Advertisement

Nanotechnology

  • Yi Li
  • Daniel Lu
  • C. P. Wong
Chapter

Abstract

Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer length scale (<100 nm) and exploitation of novel phenomena and properties (physical, chemical, biological, mechanical, electrical, etc.) at that length scale.

Keywords

Solder Joint Solder Alloy Composite Solder Breakdown Strength Bismuth Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon Nanotube Single-Electron Transistors at Room Temperature,” Science, 293, 76–79, 2001.CrossRefGoogle Scholar
  2. [2]
    J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors,”Nature, 441, 489–493, 2006.CrossRefGoogle Scholar
  3. [3]
    M. C. Petty, M. R. Bryce, and D. Bloor, “An Introduction to Molecular Electronics,” Edward Arnold, London, 1995.Google Scholar
  4. [4]
    A. Aviram and M. A. Ratner, “Molecular Rectifier,”Chemical Physics Letters, 29, 277, 1974.CrossRefGoogle Scholar
  5. [5]
    A. Aviram, “Molecules for Memory, Logic, and Amplification,”Journal of the American Chemical Society, 110, 5687–5692, 1988.CrossRefGoogle Scholar
  6. [6]
    J. E. Morris, “Nanopackaging: Nanotechnologies and Electronics Packaging,” Springer, Berlin, 2008.Google Scholar
  7. [7]
    S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,"Science, 287, 1989–1992, 2000.CrossRefGoogle Scholar
  8. [8]
    K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim, and A. Wieckowski, “Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation,”Journal of Physical Chemistry B, 106, 1869–1877, 2002.CrossRefGoogle Scholar
  9. [9]
    M. P. Mallin and C. J. Murphy, “Solution-Phase Synthesis of Sub-10 nm Au-Ag Alloy Nanoparticles,”Nano Letters, 2, 1235–1237, 2002.CrossRefGoogle Scholar
  10. [10]
    A. Henglein and M. Giersig, “Radiolytic Formation of Colloidal Tin and Tin-Gold Particles in Aqueous-Solution,”Journal of Physical Chemistry, 98, 6931–6935, 1994.CrossRefGoogle Scholar
  11. [11]
    P. Lu, J. Dong, and N. Toshima, “Surface-Enhanced Raman Scattering of a Cu/Pd Alloy Colloid Protected by Poly(N-vinyl-2-pyrrolidone),”Langmuir, 15, 7980–7992, 1999.CrossRefGoogle Scholar
  12. [12]
    S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron Dynamics in Gold and Gold-Silver Alloy Nanoparticles: The Influence of a Nonequilibrium Electron Distribution and the Size Dependence of the Electron-Phonon Relaxation,”Journal of Chemical Physics, 111, 1255–1264, 1999.CrossRefGoogle Scholar
  13. [13]
    Y. B. Zhao, Z. J. Zhang, and H. X. Dang, “Synthesis of In-Sn Alloy Nanoparticles by a Solution Dispersion Method,”Journal of Materials Chemistry, 14, 299–302, 2004..CrossRefGoogle Scholar
  14. [14]
    Y. H. Chen and C. S. Yeh, “A New Approach for the Formation of Alloy Nanoparticles: Laser Synthesis of Gold-Silver Alloy from Gold-Silver Colloidal Mixtures,”Chem. Commun., 4, 371–372, 2001.CrossRefGoogle Scholar
  15. [15]
    J. Zhang, J. Worley, S. Denommee, C. Kingston, Z. J. Jakubek, Y. Deslandes, M. Post, B. Simard, N. Braidy, and G. A. Botton, “Synthesis of Metal Alloy Nanoparticles in Solution by Laser Irradiation of a Metal Powder Suspension,”Journal of Physical Chemistry B, 107, 6920–6923, 2003.CrossRefGoogle Scholar
  16. [16]
    M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi, and T. Pal, “Synthesis of Au-core-Ag-shell Type Bimetallic Nanoparticles for Single Molecule Detection in Solution by SERS Method,”Journal of Nanoparticle Research, 6, 53–61, 2004.CrossRefGoogle Scholar
  17. [17]
    G. Southam and T. J. Beveridge, “The Occurrence of Sulfur and Phosphorus within Bacterially Derived Crystalline and Pseudocrystalline Octahedral Gold Formed in vitro,”Geochimica Et Cosmochimica Acta, 60, 4369–4376, 1996.CrossRefGoogle Scholar
  18. [18]
    D. Fortin and T. J. Beveridge, From Biology to Biotechnology and Medical Applications, in Biomineralization, E. Baeuerien, Ed., Wiley-VCH, Weinheim, pp. 7, 2000.Google Scholar
  19. [19]
    T. Klaus, R. Joerger, E. Olsson, and C. G. Granqvist, “Silver-Based Crystalline Nanoparticles, Microbially Fabricated,”Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 13611–13614, 1999.CrossRefGoogle Scholar
  20. [20]
    T. Klaus-Joerger, R. Joerger, E. Olsson, and C. G. Granqvist, “Bacteria as Workers in the Living Factory: Metal-Accumulating Bacteria and their Potential for Materials Science,”Trends in Biotechnology, 19, 15–20, 2001.CrossRefGoogle Scholar
  21. [21]
    R. Joerger, T. Klaus, and C. G. Granqvist, “Biologically Produced Silver-Carbon Composite Materials for Optically Functional Thin-Film Coatings,”Advanced Materials, 12, 407–409, 2000.CrossRefGoogle Scholar
  22. [22]
    B. Nair and T. Pradeep, “Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains,”Crystal Growth & Design, 2, 293–298, 2002.CrossRefGoogle Scholar
  23. [23]
    J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. J. Yacaman, “Formation and Growth of Au Nanoparticles Inside Live Alfalfa Plants,”Nano Letters, 2, 397–401, 2002.CrossRefGoogle Scholar
  24. [24]
    J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman, “Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles,”Langmuir, 19, 1357–1361, 2003.CrossRefGoogle Scholar
  25. [25]
    M. Ohring, “Materials Science of Thin Films: Deposition & Structure,” 2nd Ed., Academic Press, pp. 395–397, 2002.Google Scholar
  26. [26]
    J. E. Morris, “Single-Electron Transistors,” in The Electrical Engineering Handbook Third edition: Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar, Richard C. Dorf, Ed., CRC/Taylor & Francis, Boca Raton, FL, pp. 3.53–3.64, 2006.Google Scholar
  27. [27]
    J. Xu and C. P. Wong, “High-K Nanocomposites with Core-Shell Structured Nanoparticles for Decoupling Applications,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, pp. 1234–1240, 2005.Google Scholar
  28. [28]
    F. Wu and J. E. Morris, “Characterizations of (SiOxCr1-x)N1-y Thin Film Resistors for Integrated Passive Applications,”53rd Electronic Components & Technology Conference, pp. 161–166, 2003.Google Scholar
  29. [29]
    J. E. Morris, “Recent Developments in Discontinuous Metal Thin Film Devices,”Vacuum, 50, 107–113, 1998.CrossRefGoogle Scholar
  30. [30]
    J. E. Morris, F. Wu, C. Radehaus, M. Hietschold, A. Henning, K. Hofmann, and A. Kiesow, “Single Electron Transistors: Modeling and Fabrication,”Proceedings of the 7th International Conference Solid State & Integrated Circuit Technology (ICSICT), Beijing, pp. 634–639, 2004.Google Scholar
  31. [31]
    H. Jiang, K. Moon, H. Dong, and F. Hua, “Thermal Properties of Oxide Free Nano Non Noble Metal for Low Temperature Interconnect Technology,”Proceedings of the56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 1969–1973, 2006.Google Scholar
  32. [32]
    R. A. Flinn and P. K. Trojan, “Engineering Materials & their Applications,” 2nd Ed., Houghton-Mifflin, Boston, MA, pp. 75–77, 1981.Google Scholar
  33. [33]
    T. Yamaguchi, M. Sakai, and N. Saito, “Optical-Properties of Well-Defined Granular Metal Systems,”Physical Review B, 32, 2126–2131, 1985.CrossRefGoogle Scholar
  34. [34]
    R. Das, M. Poliks, J. Lauffer, and V. Markovich, “High Capacitance, Large Area, Thin Film, Nanocomposite Based Embedded Capacitors,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 1510–1515, 2006.Google Scholar
  35. [35]
    J. Xu and C. P. Wong, “Effects of the Low Loss Polymers on the Dielectric Behavior of Novel Aluminum-Filled High-k Nano-Composites,”Proceedings of the 54th IEEE Electronic Component & Technology Conference, Las Vegas, pp. 496–506, 2004.Google Scholar
  36. [36]
    J. Lu, K. Moon, and C. P. Wong, “Development of Novel Silver Nanoparticles/Polymer Composites as High K Polymer Matrix by In-Situ Photochemical Method,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 1841–1846, 2006.Google Scholar
  37. [37]
    L. Ekstrand, H. Kristiansen, and J. Liu, “Characterization of Thermally Conductive Epoxy Nano Composites,”Proceedings of the 28th International Spring Seminar on Electronics Technology (ISSE'05), Vienna, 2005.Google Scholar
  38. [38]
    L. Fan, B. Su, J. Qu, and C. P. Wong, “Electrical and Thermal Conductivities of Polymer Composites Containing Nano-Sized Particles,”Proceedings of the 54th IEEE Electronic Component & Technology Conference, Las Vegas, NV, pp. 148–154, 2004.Google Scholar
  39. [39]
    H. Jiang, K. Moon, L. Zhu, J. Lu, and C. P. Wong, “The Role of Self-Assembled Monolayer (SAM) on Ag Nanoparticles for Conductive Nanocomposite,”Proceedings of the 10th IEEE/CPMT International Symposium on Advanced Packaging Materials, Irvine, CA, pp. 266–271, 2005.Google Scholar
  40. [40]
    R. Das, J. Lauffer, and F. Egitto, “Electrical Conductivity and Reliability of Nano- and Micro-Filled Conducting Adhesives for Z- axis Interconnections,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 112–118, 2006.Google Scholar
  41. [41]
    K. Moon, S. Pothukuchi, Y. Li, and C. P. Wong, “Nano Metal Particles for Low Temperature Interconnect Technology,”Proceedings of the 54th IEEE Electronic Component & Technology Conference, Las Vegas, NV, pp. 1983–1988, 2004.Google Scholar
  42. [42]
    P. Lall, S. Islam, J. Suhling, and G. Tian, “Nano-Underfills for High-Reliability Applications in Extreme Environments,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, pp. 212–222, 2005.Google Scholar
  43. [43]
    Y. Li, K. S. Moon, and C. P. Wong, “Adherence of Self-Assembled Monolayers on Gold and Their Effects for High-Performance Anisotropic Conductive Adhesives,”Journal of Electronic Materials, 34, 266–271, 2005.CrossRefGoogle Scholar
  44. [44]
    S. Joo and D. F. Baldwin, “Demonstration for Rapid Prototyping of Micro-Systems Packaging by Data-Driven Chip-First Processing Using Nano-Particles Metal Colloids,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, PP. 1859–1863, 2005.Google Scholar
  45. [45]
    A. Moscicki, J. Felba, T. Sobierajski, J. Kudzia, A. Arp, and W. Meyer, “Electrically Conductive Formulations Filled Nano Size Silver Filler for Ink-Jet Technology,”Proceedings of the 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Wroclaw, Poland, pp. 40–44, 2005.Google Scholar
  46. [46]
    J. Kolbe, A. Arp, F. Calderone, E. M. Meyer, W. Meyer, H. Schaefer, and M. Stuve, “Inkjettable Conductive Adhesive for Use in Microelectronics and Microsystems Technology,”Proceedings of the 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Wroclaw, Poland, pp. 160–163, 2005.Google Scholar
  47. [47]
    J. G. Bai, K. D. Creehan, and H. A. Kuhn, “Inkjet Printable Nanosilver Suspensions for Enhanced Sintering Quality in Rapid Manufacturing,”Nanotechnology, 18, 1–5, 2007.Google Scholar
  48. [48]
    W. Peng, V. Hurskainen, K. Hashizume, S. Dunford, S. Quander, and R. Vatanparast, “Flexible Circuit Creation with Nano Metal Particles,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, pp. 77–82, 2005.Google Scholar
  49. [49]
    J. G. Bai, Z. Z. Zhang, J. N. Calata, and G. Q. Lu, “Low-Temperature Sintered Nanoscale Silver as a Novel Semiconductor Device-Metallized Substrate Interconnect Material,”IEEE Transactions on Components and Packaging Technologies, 29, 589–593, 2006.CrossRefGoogle Scholar
  50. [50]
    D. Wakuda, M. Hatamura, and K. Suganuma, “Novel Room Temperature Wiring Process of Ag Nanoparticle Paste,”Proceedings of the 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Tokyo, pp. 110–113, 2007.Google Scholar
  51. [51]
    A. Moscicki, J. Felba, P. Gwiazdzinski, and M. Puchalski, “Conductivity Improvement of Microstructures Made by Nano-Size-Silver Filled Formulations,”Proceedings of the 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Tokyo, pp. 305–310, 2007.Google Scholar
  52. [52]
    J. G. Bai, Z. Z. Zhang, J. N. Calata, and G. Q. Lu, “Characterization of Low-Temperature Sintered Nanoscale Silver Paste for Attaching Semiconductor Devices,”Proceedings of the 7th IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP'05), Shanghai, pp. 272–276, 2005.Google Scholar
  53. [53]
    Y. Sun, Z. Zhang, and C. P. Wong, “Photo-Definable Nanocomposite for Wafer Level Packaging,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, pp. 179–184, 2005.Google Scholar
  54. [54]
    Y. Sun and C. P. Wong, “Study and Characterization on the Nanocomposite Underfill for Flip Chip Applications,”Proceedings of the 54th IEEE Electronic Component & Technology Conference, Las Vegas, NV, pp. 477–483, 2004.Google Scholar
  55. [55]
    Y. Sun, Z. Zhang, and C. P. Wong, “Fundamental Research on Surface Modification of Nano-Size Silica for Underfill Applications,”Proceedings of the 54th IEEE Electronic Component & Technology Conference, Las Vegas, NV, pp. 754–760, 2004.Google Scholar
  56. [56]
    M. Roy, J. K. Nelson, R. K. MacCrone, L. S. Schadler, C. W. Reed, R. Keefe, and W. Zenger, “Polymer Nanocomposite Dielectrics – The Role of the Interface,”IEEE Transactions on Dielectrics and Electrical Insulation, 2, 629–643, 2005.CrossRefGoogle Scholar
  57. [57]
    W. Guan, S. C. Verma, Y. Gao, C. Andersson, Q. Zhai, and J. Liu, “Characterization of Nanoparticles of Lead Free Solder Alloys,”Proceedings of the 1st IEEE Electronics Systemintegration Technology Conference, Dresden, Germany, 2006.Google Scholar
  58. [58]
    K. M. Kumar, V. Kripesh, and A. A. O. Tay, “Sn-Ag-Cu Lead-free Composite Solders for Ultra-Fine-Pitch Wafer-Level Packaging,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 237–243, 2006.Google Scholar
  59. [59]
    M. Amagai, “A Study of Nano Particles in SnAg-Based Lead Free Solders for Intermetallic Compounds and Drop Test Performance,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego CA, pp. 1170–1190, 2006.Google Scholar
  60. [60]
    V. Kripesh, K. Mohankumar, and A. Tay, “Properties of Solders Reinforced with Nanotubes and Nanoparticles,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, 2006.Google Scholar
  61. [61]
    K. M. Klein, J. Zheng, A. Gewirtz, D. S. Sarma, S. Rajalakshmi, and S. K. Sitaraman, “Array of Nano-Cantilevers as a Bio-Assay for Cancer Diagnosis,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, pp. 583–587, 2005.Google Scholar
  62. [62]
    H. Jiang, K. S. Moon, F. Hua, and C. P. Wong, “Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-free Solders,”Chemistry of Materials, 19, 4482–4485, 2007.CrossRefGoogle Scholar
  63. [63]
    R. Garrigos, P. Cheyssac, and R. Kofman, “Melting for Lead Particles of Very Small Sizes – Influence of Surface Phenomena,”Zeitschrift Fur Physik D-Atoms Molecules and Clusters, 12, 497–500, 1989.CrossRefGoogle Scholar
  64. [64]
    W. Y. Hu, S. G. Xiao, J. Y. Yang, and Z. Zhang, “Melting Evolution and Diffusion Behavior of Vanadium Nanoparticles,”European Physical Journal B, 45, 547–554, 2005.CrossRefGoogle Scholar
  65. [65]
    W. Guan, S. C. Verma, Y. Gao, C. Andersson, Q. Zhai, and J. Liu, “Characterization of Nanoparticles of Lead Free Solder Alloys,”Electronics Systemintegration Technology Conference, vol. 1, pp. 7–12, 2006.CrossRefGoogle Scholar
  66. [66]
    Z. W. Li, X. J. Tao, Y. M. Cheng, Z. S. Wu, Z. J. Zhang, and H. X. Dang, “A Facile Way for Preparing Tin Nanoparticles from Bulk Tin via Ultrasound Dispersion,”Ultrasonics Sonochemistry, 14, 89–92, 2007.CrossRefGoogle Scholar
  67. [67]
    Y. B. Zhao, Z. J. Zhang, and H. X. Dang, “A Simple Way to Prepare Bismuth Nanoparticles,”Materials Letters, 58, 790–793, 2004.CrossRefGoogle Scholar
  68. [68]
    H. J. Chen, Z. W. Li, Z. S. Wu, and Z. J. Zhang, “A Novel Route to Prepare and Characterize Sn-Bi Nanoparticles,”Journal of Alloys and Compound.s, 394, 282–285, 2005.CrossRefGoogle Scholar
  69. [69]
    K. Mohankumar and A. A. O. Tay, “Nanoparticle Reinforced Solders for Fine Pitch Applications,”Proceedings of Electronics Packaging Technology Conference, pp. 455–461, 2006.Google Scholar
  70. [70]
    K. M. Kumar, “Sn-Ag-Cu Lead-free Composite Solders for Ultra-Fine-Pitch Wafer-Level Packaging,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 237–243, 2006.Google Scholar
  71. [71]
    F. Qi, L. Sun, Z. Hou, J. Wang, and C. Qin,International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1–3, 2008.Google Scholar
  72. [72]
    M. Amagai, “A Study of Nanoparticles in Sn-Ag Based Lead Free Solders,”Microelectronics Reliability, 48, 1–16, 2008.CrossRefGoogle Scholar
  73. [73]
    G. E. Moore, “Progress in Digital Integrated Electronics,”International Electron Devices Meetings, Washington D. C., pp. 11–13, 1975.Google Scholar
  74. [74]
    F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, “Carbon Nanotubes in Interconnect Applications,”Microelectronic Engineering, 64, 399–408, 2002.CrossRefGoogle Scholar
  75. [75]
    A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, “How Do Carbon Nanotubes Fit into the Semiconductor Roadmap?,”Applied Physics A-Materials Science & Processing, 80, 1141–1151, 2005.CrossRefGoogle Scholar
  76. [76]
    S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, “Carbon Nanotube Quantum Resistors,”Science, 280, 1744–1746, 1998.CrossRefGoogle Scholar
  77. [77]
    T. M. Wu and E. C. Chen, “Crystallization Behavior of Poly(epsilon-caprolactone)/Multiwalled Carbon Nanotube Composites,”Journal of Polymer Science Part B-Polymer Physics, 44, 598–606, 2006.CrossRefGoogle Scholar
  78. [78]
    S. Mizuno, A. Verma, H. Tran, P. Lee, and B. Nguyen, “Dielectric Constant and Stability of Fluorine Doped PECVD Silicon Oxide Thin Films,”Thin Solid Films, 283, 30–36, 1996.CrossRefGoogle Scholar
  79. [79]
    B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and Current Carrying Capacity of Carbon Nanotubes,”Applied Physics Letters, 79, 1172–1174, 2001.CrossRefGoogle Scholar
  80. [80]
    A. P. Graham, G. S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, and W. Hoenlein, “Carbon Nanotubes for Microelectronics?,”Small, 1, 382–390, 2005.CrossRefGoogle Scholar
  81. [81]
    M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, “Electrical Properties of Carbon Nanotube Bundles for Future via Interconnects,”Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 44, 1626–1628, 2005.Google Scholar
  82. [82]
    W. Hoenlein, F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, and E. Unger, “Carbon Nanotubes for Microelectronics: Status and Future Prospects,”Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 23, 663–669, 2003.Google Scholar
  83. [83]
    Y. Awano, “Carbon Nanotube Technologies for LSI via Interconnects,”IEICE Trans. Electron., E89C, 1499–1503, 2006.CrossRefGoogle Scholar
  84. [84]
    L. B. Zhu, Y. Y. Sun, D. W. Hess, and C. P. Wong, “Well-aligned Open-ended Carbon Nanotube Architectures: An Approach for Device Assembly,”Nano Letters, 6, 243–247, 2006.CrossRefGoogle Scholar
  85. [85]
    A. Naeemi, G. Huang, and J. Meindl, “Performance Modeling for Carbon Nanotube Interconnects in On-chip Power Distribution,”Proceedings of the 57th IEEE Electronic Component & Technology Conference, Reno, NV, pp. 420–428, 2007.Google Scholar
  86. [86]
    Y. Chai, J. Gong, K. Zhang, P. C. H. Chan, and M. M. F. Yuen, “Low Temperature Transfer of Aligned Carbon Nanotube Films Using Liftoff Technique,”Proceedings of the 57th IEEE Electronic Component & Technology Conference, Reno, NV, pp. 429–434, 2007.Google Scholar
  87. [87]
    C.-J. Wu, C.-Y. Chou, C.-N. Han, and K.-N. Chiang, “Simulation and Validation of CNT Mechanical Properties – The Future Interconnection Method,”Proceedings of the 57th IEEE Electronic Component & Technology Conference, Reno, NV, pp. 447–452, 2007.Google Scholar
  88. [88]
    A. Ruiz, E. Vega, R. Katiyar, and R. Valentin, “Novel Enabling Wire Bonding Technology,”Proceedings of the 57th IEEE Electronic Component & Technology Conference, Reno, NV, pp. 458–462, 2007.Google Scholar
  89. [89]
    G. A. Riley, “Nanobump Flip Chips,”Advanced Packaging, 18–20, April, 2007.Google Scholar
  90. [90]
    R. T. Pike, R. Dellmo, J. Wade, S. Newland, G. Hyland, and C. M. Newton, “Metallic Fullerene and MWCNT Composite Solutions for Microelectronics Subsystem Electrical Interconnection Enhancement,”Proceedings of the 54th IEEE Electronic Component & Technology Conference, Las Vegas, NV, pp. 461–465, 2004.Google Scholar
  91. [91]
    J. Ding, S. Rea, D. Linton, E. Orr, and J. MacConnell, “Mixture Properties of Carbon Fibre Composite Materials for Electronics Shielding in Systems Packaging,”Proceedings of the 1st IEEE Electronics Systemintegration Technology Conference, Dresden, Germany, pp. 19–25, 2006.Google Scholar
  92. [92]
    J.-C. Chiu, C.-M. Chang, W.-H. Cheng, and W.-S. Jou, “High-Performance Electromagnetic Susceptibility for a 2.5 Gb/s Plastic Transceiver Module Using Mutli-Wall Carbon Nanotubes,”Proceedings of the 56th IEEE Electronic Component & Technology Conference, San Diego, CA, pp. 183–186, 2006.Google Scholar
  93. [93]
    S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes,”Physical Review Letters, 84, 4613–4616, 2000.CrossRefGoogle Scholar
  94. [94]
    E. Pop, D. Mann, Q. Wang, K. Goodson, and H. J. Dai, “Thermal Conductance of an Individual Single-wall Carbon Nanotube above Room Temperature,”Nano Letters, 6, 96–100, 2006.Google Scholar
  95. [95]
    P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,”Physical Review Letters, 8721, 215502-1–215502-4, 2001.Google Scholar
  96. [96]
    J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,”Applied Physics Letters, 77, 666–668, 2000.CrossRefGoogle Scholar
  97. [97]
    W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, “Linear Specific Heat of Carbon Nanotubes,”Physical Review B, 59, R9015–R9018, 1999.CrossRefGoogle Scholar
  98. [98]
    D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal Conductivity of Multiwalled Carbon Nanotubes,”Physical Review B, 66, 165440.1–165440.6, 2002.Google Scholar
  99. [99]
    J. Xu and T. S. Fisher, “Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays,”International Journal of Heat and Mass Transfer, vol49, 1658–1666, 2006.CrossRefGoogle Scholar
  100. [100]
    Y. Xu, Y. Zhang, E. Suhir, and X. W. Wang, “Thermal Properties of Carbon Nanotube Array Used for Integrated Circuit Cooling,”Journal of Applied Physics, 100, 074302, 2006.CrossRefGoogle Scholar
  101. [101]
    K. Zhang, Y. Chai, M. M. F. Yuen, D. G. W. Xiao, and P. C. H. Chan, “Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling,”Nanotechnology, 19, 215706, 2008.CrossRefGoogle Scholar
  102. [102]
    R. Prasher, “Thermal Interface Materials: Historical Perspective, Status, and Future Directions,”Proceedings of the IEEE, vol. 94, pp. 1571–1586, 2006.CrossRefGoogle Scholar
  103. [103]
    J. Xu and T. S. Fisher, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces,”IEEE Transactions on Components and Packaging Technologies, 29, 261–267, 2006.CrossRefGoogle Scholar
  104. [104]
    T.-M. Lee, K.-C. Chiou, F.-P. Tseng, and C.-C. Huang, “High Thermal Efficiency Carbon Nanotube-Resin Matrix for Thermal Interface Materials,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, pp. 55–59, 2005.Google Scholar
  105. [105]
    J. Liu, M. O. Olorunyomi, X. Lu, W. X. Wang, T. Aronsson, and D. Shangguan, “New Nano-Thermal Interface Material for Heat Removal in Electronics Packaging,”Proceedings of the 1st IEEE Electronics Systemintegration Technology Conference, Dresden, Germany, pp. 1–6, 2006.Google Scholar
  106. [106]
    Z. Mo, R. Morjan, J. Anderson, E. E. B. Campbell, and J. Liu, “Integrated Nanotube Microcooler for Microelectronics Applications,”Proceedings of the 55th IEEE Electronic Component & Technology Conference, Orlando, FL, pp. 51–54, 2005.Google Scholar
  107. [107]
    L. Ekstrand, Z. Mo, Y. Zhang, and J. Liu, “Modelling of Carbon Nanotubes as Heat Sink Fins in Microchannels for Microelectronics Cooling,”Proceedings of the 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Wroclaw, Poland, pp. 185–187, 2005.Google Scholar
  108. [108]
    W. Lin, Y. G. Xiu, H. J. Jiang, R. W. Zhang, O. Hildreth, K. S. Moon, and C. P. Wong, “Self-Assembled Monolayer-Assisted Chemical Transfer of In Situ Functionalized Carbon Nanotubes,”Journal of the American Chemical Society, 130, 9636–9637, 2008.CrossRefGoogle Scholar
  109. [109]
    B. J. Ash, R. W. Siegel, and L. S. Schadler, “Glass-Transition Temperature Behavior of Alumina/PMMA Nanocomposites,”Journal of Polymer Science Part B-Polymer Physics, 42, 4371–4383, 2004.CrossRefGoogle Scholar
  110. [110]
    W. Peukert, H. C. Schwarzer, M. Gotzinger, L. Gunther, and F. Stenger, “Control of Particle Interfaces – the Critical Issue in Nanoparticle Technology,”Advanced Powder Technology, 14, 411–426, 2003.CrossRefGoogle Scholar
  111. [111]
    M. F. Fréchette, M. Trudeau, H. D. Alamdari, and S. Boily, “Introductory Remarks on Nano Dielectrics,”IEEE Conference on Electrical Insulation and Dielectric Phenomena, pp. 92–99, 2001.Google Scholar
  112. [112]
    B. J. Ash, D. F. Rogers, C. J. Wiegand, L. S. Schadler, R. W. Siegel, B. C. Benicewicz, and T. Apple, “Mechanical Properties of Al2O3/Polymethylmethacrylate Nanocomposites,”Polym. Compos., 23, 1014–1025, 2002.CrossRefGoogle Scholar
  113. [113]
    T. Tanaka, G. C. Montanari, and R. Mulhaupt, “Polymer Nanocomposites as Dielectrics and Electrical Insulation-Perspectives for Processing Technologies, Material Characterization and Future Applications,”IEEE Transactions on Dielectrics and Electrical Insulation, 11, 763–784, 2004.CrossRefGoogle Scholar
  114. [114]
    T. J. Lewis, “Nanometric Dielectrics,”IEEE Transactions on Dielectrics and Electrical Insulation, 1, 812–825, 1994.CrossRefGoogle Scholar
  115. [115]
    M. S. Khalil, P. O. Henk, and M. Henriksen, “The Influence of Titanium Dioxide Additive on the Short-Term DC Breakdown Strength of Polyethylene,”IEEE Intern. Sympos. Electr. Insul., Montreal, Canada, pp. 268–271, 1990.CrossRefGoogle Scholar
  116. [116]
    J. K. Nelson and J. C. Fothergill, “Internal Charge Behaviour of Nanocomposites,”Nanotechnology, 15, 586–595, 2004.CrossRefGoogle Scholar
  117. [117]
    J. K. Nelson, J. C. Fothergill, and M. Fu, “Dielectric Properties of Epoxy Nanocomposites Containing TiO2, Al2O3 and ZnO Fillers,”IEEE Conference on Electrical Insulation and Dielectric Phenomena, pp. 406–409, 2004.Google Scholar
  118. [118]
    D. L. Ma, R. W. Siegel, J. I. Hong, L. S. Schadler, E. Martensson, and C. Onneby, “Influence of Nanoparticle Surfaces on the Electrical Breakdown Strength of Nanoparticle-Filled Low-Density Polyethylene,”Journal of Materials Research, 19, 857–863, 2004.CrossRefGoogle Scholar
  119. [119]
    T. Ramanathan, H. Liu, and L. C. Brinson, “Functionalized SWNT/Polymer Nanocomposites for Dramatic Property Improvement,”Journal of Polymer Science Part B-Polymer Phys.ics, 43, 2269–2279, 2005.CrossRefGoogle Scholar
  120. [120]
    J. K. Kim, C. G. Hu, R. S. C. Woo, and M. L. Sham, “Moisture Barrier Characteristics of Organoclay-Epoxy Nanocomposites,”Composites Science and Technology, 65, 805–813, 2005.CrossRefGoogle Scholar
  121. [121]
    J. W. Gilman, T. Kashiwagi, and J. D. Lichtenhan, “Nanocomposites: A Revolutionary New Flame Retardant Approach,”Sampe Journal, 33, 40–46, 1997.Google Scholar
  122. [122]
    H. Sharma and Z. Xiao, “Fabrication of Carbon Nanotube Field-Effect Transistors with Metal and Semiconductor Electrodes,” in Nanotubes and Related Nanostructures, Y. K. Yap, Ed.(Materials Research Society Symposium Proceedings), vol. 1057E, 2008.Google Scholar
  123. [123]
    N. Srivastava, R. V. Joshi, and K. Banerjee, “Carbon Nanotube Interconnects: Implications for Performance, Power Dissipation and Thermal Management,”IEEE International Electron Devices Meeting, pp. 249–252, 2005.Google Scholar
  124. [124]
    A. Kawabata, S. Sato, T. Nozue, T. Hyakushima, M. Norimatsu, M. Mishima, T. Murakami, D. Kondo, K. Asano, M. Ohfuti, H. Kawarada, T. Sakai, M. Nihei, and Y. Awano, “Robustness of CNT Via Interconnect Fabricated by Low Temperature Process over a High-Density Current,”International Interconnect Technology Conference,, pp. 237–239, 2008.Google Scholar
  125. [125]
    I. Soga, D. Kondo, Y. Yamaguchi, T. Iwai, M. Mizukoshi, Y. Awano, K. Yube, and T. Fujii, “Carbon Nanotube Bumps for LSI Interconnect,”Proceedings of Electronic Components and Technology Conference, pp. 1390–1394, 2008.Google Scholar
  126. [126]
    T. Iwai, “Carbon Nanotube Bumps for Thermal and Electrical Conduction in Transistor,”Fujitsu Scientific and Technical Journal, 43, 508–515, 2007.Google Scholar
  127. [127]
    G. Mehrotra, G. Jha, J. D. Goud, P. M. Raj, M. Venkatesan, M. Iyer, D. Hess, and R. Tummala, “Low-Temperature, Fine-Pitch Interconnections Using Self-Patternable Metallic Nanoparticles as the Bonding Layer,”Proceedings of Electronic Components and Technology Conference, pp. 1410–1416, 2008.Google Scholar
  128. [128]
    D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, “Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics,”Journal of the Electrochemical Society, 150, G412–G417, 2003.CrossRefGoogle Scholar
  129. [129]
    A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, “Ink-Jet Printing of Metallic Nanoparticles and Microemulsions,”Macromolecular Rapid Communications, 26, 281–288, 2005.CrossRefGoogle Scholar
  130. [130]
    A. L. Dearden, P. J. Smith, D. Y. Shin, N. Reis, B. Derby, and P. O'Brien, “A Low Curing Temperature Silver Ink for Use in Ink-Jet Printing and Subsequent Production of Conductive Tracks,”Macromolecular Rapid Communications, 26, 315–318, 2005.CrossRefGoogle Scholar
  131. [131]
    Y. H. Byun, E. C. Hwang, S. Y. Lee, Y. Y. Lyu, J. H. Yim, J. Y. Kim, S. Chang, L. S. Pu, and J. M. Kim, “Highly Efficient Silver Patterning without Photo-Resist Using Simple Silver Precursors,”Materials Science and Engineering B-Solid State Materials for Advanced Technology, 117, 11–16, 2005.Google Scholar
  132. [132]
    G. G. Rozenberg, E. Bresler, S. P. Speakman, C. Jeynes, and J. H. G. Steinke, “Patterned Low Temperature Copper-Rich Deposits Using Inkjet Printing,”Applied Physics Letters, 81, 5249–5251, 2002.CrossRefGoogle Scholar
  133. [133]
    S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems,”Journal of Microelectromechanical Systems, 11, 54–60, 2002.CrossRefGoogle Scholar
  134. [134]
    J. W. Chung, S. W. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor Microstructures by Laser Curing of Printed Gold Nanoparticle Ink,”Applied Physics Letters, 84, 801–803, 2004.CrossRefGoogle Scholar
  135. [135]
    D. Kim and J. Moon, “Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics,”Electrochemical and Solid State Letters, 8, J30–J33, 2005.CrossRefGoogle Scholar
  136. [136]
    K. Suganuma, D. Wakuda, M. Hatamura, and K.-S. Kim, “Ink-jet Printing of Nano Materials and Processes for Electronics Applications,”Proceedings of the IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2007.Google Scholar
  137. [137]
    D. J. Pena, B. Razavi, P. A. Smith, J. K. Mbindyo, M. J. Natan, T. S. Mayer, T. E. Mallouk, and C. D. Keating, “Electrochemical Synthesis of Multi-Material Nanowires as Building Blocks For Functional Nanostructures,”MRS Symposium D, 2000.Google Scholar
  138. [138]
    X. F. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,”Advanced Materials, 12, 298–302, 2000.CrossRefGoogle Scholar
  139. [139]
    B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, and D. P. Yu, “Field-Emission Properties of TiO2 Nanowire Arrays,”Journal of Physics D-Applied Physics, 38, 1152–1155, 2005.CrossRefGoogle Scholar
  140. [140]
    M. I. Ploscaru, S. J. Kokalj, M. Uplaznik, D. Vengust, D. Turk, A. Mrzel, and D. Mihailovic, “Mo6S9-xIx Nanowire Recognitive Molecular-scale Connectivity,”Nano Letters, 7, 1445–1448, 2007.CrossRefGoogle Scholar
  141. [141]
    K. K. Lew, L. Pan, E. C. Dickey, and J. M. Redwing, “Vapor-Liquid-Solid Growth of Silicon-Germanium Nanowires,”Advanced Materials, 15, 2073–2076, 2003.CrossRefGoogle Scholar
  142. [142]
    P. Nguyen, S. Vaddiraju, and M. Meyyappan, “Indium and Tin Oxide Nanowires by Vapor-Liquid-Solid Growth Technique,”Journal of Electronic Materials, 35, 200–206, 2006.CrossRefGoogle Scholar
  143. [143]
    S. Bhunia, T. Kawamura, S. Fujikawa, H. Nakashima, K. Furukawa, K. Torimitsu, and Y. Watanabe, “Vapor-Liquid-Solid Growth of Vertically Aligned InP Nanowires by Metalorganic Vapor Phase Epitaxy,”Thin Solid Films, 464–465, 244–247, 2004.CrossRefGoogle Scholar
  144. [144]
    M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,”Journal of Physical Chemistry B, 107, 659–663, 2003.CrossRefGoogle Scholar
  145. [145]
    Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors,”Applied Physics Letters, 84, 3654–3656, 2004.CrossRefGoogle Scholar
  146. [146]
    C. S. Lao, J. Liu, P. X. Gao, L. Y. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO Nanobelt/nanowire Schottky Diodes Formed by Dielectrophoresis Alignment Across Au Electrodes,”Nano Letters, 6, 263–266, 2006.CrossRefGoogle Scholar
  147. [147]
    F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes,”Nano Letters, 5, 2287–2291, 2005.CrossRefGoogle Scholar
  148. [148]
    Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,”Science, 293, 1289–1292, 2001.CrossRefGoogle Scholar
  149. [149]
    Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed Assembly of One-dimensional Nanostructures into Functional Networks,”Science, 291, 630–633, 2001.CrossRefGoogle Scholar
  150. [150]
    Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices,”Nano Letters, 3, 343–346, 2003.CrossRefGoogle Scholar
  151. [151]
    Y. J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven, and S. De Franceschi, “Tunable Supercurrent Through Semiconductor Nanowires,”Science, 309, 272–275, 2005.CrossRefGoogle Scholar
  152. [152]
    K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized Conductance Atomic Switch,”Nature, 433, 47–50, 2005.CrossRefGoogle Scholar
  153. [153]
    B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,”Nature, 449, 885–889, 2007.CrossRefGoogle Scholar
  154. [154]
    R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin-Film Palladium and Silver Alloys and Layers for Metal-Insulator-Semiconductor Sensors,”J. Applied Physics, 62, 1074–1083, 1987.CrossRefGoogle Scholar
  155. [155]
    M. H. Yun, N. V. Myung, R. P. Vasquez, C. S. Lee, E. Menke, and R. M. Penner, “Electrochemically Grown Wires for Individually Addressable Sensor Arrays,”Nano Letters, 4, 419–422, 2004.CrossRefGoogle Scholar
  156. [156]
    M. Yun, N. V. Myung, R. P. Vasquez, J. Wang, and H. Monbouquette, “Nanowire Growth for Sensor Arrays,”Proceedings of the SPIE Nanofabrication Technologies, vol. 5220, pp. 37–45.Google Scholar
  157. [157]
    S.-B. Lee, E. Lee, W. Lee, and Y.-C. Joo, “Dendritic Palladium-Silver Nano-Structure Grown by Electrochemical Migration Method for Hydrogen Sensing Device,”Proceedings of Electronic Components and Technology Conference, pp. 440–443, 2008.Google Scholar
  158. [158]
    J. A. Paradiso and T. Starner, “Energy Scavenging for Mobile and Wireless Electronics,”IEEE Pervasive Computing, 4, 18–27, 2005.CrossRefGoogle Scholar
  159. [159]
    E. K. Reilly, E. Carleton, and P. K. Wright, “Thin Film Piezoelectric Energy Scavenging Systems for Long Term Medical Monitoring,”Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, pp. 38–41, 2006.Google Scholar
  160. [160]
    X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and Nanobelt Arrays of Zinc Oxide from Synthesis to Properties and to Novel Devices,”Journal of Materials Chemistry, 17, 711–720, 2007.CrossRefGoogle Scholar
  161. [161]
    Z. L. Wang, “Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators,”MRS Bulletin, 32, 109–116, 2007.Google Scholar
  162. [162]
    Z. L. Wang, “The New Field of Nanopiezotronics,”Materials Today, 10, 20–28, 2007.CrossRefGoogle Scholar
  163. [163]
    Z. L. Wang, “Nanopiezotronics,”Advanced Materials, 19, 889–892, 2007.CrossRefGoogle Scholar
  164. [164]
    Z. L. Wang, “Zinc Oxide Nanostructures: Growth, Properties and Applications,”Journal of Physics-Condensed Matter, 16, R829–R858, 2004.CrossRefGoogle Scholar
  165. [165]
    Z. L. Wang and J. H. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,”Science, 312, 242–246, 2006.CrossRefGoogle Scholar
  166. [166]
    Z. L. Wang, “Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics,”Advanced Functional Mater.ia, 18, 3553–3567, 2008.CrossRefGoogle Scholar
  167. [167]
    M. Alexe, S. Senz, M. A. Schubert, D. Hesse, and U. Gosele, “Energy Harvesting Using Nanowires?,”Advanced Materials, 20, 4021–4026, 2008.CrossRefGoogle Scholar
  168. [168]
    Z. L. Wang, “Energy Harvesting Using Piezoelectric Nanowires – A Correspondence on ‘‘Energy Harvesting Using Nanowires?’’ by Alexe et al.,”Advanced Materials, Correspondence, 20, 1–5, 2008.CrossRefGoogle Scholar
  169. [169]
    X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves,”Science, 316, 102–105, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Henkel Loctite (China) Co. Ltd.ChandlerPeople’s Republic China

Personalised recommendations