastava, B. Mandrand, and T. Delair, “Toward Intelligent Polymers: DNA Sensors Based on Oligonucleotide-Functionalized Polypyrroles,”Synthetic Metals, 100, 89–94, 1999.CrossRefGoogle Scholar
  125. [125]
    S. K. Kang, J. H. Kim, J. H. An, E. K. Lee, J. H. Cha, G. B. Lim, Y. S. Park, and D. J. Chung, “Synthesis of Polythiophene Derivatives and their Application for Electrochemical DNA Sensor,”Polymer Journal, 36, 937–942, 2004.CrossRefGoogle Scholar
  126. [126]
    H. Peng, C. Soeller, and T.-S. Jadranka, “DNA Sensors based on Conducting Polymers Functionalized with Conjugated Side Chain,”IEEE SENSORS Conference, pp. 1124–1127, 2007.Google Scholar
  127. [127]
    B. Li, S. Santhanam, L. Schultz, M. Jeffries-EL, M. C. Iovu, G. Sauve, J. Cooper, R. Zhang, J. C. Revelli, A. G. Kusne, J. L. Snyder, T. Kowalewski, L. E. Weiss, R. D. McCullough, G. K. Fedder, and D. N. Lambeth, “Inkjet Printed Chemical Sensor Array Based on Polythiophene Conductive Polymers,”Sensors and Actuators B-Chemical, 123, 651–660, 2007.CrossRefGoogle Scholar
  128. [128]
    P. Woias, “Micropumps – Past, Progress and Future prospects,”Sensors and Actuators B-Chemical, 105, 28–38, 2005.CrossRefGoogle Scholar
  129. [129]
    D. J. Laser and J. G. Santiago, “A Review of Micropumps,”Journal of Micromechanics and Microengineering, 14, R35–R64, 2004.CrossRefGoogle Scholar
  130. [130]
    M. Koch, A. G. R. Evans, and A. Brunnschweiler, “The Dynamic Micropump Driven with a Screen Printed PZT Actuator,”Journal of Micromechanics and Microengineering, 8, 119–122, 1998.CrossRefGoogle Scholar
  131. [131]
    A. Wego and L. Pagel, “A Self-Filling Micropump Based on PCB Technology,”Sensors and Actuators A-Physical, 88, 220–226, 2001.CrossRefGoogle Scholar
  132. [132]
    T. Bourouina, A. Bosseboeuf, and J. P. Grandchamp, “Design and Simulation of an Electrostatic Micropump for Drug-Delivery Applications,”Journal of Micromechanics and Microengineering, 7, 186–188, 1997.CrossRefGoogle Scholar
  133. [133]
    S. Bohm, W. Olthuis, and P. Bergveld, “A Plastic Micropump Constructed with Conventional Techniques and Materials,”Sensors and Actuators A-Physical, 77, 223–228, 1999.CrossRefGoogle Scholar
  134. [134]
    J. H. Park, K. Yoshida, and S. Yokota, “Resonantly Driven Piezoelectric Micropump – Fabrication of a Micropump Having High Power Density,”Mechatronics, 9, 687–702, 1999.CrossRefGoogle Scholar
  135. [135]
    J. Darabi, M. Rada, M. Ohadi, and J. Lawler, “Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump,”Journal of Microelectromechanical Systems, 11, 684–690, 2002.CrossRefGoogle Scholar
  136. [136]
    J. W. Munyan, H. V. Fuentes, M. Draper, R. T. Kelly, and A. T. Woolley, “Electrically Actuated, Pressure-Driven Microfluidic Pumps,”Lab on a Chip, 3, 217–220, 2003.CrossRefGoogle Scholar
  137. [137]
    T. S. Hansen, K. West, O. Hassager, and N. B. Larsen, “An All-Polymer Micropump Based on the Conductive Polymer Poly(3,4-ethylenedioxythiophene) and a Polyurethane Channel System,”Journal of Micromechanics and Microengineering, 17, 860–866, 2007.CrossRefGoogle Scholar
  138. [138]
    K. Yamato and K. Kaneto, “Tubular Linear Actuators Using Conducting Polymer, Polypyrrole,”Analytica Chimica Acta, 568, 133–137, 2006.CrossRefGoogle Scholar
  139. [139]
    J. H. Kim, K. T. Lau, and D. Diamond, “Fabrication of Microfluidic Pump Using Conducting Polymer Actuator,”IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 457–463, 2008.Google Scholar
  140. [140]
    Y. Wu, D. Zhou, G. M. Spinks, P. C. Innis, W. M. Megill, and G. G. Wallace, “TITAN: a Conducting Polymer Based Microfluidic Pump,”Smart Materials & Structures, 14, 1511–1516, 2005.CrossRefGoogle Scholar
  141. [141]
    T. A. Ezquerra, F. Kremer, M. Mohammadi, J. Ruhe, G. Wegner, and B. Wessling, “Ac Conductivity Measurements in Polymeric Insulator Conductor Systems,”Synthetic Metals, 28, C83–C88, 1989.CrossRefGoogle Scholar
  142. [142]
    T. Taka, “EMI-Shielding Measurements on Poly(3-Octyl Thiophene) Blends,”Synthetic Metals, 41, 1177–1180, 1991.CrossRefGoogle Scholar
  143. [143]
    S. K. Dhawan, N. Singh, and S. Venkatachalam, “Shielding Effectiveness of Conducting Polyaniline Coated Fabrics at 101 GHz,”Synthetic Metals, 125, 389–393, 2001.CrossRefGoogle Scholar
  144. [144]
    C. Y. Lee, H. G. Song, K. S. Jang, E. J. Oh, A. J. Epstein, and J. Joo, “Electromagnetic Interference Shielding Efficiency of Polyaniline Mixtures and Multilayer Films,”Synthetic Metals, 102, 1346–1349, 1999.CrossRefGoogle Scholar
  145. [145]
    S. Koul, R. Chandra, and S. K. Dhawan, “Conducting Polyaniline Composite for ESD and EMI at 101 GHz,”Polymer, 41, 9305–9310, 2000.CrossRefGoogle Scholar
  146. [146]
    H. K. Kim, M. S. Kim, K. Song, Y. H. Park, S. H. Kim, J. Joo, and J. Y. Lee, “EMI Shielding Intrinsically Conducting Polymer/PET Textile Composites,”ICSM International Conference on Science and Technology of Synthetic Metals, Shanghai , CHINE, vol. 135, no. 36, p. 881, 2002.Google Scholar
  147. [147]
    Y. Y. Wang and X. L. Jing, “Intrinsically Conducting Polymers for Electromagnetic Interference Shielding,”Polymers for Advanced Technologies, 16, 344–351, 2005.CrossRefGoogle Scholar
  148. [148]
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-Emitting-Diodes Based on Conjugated Polymers,”Nature, 347, 539–541, 1990.CrossRefGoogle Scholar
  149. [149]
    C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,”Applied Physics Letters, 51, 913–915, 1987.CrossRefGoogle Scholar
  150. [150]
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers,”Nature, 397, 121–128, 1999.CrossRefGoogle Scholar
  151. [151]
    A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High Brightness and Efficiency Blue Light-Emitting Polymer Diodes,”Applied Physics Letters, 73, 629–631, 1998.CrossRefGoogle Scholar
  152. [152]
    N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, “Efficient Light-Emitting-Diodes Based on Polymers with High Electron-Affinities,”Nature, 365, 628–630, 1993.CrossRefGoogle Scholar
  153. [153]
    P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, “Molecular-Scale Interface Engineering for Polymer Light-Emitting Diodes,”Nature, 404, 481–484, 2000.CrossRefGoogle Scholar
  154. [154]
    Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, “Improved Quantum Efficiency for Electroluminescence in Semiconducting Polymers,”Nature, 397, 414–417, 1999.CrossRefGoogle Scholar
  155. [155]
    Z. Shuai, D. Beljonne, R. J. Silbey, and J. L. Bredas, “Singlet and Triplet Exciton Formation Rates in Conjugated Polymer Light-Emitting Diodes,”Physical Review Letters, 84, 131–134, 2000.CrossRefGoogle Scholar
  156. [156]
    J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminescence Emission Pattern of Organic Light-Emitting Diodes: Implications for Device Efficiency Calculations,”Journal of Applied Physics, 88, 1073–1081, 2000.CrossRefGoogle Scholar
  157. [157]
    R. Friend, J. Burroughes, and T. Shimoda, “Polymer Diodes,”Physics World, 12, 35–40, 1999.Google Scholar
  158. [158]
    J. J. M. Halls, J. Cornil, D. A. dos Santos, R. Silbey, D. H. Hwang, A. B. Holmes, J. L. Bredas, and R. H. Friend, “Charge- and Energy-Transfer Processes at Polymer/Polymer Interfaces: A Joint Experimental and Theoretical Study,”Physical Review B, 60, 5721–5727, 1999.CrossRefGoogle Scholar
  159. [159]
    J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient Photodiodes from Interpenetrating Polymer Networks,”Nature, 376, 498–500, 1995.CrossRefGoogle Scholar
  160. [160]
    G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells – Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,”Science, 270, 1789–1791, 1995.CrossRefGoogle Scholar
  161. [161]
    M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, “Laminated Fabrication of Polymeric Photovoltaic Diodes,”Nature, 395, 257–260, 1998.CrossRefGoogle Scholar
  162. [162]
    K. Shankar, X. Feng, and C. A. Grimes, “Enhanced Harvesting of Red Photons in Nanowire Solar Cells: Evidence of Resonance Energy Transfer,”ACS NANO, 3, 788–794, 2009.CrossRefGoogle Scholar
  163. [163]
    R. H. Baughman, “Conducting Polymer Artificial Muscles,”Synthetic Metals, 78, 339–353, 1996.CrossRefGoogle Scholar
  164. [164]
    Q. B. Pei and O. Inganas, “Electrochemical Applications of the Bending Beam Method, a Novel Way to Study Ion-Transport in Electroactive Polymers,”Solid State Ionics, 60, 161–166, 1993.CrossRefGoogle Scholar
  165. [165]
    Q. B. Pei and O. Inganas, “Conjugated Polymers as Smart Materials, Gas Sensors and Actuators Using Bending Beams,”Synthetic Metals, 57, 3730–3735, 1993.CrossRefGoogle Scholar
  166. [166]
    T. E. Herod and J. B. Schlenoff, “Doping-Induced Strain in Polyaniline – Stretch Electrochemistry,”Chemistry of Materials, 5, 951–955, 1993.CrossRefGoogle Scholar
  167. [167]
    R. Pytel, E. Thomas, and I. Hunter, “Anisotropy of Electroactive Strain in Highly Stretched Polypyrrole Actuators,”Chemistry of Materials, 18, 861–863, 2006.CrossRefGoogle Scholar
  168. [168]
    M. R. Warren and J. D. Madden, “Electrochemical Switching of Conducting Polymers: A Variable Resistance Transmission Line Model,”Journal of Electroanalytical Chemistry, 590, 76–81, 2006.CrossRefGoogle Scholar
  169. [169]
    J. D. Madden, R. A. Cush, T. S. Kanigan, and I. W. Hunter, “Fast Contracting Polypyrrole Actuators,”Synthetic Metals, 113, 185–192, 2000.CrossRefGoogle Scholar
  170. [170]
    S. Hara, T. Zama, W. Takashima, and K. Kaneto, “Free-Standing Polypyrrole Actuators with Response Rate of 10.8% s(–1),”Synthetic Metals, 149, 199–201, 2005.CrossRefGoogle Scholar
  171. [171]
    J. Ding, L. Liu, G. M. Spinks, D. Z. Zhou, G. G. Wallace, and J. Gillespie, “High Performance Conducting Polymer Actuators Utilising a Tubular Geometry and Helical Wire Interconnects,”Synthetic Metals, 138, 391–398, 2003.CrossRefGoogle Scholar
  172. [172]
    G. M. Spinks, V. Mottaghitalab, M. Bahrami-Saniani, P. G. Whitten, and G. G. Wallace, “Carbon-Nanotube-Reinforced Polyaniline Fibers for High-Strength Artificial Muscles,”Advanced Materials, 18, 637–640, 2006.CrossRefGoogle Scholar
  173. [173]
    G. M. Spinks and V. T. Truong, “Work-per-cycle Analysis for Electromechanical Actuators,”Sensors and Actuators A-Physical, 119, 455–461, 2005.CrossRefGoogle Scholar
  174. [174]
    M. J. Marsella, R. J. Reid, S. Estassi, and L. S. Wang, “Tetra[2,3-thienylene]: A Building Block for Single-Molecule Electromechanical Actuators,”Journal of the American Chemical Society, 124, 12507–12510, 2002.CrossRefGoogle Scholar
  175. [175]
    A. DellaSanta, A. Mazzoldi, and D. DeRossi, “Steerable Microcatheters Actuated by Embedded Conducting Polymer Structures,”Journal of Intelligent Material Systems and Structures, 7, 292–300, 1996.CrossRefGoogle Scholar
  176. [176]
    Y. Z. Lam, J. Swingler, and J. W. McBride, “The Contact Resistance Force Relationship of an Intrinsically Conducting Polymer Interface,”IEEE Transactions on Components and Packaging Technologies, 29, 294–302, 2006.CrossRefGoogle Scholar
  177. [177]
    E. C. Cooper and B. Vincent, “Electrically Conducting Organic Films and Beads Based on Conducting Latex-Particles,”Journal of Physics D-Applied Physics, 22, 1580–1585, 1989.CrossRefGoogle Scholar
  178. [178]
    E. Sancaktar and C. J. Liu, “Use of Polymeric Emeraldine Salt for Conductive Adhesive Applications,”Journal of Adhesion Science and Technology, 17, 1265–1282, 2003.CrossRefGoogle Scholar
  179. [179]
    F. Corsat, C. Davoine, A. Gasse, M. Fendler, G. Feuillet, L. Mathieu, F. Marion, and A. Pron, “Imprint Technologies on Conductive Polymers and Metals for Interconnection and Bumping Purposes,”1st IEEE Electronics System Integration Technology Conference (ESTC), pp. 1336–1341, 2006.Google Scholar
  180. [180]
    L. W. Chow, J. Li, and M. F. Yuen, “Development of Low Temperature Processing Thermoplastic Intrinsically Conductive Polymer,”8th International Symposium on Advanced Packaging Materials, pp. 127–131, 2002.Google Scholar
  181. [181]
    F. Kuechenmeister and E. Meusel, “Polypyrrole as an Interlayer for Bonding Conductive Adhesives to Activated Aluminum Bond Pads,”IEEE Transactions on Components Packaging and Manufacturing Technology Part A, 20, 9–14, 1997.CrossRefGoogle Scholar
  182. [182]
    J. X. Lu, K. S. Moon, B. K. Kim, and C. P. Wong, “High Dielectric Constant Polyaniline/Epoxy Composites via In Situ Polymerization for Embedded Capacitor Applications,”Polymer, 48, 1510–1516, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Henkel Loctite (China) Co. Ltd.ChandlerPeople’s Republic China

Personalised recommendations