Skip to main content

Abstract

Patterning of electronics to obtain specific designs is conventionally carried out on wafer or substrates by photolithography. This is a process to transfer images and patterns from a mask to the surface of a wafer or substrate. The steps typically involved in the photolithographic process are wafer or substrate cleaning, barrier layer formation, photoresist application, soft baking, mask alignment, exposure and development, and hard-baking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.ece.gatech.edu/research/labs/vc/theory/photolith.html

  2. R. F. Service, “Patterning Electronics on the Cheap,”Science, 278, 383–384, 1997.

    Article  Google Scholar 

  3. D. Harrison, B. J. Ramsey, P. Sidney, and A. Evans,US Patent # 6,356,234.

    Google Scholar 

  4. C. Edward, “PEDs are Coming, Printable Electronics and Displays,” Printed Electronics, New Orleans. USA, 2004.

    Google Scholar 

  5. B. J. Ramsey, P. S. A. Evans, and D. Harrison, “A Novel Circuit Fabrication Technique Using Offset Lithography,”Journal of Electronics Manufacturing, 7, 63–67, 1997.

    Article  Google Scholar 

  6. S. Pienimaa and R. Ronkka, “Towards Printed Products,” Printed Electronics Europe 2005, Cambridge, UK, 2005.

    Google Scholar 

  7. T. Remonen, “Organic Electronics: From Basic Research to Production,” Printed Electronics, Pira International, Thistle Marble Arch, London, UK, Sept 14–15, 2004.

    Google Scholar 

  8. P. Calvert, “Inkjet Printing for Materials and Devices,”Chemistry of Materials, 13, 3299–3305, 2001.

    Article  Google Scholar 

  9. H. Sirringhaus and T. Shimoda, “Inkjet Printing of Functional Materials,”MRS Bulletin, 28, 802–803, 2003.

    Google Scholar 

  10. R. Sangoi, C. G. Smith, M. D. Seymour, J. N. Venkataraman, D. M. Clark, M. L. Kleper, and B. E. Kahn, “Printing Radio Frequency Identification (RFID) Tag Antennas Using Inks Containing Silver Dispersions,”Journal of Dispersion Science and Technology, 25, 513–521, 2004.

    Article  Google Scholar 

  11. D. Lochun and M. Kilitziraki, “Post-Processing of Conductive Lithographic Films for Multilayer Device Fabrication,”IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 287–293, 1999.

    Google Scholar 

  12. P. M. Harrey, B. J. Ramsey, P. S. A. Evans, and D. J. Harrison, “Capacitive-Type Humidity Sensors Fabricated Using the Offset Lithographic Printing Process,”Sensors and Actuators B-Chemical, 87, 226–232, 2002.

    Article  Google Scholar 

  13. P. R. Shepherd, P. S. A. Evans, B. J. Ramsey, and D. J. Harrison, “Lithographic Technology for Microwave Integrated Circuits,”Electronics Letters, 33, 483–484, 1997.

    Article  Google Scholar 

  14. P. S. A. Evans, P. M. Harrey, B. J. Ramsey, and D. J. Harrison, “RF Circulator Structures via Offset Lithography,”Electronics Letters, 35, 1634–1636, 1999.

    Article  Google Scholar 

  15. R. Weiss and R. Baumann,Changing Offset Printing: From Color to Functionality, Latest Technology & Applications for Printed Electronics- Impact on Printing and Packaging, 2004.

    Google Scholar 

  16. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,”Science, 290, 2123–2126, 2000.

    Article  Google Scholar 

  17. L. Torsi, A. Tafuri, N. Cioffi, M. C. Gallazzi, A. Sassella, L. Sabbatini, and P. G. Zambonin, “Regioregular Polythiophene Field-Effect Transistors Employed as Chemical Sensors,”Sensors and Actuators B-Chemical, 93, 257–262, 2003.

    Article  Google Scholar 

  18. J. Parker, “Practical Considerations of Printing Conductive Materials,” IMAPS 3rd Advanced Technology Workshop on Printing an Intelligent Future: Printed Organic and Molecular Electronics Technologies, Annapolis, Maryland, 2004.

    Google Scholar 

  19. D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, “Printed Organic and Molecular Electronics,” Kluwer Academic Publishers (Boston/Dordrecht/New York/London), Springer, 2004.

    Google Scholar 

  20. D. A. Bolon, G. M. Lucas, and S. H. Schroeter, “Radiation Curable Conductive Ink,”IEEE Transactions on Electrical Insulation, 13, 116–121, 1978.

    Article  Google Scholar 

  21. “Metallic Conductive Inks,”Printed Electronics Review, 2006.

    Google Scholar 

  22. D. Carli, “A Bright Future for the Growth of Gravure: Printed Electronics,”Gravure Magazine, vol. 2, pp. 46–51, 2006.

    Google Scholar 

  23. G. Huebner and I. Petersen, “Printed Antennas for Automotive Applications,”Science & Technology, 1, 35–39, 2008.

    Google Scholar 

  24. R. Moscatiello, "A Reflection of the Future: RFID Today,”SGIA Journal, first Quarter, 25–29, 2005.

    Google Scholar 

  25. D. J. Fearns, “Applications of Polymer Thick Film Inks in Surface Mount Technology,”Circuit World, 14, 27–30, 1988.

    Article  Google Scholar 

  26. A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, “Ink-Jet Printing of Metallic Nanoparticles and Microemulsions,”Macromolecular Rapid Communications, 26, 281–288, 2005.

    Article  Google Scholar 

  27. G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, “Small Particle Melting of Pure Metals,”Thin Solid Films, 144, 297–308, 1986.

    Article  Google Scholar 

  28. Q. Jiang, S. Zhang, and M. Zhao, “Size-Dependent Melting Point of Noble Metals,”Materials Chemistry and Physics, 82, 225–227, 2003.

    Article  Google Scholar 

  29. K. Dick, T. Dhanasekaran, Z. Y. Zhang, and D. Meisel, “Size-Dependent Melting of Silica-Encapsulated Gold Nanoparticles,”Journal of the American Chemical Society, 124, 2312–2317, 2002.

    Article  Google Scholar 

  30. Z. Zhang, J. C. Li, and Q. Jiang, “Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals,”Journal of Physics D-Applied Physics, 33, 2653–2656, 2000.

    Article  Google Scholar 

  31. G. P. Crawford, Ed., Flexible Flat Panel Display, Wiley, New York, 2005.

    Google Scholar 

  32. P. Buffat and J.-P. Borel, “Size Effect on the Melting Temperature of Gold Particles,”Physical Review A, 13, 2287–2298, 1976.

    Article  Google Scholar 

  33. J. W. Park and S. G. Baek, “Thermal Behavior of Direct-Printed Lines of Silver Nanoparticles,”Scripta Materialia, 55, 1139–1142, 2006.

    Article  Google Scholar 

  34. D. Wakuda, M. Hatamura, and K. Suganuma, “Novel Method for Room Temperature Sintering of Ag Nanoparticle Paste in Air,”Chemical Physics Letters, 441, 305–308, 2007.

    Article  Google Scholar 

  35. D. Kim, S. Jeong, J. Moon, and K. Kang, “Ink-Jet Printing of Silver Conductive Tracks on Flexible Substrates,”Molecular Crystals and Liquid Crystals, 459, 45–55, 2006.

    Google Scholar 

  36. T. Yonezawa, K. Yasui, and N. Kimizuka, “Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer,”Langmuir, 17, 271–273, 2001.

    Article  Google Scholar 

  37. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, and S. Fukuzumi, “Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles,”Journal of the American Chemical Society, 127, 1216–1228, 2005.

    Article  Google Scholar 

  38. E. E. Foos, A. W. Snow, M. E. Twigg, and M. G. Ancona, “Thiol-Terminated Di-, Tri-, and Tetraethylene Oxide Functionalized Gold Nanoparticles: A Water-Soluble, Charge-Neutral Cluster,”Chemistry of Materials, 14, 2401–2408, 2002.

    Article  Google Scholar 

  39. S. U. Son, Y. Jang, K. Y. Yoon, E. Kang, and T. Hyeon, “Facile Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles Through the Understanding of Coordination Chemistry of the Nanoparticles,”Nano Letters, 4, 1147–1151, 2004.

    Article  Google Scholar 

  40. V. J. Gandubert and R. B. Lennox, “Assessment of 4-(Dimethylamino)pyridine as a Capping Agent for Gold Nanoparticles,”Langmuir, 21, 6532–6539, 2005.

    Article  Google Scholar 

  41. C. K. Yee, A. Ulman, J. D. Ruiz, A. Parikh, H. White, and M. Rafailovich, “Alkyl Selenide- and Alkyl Thiolate-Functionalized Gold Nanoparticles: Chain Packing and Bond Nature,”Langmuir, 19, 9450–9458, 2003.

    Article  Google Scholar 

  42. P. Ahonen, T. Laaksonen, A. Nykanen, J. Ruokolainen, and K. Kontturi, “Formation of Stable Ag-Nanoparticle Aggregates Induced by Dithiol Cross-Linking,”Journal of Physical Chemistry B, 110, 12954–12958, 2006.

    Article  Google Scholar 

  43. S. Ray, A. K. Das, M. G. B. Drew, and A. Banerjee, “A Short Water-Soluble Self-Assembling Peptide Forms Amyloid-Like Fibrils,”Chemical Communications, 40, 4230–4232, 2006.

    Article  Google Scholar 

  44. P. K. Vemula and G. John, “Smart Amphiphiles: Hydro/Organogelators for In Situ Reduction of Gold,”Chemical Communications, 21, 2218–2220, 2006.

    Article  Google Scholar 

  45. X. D. Wang, C. E. Egan, M. F. Zhou, K. Prince, D. R. G. Mitchell, and R. A. Caruso, “Effective Gel for Gold Nanoparticle Formation, Support and Metal Oxide Templating,”Chemical Communications, 29, 3060–3062, 2007.

    Article  Google Scholar 

  46. I. Doudevski and D. K. Schwartz, “Mechanisms of Self-Assembled Monolayer Desorption Determined Using In Situ Atomic Force Microscopy,”Langmuir, 16, 9381–9384, 2000.

    Article  Google Scholar 

  47. G. Schmid, R. Pfeil, and R. Boese, “Au55[P(C6H5)3]12Cl6-a Gold Cluster of Unusual Size,”Chemische Berichte, 114, 3634–3642, 1981.

    Article  Google Scholar 

  48. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System,”Journal of the Chemical Society-Chemical Communications, 7, 801–802, 1994.

    Article  Google Scholar 

  49. M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology,”Chemical Reviews, 104, 293–346, 2004.

    Article  Google Scholar 

  50. S. W. Chen and J. M. Sommers, “Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution,”Journal of Physical Chemistry B, 105, 8816–8820, 2001.

    Article  Google Scholar 

  51. N. Sandhyarani and T. Pradeep, “Crystalline Solids of Alloy Clusters,”Chemistry of Materials, 12, 1755–1761, 2000.

    Article  Google Scholar 

  52. N. Sandhyarani, M. R. Resmi, R. Unnikrishnan, K. Vidyasagar, S. G. Ma, M. P. Antony, G. P. Selvam, V. Visalakshi, N. Chandrakumar, K. Pandian, Y. T. Tao, and T. Pradeep, “Monolayer-Protected Cluster Superlattices: Structural, Spectroscopic, Calorimetric, and Conductivity Studies,”Chemistry of Materials, 12, 104–113, 2000.

    Article  Google Scholar 

  53. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,”Chemical Reviews, 105, 1103–1169, 2005.

    Article  Google Scholar 

  54. S. Bhat and U. Maitra, “Facially Amphiphilic Thiol Capped Gold and Silver Nanoparticles,”Journal of Chemical Sciences, 120, 507–513, 2008.

    Article  Google Scholar 

  55. J. G. Yang, Y. L. Zhou, T. Okamoto, T. Bessho, S. Satake, R. Ichino, and M. Okido, “Preparation of Oleic Acid-Capped Copper Nanoparticles,”Chemistry Letters, 35, 1190–1191, 2006.

    Article  Google Scholar 

  56. E. Foresti, G. Fracasso, M. Lanzi, I. G. Lesci, L. Paganin, T. Zuccheri, and N. Roveri, “New Thiophene Monolayer-Protected Copper Nanoparticles: Synthesis and Chemical-Physical Characterization,”Journal of Nanomaterials, 2008(3), 1–6, 2008.

    Article  Google Scholar 

  57. P. Kanninen, C. Johans, J. Merta, and K. Kontturi, “Influence of Ligand Structure on the Stability and Oxidation of Copper Nanoparticles,”Journal of Colloid and Interface Science, 318, 88–95, 2008.

    Article  Google Scholar 

  58. K. Murai, Y. Watanabe, Y. Saito, T. Nakayama, H. Suematsu, W. Jiang, K. Yatsui, K. H. Shim, and K. Niihara, “Preparation of Copper Nanoparticles with an Organic Coating by a Pulsed Wire Discharge Method,”Journal of Ceramic Processing Research, 8, 114–118, 2007.

    Google Scholar 

  59. N. A. Luechinger, E. K. Athanassiou, and W. J. Stark, “Graphene-Stabilized Copper Nanoparticles as an Air-Stable Substitute for Silver and Gold in Low-Cost Ink-Jet Printable Electronics,”Nanotechnology, 19, 445201, 2008.

    Article  Google Scholar 

  60. K. Woo, D. Kim, J. S. Kim, S. Lim, and J. Moon, “Ink-Jet Printing of Cu-Ag-Based Highly Conductive Tracks on a Transparent Substrate,”Langmuir, 25, 429–433, 2009.

    Article  Google Scholar 

  61. R. A. de Barros, C. R. Martins, and W. M. de Azevedo, “Writing with Conducting Polymer,”Synthetic Metals, 155, 35–38, 2005.

    Article  Google Scholar 

  62. F. Nelson, “Materials Ink Jet Printing of Electronic Structures,”National Nanotechnology Infrastructure Network, 2007 REU Research Accomplishments, pp. 70–71, 2007.

    Google Scholar 

  63. E. Montbach, D. Marhefka, D. J. Davis, M. Lightfoot, S. Green, N. Venkataraman, T. Schneider, A. Khan, and J. W. Doane, “Flexible Ink Jet Printed Conductive Polymer Electrode Cholesteric Display,”SID Digest, pp. 1737–1740, 2006.

    Google Scholar 

  64. J. Bharathan and Y. Yang, “Polymer Electroluminescent Devices Processed by Inkjet Printing: I. Polymer Light-Emitting Logo,”Applied Physics Letters, 72, 2660–2662, 1998.

    Article  Google Scholar 

  65. A. Karwa, “Printing Studies with Conductive Inks and Exploration of New Conducting Polymer Compositions,”Rochester Institute of Technology, March 2006, Master Thesis, 2006.

    Google Scholar 

  66. J. X. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors,”Journal of the American Chemical Society, 125, 314–315, 2003.

    Article  Google Scholar 

  67. J. X. Huang and R. B. Kaner, “Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study,”Angewandte Chemie-International Edition, 43, 5817–5821, 2004.

    Article  Google Scholar 

  68. A. V. Gelatos, R. Marsh, M. Kottke, and C. J. Mogab, “Chemical-Vapor-Deposition of Copper from Cu+1 Precursors in the Presence of Water-Vapor,”Applied Physics Letters, 63, 2842–2844, 1993.

    Article  Google Scholar 

  69. R. Izquierdo, J. Bertomeu, M. Suys, E. Sacher, and M. Meunier, “Excimer Laser-Induced Deposition of Copper from Cu(Hfac)(Tmvs),”Applied Surface Science, 86, 509–513, 1995.

    Article  Google Scholar 

  70. C. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, and D. Ginley, “Metallizations by Direct-Write Inkjet Printing,” Colorado, October 2001.

    Google Scholar 

  71. P. Majumder, M. Tiwari, C. Megaridis, J. McAndrew, M. Xu, J. Belot, and C. G. Takoudis, “Evaluation and Testing of Organometallic Precursor for Copper Direct-Write,”MRS Spring Meeting, Symposium N, Paper #: 1002-N07-23, 2007.

    Google Scholar 

  72. M. Wehner, F. Legewie, B. Theisen, and E. Beyer, “Direct Writing of Gold and Copper Lines from Solutions,”International Conference on Photo-Excited Processes and Applications No. 2, Jerusalem, ISRAEL, vol. 106, pp. 406–411, 1996.

    Google Scholar 

  73. Y. H. Byun, E. C. Hwang, S. Y. Lee, Y. Y. Lyu, J. H. Yim, J. Y. Kim, S. Chang, L. S. Pu, and J. M. Kim, “Highly Efficient Silver Patterning without Photo-Resist Using Simple Silver Precursors,”Materials Science and Engineering B-Solid State Materials for Advanced Technology, 117, 11–16, 2005.

    Google Scholar 

  74. C. A. Lu, P. Lin, H. C. Lin, and S. F. Wang, “Effects of Metallo-Organic Decomposition Agents on Thermal Decomposition and Electrical Conductivity of Low-Temperature-Curing Silver Paste,”Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45, 6987–6992, 2006.

    Google Scholar 

  75. C. A. Lu, P. Lin, H. C. Lin, and S. F. Wang, “Effects of Silver Oxide Addition on the Electrical Resistivity and Microstructure of Low-Temperature-Curing Metallo-Organic Decomposition Silver Pastes,”Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 46, 4179–4183, 2007.

    Google Scholar 

  76. B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,”Advanced Materials, 16, 203–213, 2004.

    Article  Google Scholar 

  77. H. M. Dong, W. W. Carr, and J. F. Morris, “An Experimental Study of Drop-on-Demand Drop Formation,”Physics of Fluids, 18, 072102, 2006.

    Article  Google Scholar 

  78. N. Reis, C. Ainsley, and B. Derby, “Ink-Jet Delivery of Particle Suspensions by Piezoelectric Droplet Ejectors,”Journal of Applied Physics, 97, 094903, 2005.

    Article  Google Scholar 

  79. K. Cheng, M. H. Yang, W. W. W. Chiu, C. Y. Huang, J. Chang, T. F. Ying, and Y. Yang, “Ink-Jet Printing, Self-Assembled Polyelectrolytes, and Electroless Plating: Low Cost Fabrication of Circuits on a Flexible Substrate at Room Temperature,”Macromolecular Rapid Communications, 26, 247–264, 2005.

    Article  Google Scholar 

  80. P. J. Smith, D. Y. Shin, J. E. Stringer, B. Derby, and N. Reis, “Direct Ink-Jet Printing and Low Temperature Conversion of Conductive Silver Patterns,”Journal of Materials Science, 41, 4153–4158, 2006.

    Article  Google Scholar 

  81. H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet Printing of Nanosized Silver Colloids,”Nanotechnology, 16, 2436–2441, 2005.

    Article  Google Scholar 

  82. J. B. Szczech, C. M. Megaridis, D. R. Gamota, and J. Zhang, “Fine-line Conductor Manufacturing Using Drop-on-Demand PZT Printing Technology,”IEEE Transactions on Electronics Packaging Manufacturing, 25, 26–33, 2002.

    Article  Google Scholar 

  83. Y. L. Wu, Y. N. Li, and B. S. Ong, “Printed Silver Ohmic Contacts for High-mobility Organic Thin-Film Transistors,”Journal of the American Chemical Society, 128, 4202–4203, 2006.

    Article  Google Scholar 

  84. Y. Yoshioka, P. D. Calvert, and G. E. Jabbour, “Simple Modification of Sheet Resistivity of Conducting Polymeric Anodes via Combinatorial Ink-Jet Printing Techniques,”Macromolecular Rapid Communications, 26, 238–246, 2005.

    Article  Google Scholar 

  85. S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems,”Journal of Microelectromechanical Systems, 11, 54–60, 2002.

    Article  Google Scholar 

  86. D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, “Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics,”Journal of the Electrochemical Society, 150, 412–417, 2003.

    Article  Google Scholar 

  87. J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-Jet Printing and Microwave Sintering of Conductive Silver Tracks,”Advanced Materials, 18, 2101–2104, 2006.

    Article  Google Scholar 

  88. C. Kung, M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “Single-Molecule Analysis of Ultradilute Solutions with Guided Streams of 1-mu m Water Droplets,”Applied Optics, 38, 1481–1487, 1999.

    Article  Google Scholar 

  89. T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, and U. S. Schubert, “Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates,”Advanced Materials, 20, 343–345, 2008.

    Article  Google Scholar 

  90. H. Yokoyama, “Nanotechnology: A Breakthrough toward a Resource & Energy Compatible Society of 21st Century,”AIST Today International Edition No.10, Nanotechnology, 2003.

    Google Scholar 

  91. K. Murata, “Super-fine Ink-jet Printing for Nanotechnology,”Proceedings of the International Conference on MEMS, NANO and Smart Systems, 2003.

    Google Scholar 

  92. N. Zhao, M. Chiesa, H. Sirringhausa, Y. N. Li, and Y. L. Wu, “Self-Aligned Inkjet Printing of Highly Conducting Gold Electrodes with Submicron Resolution,”Journal of Applied Physics, 101, 064513, 2007.

    Article  Google Scholar 

  93. N. R. Bieri, J. Chung, D. Poulikakos, and C. P. Grigoropoulos, “Manufacturing of Nanoscale Thickness Gold Lines by Laser Curing of a Discretely Deposited Nanoparticle Suspension,”Superlattices and Microstructures, 35, 437–444, 2004.

    Article  Google Scholar 

  94. T. Y. Choi, D. Poulikakos, and C. P. Grigoropoulos, “Fountain-pen-based Laser Microstructuring with Gold Nanoparticle Inks,”Applied Physics Letters, 85, 13–15, 2004.

    Article  Google Scholar 

  95. J. W. Chung, S. W. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor Microstructures by Laser Curing of Printed Gold Nanoparticle Ink,”Applied Physics Letters, 84, 801–803, 2004.

    Article  Google Scholar 

  96. M. Nuchter, B. Ondruschka, W. Bonrath, and A. Gum, “Microwave Assisted Synthesis – A Critical Technology Overview,”Green Chemistry, 6, 128–141, 2004.

    Article  Google Scholar 

  97. T. Niizeki, K. Maekawa, M. Mita, K. Yamasaki, Y. Matsuba, N. Terada, and H. Saito, “Laser Sintering of Ag Nanopaste Film and Its Application to Bond-Pad Formation,”Proceedings of the 58th IEEE Electronic Components and Technology Conference, pp. 1745–1750, 2008.

    Google Scholar 

  98. K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan, “Synthesis of Inorganic Solids Using Microwaves,”Chemistry of Materials, 11, 882–895, 1999.

    Article  Google Scholar 

  99. P. Lidstrom, J. Tierney, B. Wathey, and J. Westman, “Microwave Assisted Organic Synthesis – A Review,”Tetrahedron, 57, 9225–9283, 2001.

    Article  Google Scholar 

  100. F. Wiesbrock, R. Hoogenboom, and U. S. Schubert, “Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives,”Macromolecular Rapid Communications, 25, 1739–1764, 2004.

    Article  Google Scholar 

  101. Y. Fang, M. T. Lanagan, D. K. Agrawal, G. Y. Yang, C. A. Randall, T. R. Shrout, A. Henderson, M. Randall, and A. Tajuddin, “An Investigation Demonstrating the Feasibility of Microwave Sintering of Base-Metal-Electrode Multilayer Capacitors,”Journal of Electroceramics, 15, 13–19, 2005.

    Article  Google Scholar 

  102. R. M. Anklekar, K. Bauer, D. K. Agrawal, and R. Roy, “Improved Mechanical Properties and Microstructural Development of Microwave Sintered Copper and Nickel Steel PM Parts,”Powder Metallurgy, 48, 39–46, 2005.

    Article  Google Scholar 

  103. E. T. Thostenson and T. W. Chou, “Microwave Processing: Fundamentals and Applications,”Composites Part A-Applied Science and Manufacturing, 30, 1055–1071, 1999.

    Article  Google Scholar 

  104. G. Oosterhuis and F. K. Feenstra, “Pyrolytic Printing, the Holy Grail in Metal Printing?,”5th European Thermal-Sciences Conference, The Netherlands, 2008.

    Google Scholar 

  105. T. C. Claypole, E. Jewell, G. Davies, and V. Vigne, “The Effect of Speed and Viscosity on Line Quality in Rotogravure Printing with Reference to Printed Electronics,”IARIGAI's 32nd International Research Conference on Digitalization and Print Media, Porvoo, Finland, pp. 93–99, 2005.

    Google Scholar 

  106. M. F. Bohan, T. C. Claypole, and D. T. Gethin, “The Effect of Process Parameters on Product Quality of Rotogravure Printing,”Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, vol. 214, pp. 205–219, 2000.

    Article  Google Scholar 

  107. K. Gillett, Gravure – Process and Technology, GAA and GEF, 2nd Ed., Rochester, New York: Gravure Association of America, Gravure Education Foundation, 2003.

    Google Scholar 

  108. M. Pudas, N. Halonen, P. Granat, and J. Vahakangas, “Gravure Printing of Conductive Particulate Polymer Inks on Flexible Substrates,”Progress in Organic Coatings, 54, 310–316, 2005.

    Article  Google Scholar 

  109. J. G. F. Bai, R. Yin, Z. Y. Zhang, G. Q. Lu, and J. D. van Wyk, “High-temperature Operation of SiC Power Devices by Low-temperature Sintered Silver Die-attachment,”IEEE Transactions on Advanced Packaging, 30, 506–510, 2007.

    Article  Google Scholar 

  110. A. D. Albert, M. F. Becker, J. W. Keto, and D. Kovar, “Low Temperature, Pressure-Assisted Sintering of Nanoparticulate Silver Films,”Acta Materialia, 56, 1820–1829, 2008.

    Article  Google Scholar 

  111. H. Wang, L. Huang, Z. Xu, C. Xu, R. J. Composto, and Z. Yang, “Sintering Metal Nanoparticle Films,”Flexible Electronics and Displays Conference and Exhibition, pp. 1–3, 2008.

    Google Scholar 

  112. K. Murata and K. Shimizu, “Micro Bump Formation by Using a Super Fine Inkjet System,”35th International Symposium on Microelectronics IMAPS, San Diego, TP66, 2006.

    Google Scholar 

  113. M. Mäntysalo and P. Mansikkamäki, “Inkjet-Deposited Interconnections for Electronic Packaging,”NIP23 and Digital Fabrication, pp. 813–817, 2007.

    Google Scholar 

  114. H. Saito and Y. Matsuba, “Liquid Wiring Technology by Ink-Jet Printing Using NanoPaste,”Proceedings of the 39th International Symposium on Microelectronics, San Diego, USA, 2006.

    Google Scholar 

  115. N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by Printing and Laser Curing of Nanoparticle Solutions,”Applied Physics Letters, 82, 3529–3531, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y., Lu, D., Wong, C.P. (2010). Conductive Nano-Inks. In: Electrical Conductive Adhesives with Nanotechnologies. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88783-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88783-8_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88782-1

  • Online ISBN: 978-0-387-88783-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics