On the Euler Characteristic of Finite Distributive Lattices

Contributed Chapter
  • Emanuele Munarini


Some relationships between the structure of a finite distributive lattice and the algebraic or combinatorial properties of its Euler characteristic χ are investigated. Furthermore, the combinatorial meaning of χ is obtained in the particular cases of subhypergraph lattices, of dual Gödel lattices and of tree-map lattices.


Distributive Lattice Disjoint Union Euler Characteristic Minimal Element Principal Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzoli, S., Gerla, B., Marra, V. (2008), Gödel Algebras Free Over finite Distributive Lattices, in “Ann. Pure Appl. Logic”, 155, pp. 183–93.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aigner, M. (1979), Combinatorial Theory, New York, Springer.MATHGoogle Scholar
  3. 3.
    Barnabei, M., Brini, A., Rota, G.-C. (1986), The Theory of Möbius Functions, in “Russ. Math. Surv.”, 41/3, pp. 135–88.CrossRefGoogle Scholar
  4. 4.
    Berge, C. (1989), Hypergraphs: The Theory of Finite Sets, Amsterdam, North-Holland.Google Scholar
  5. 5.
    Berger, C., Leinster, T. (2008), The Euler Characteristic of a Category as the Sum of a Divergent Series, in “Homology, Homotopy Appl.”, 10, pp. 41–51.MATHMathSciNetGoogle Scholar
  6. 6.
    Birkhoff, G. (1966), Lattice Theory, Providence, Amer. Math. Soc. Colloquium Publications.Google Scholar
  7. 7.
    Crapo, H. H. (1995), Rota’s “Combinatorial Theory”, in J. P. S. Kung (ed.), Gian-Carlo Rota on Combinatorics, Boston, Basel, Berlin, Birkhäuser, pp. xix–xliii.Google Scholar
  8. 8.
    Erné, M., Heitzig, J., Reinhold, J. (2002), On the Number of Distributive Lattices, in “Electron. J. Combin.”, 9, #R24.Google Scholar
  9. 9.
    Grätzer, G. (1978), General Lattice Theory, Boston, Basel, Berlin, Birkhäuser.Google Scholar
  10. 10.
    Grätzer, G. (1971), Lattice Theory. First Concepts and Distributive Lattices, San Francisco, W. H. Freeman and Co.MATHGoogle Scholar
  11. 11.
    Grätzer, G., Knapp, E. (2007), Notes on Planar Semimodular Lattices. I. Construction, in “Acta Sci. Math. (Szegad)”, 73, pp. 445–62.MATHGoogle Scholar
  12. 12.
    Hadwiger, H. (1947), Über eine symbolisch-topologische Formel, in “Elem. Math.”, 2, pp. 35–41.MathSciNetGoogle Scholar
  13. 13.
    Hadwiger, H. (1953), Über additive Funktionale, k-dimensionaler Eipolyeder, in “Publ. Math. Debrecen.”, 3, pp. 87–94.MathSciNetGoogle Scholar
  14. 14.
    Hadwiger, H. (1955), Eulers Charakteristik und kombinatorische Geometrie, in “J. Reine Angew. Math.”, 194, pp. 101–10.MATHMathSciNetGoogle Scholar
  15. 15.
    Hadwiger, H. (1960), Zur Eulerschen Charakteristik Euklidischer Polyeder, in “Monatsh. Math.”, 64, pp. 349–54.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Horn, A. (1969), Free L-algebras, in “J. Symbolic Logic”, 34, pp. 475–80.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kelly, D., Rival, I. (1975), Planar Lattices, in “Canad. J. Math.”, 27, pp. 558–66.MathSciNetGoogle Scholar
  18. 18.
    Klee, V. (1963), The Euler Characteristic in Combinatorial Geometry, in “Amer. Math. Monthly”, 70, pp. 119–27.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Klain, D. A. (1997), Kinematic Formulas for Finite Lattices, in “Annals of Combinatorics”, 1, pp. 353-66.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Klain, D. A., Rota, G.-C. (1997), Introduction to Geometric Probability. Lezioni Lincee, Cambridge, Cambridge University Press.Google Scholar
  21. 21.
    Knuth, D. E. (1973), The Art of Computer Programming. Vol. 3: Sorting and Searching, Reading, MA, Addison-Wesley.Google Scholar
  22. 22.
    Leinster, T. (2008), The Euler Characteristic of a Category, in “Doc. Math.”, 13, pp. 21–49.MATHMathSciNetGoogle Scholar
  23. 23.
    Munarini, E., Perelli Cippo, C., Euler Characteristic and Permutation Codes, preprint.Google Scholar
  24. 24.
    Propp, J. (2002), Euler Measure as Generalized Cardinality, math. CO/0203289.Google Scholar
  25. 25.
    Propp, J. (2003), Exponentiation and Euler Measure, “Algebra Universalis”, 49, pp. 459–71.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rota, G.-C. (1964), On the Foundations of Combinatorial Theory. I. Theory of Möbius functions, in “Z. Wahrscheinlichkeitstheorie und Verw. Gebiete”, 2, pp. 340–68.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Rota, G.-C. (1971), On the Combinatorics of the Euler Characteristic, in L. Mirsky (ed.), Studies in Pure Mathematics, London, Academic Press, pp. 221–233.Google Scholar
  28. 28.
    Rota, G.-C. (1973), The Valuation Ring of a Distributive Lattice, in S. Fajtlowicz, K. Kaiser (eds.), Proceedings of the University of Houston Lattice Theory Conference, Houston, University of Houston, pp. 575–628.Google Scholar
  29. 29.
    Sallee, G. T. (1968), Polytopes, Valuations, and the Euler Relation, in “Canad. J. Math.”, 20, pp. 1412–24.MATHMathSciNetGoogle Scholar
  30. 30.
    Schanuel, S. H. (1986), What is the Length of a Potato? An Introduction to Geometric Measure Theory, in Categories in Continuum Physics, (Lecture Notes in Math., 1174), Berlin, Springer.Google Scholar
  31. 31.
    Schanuel, S. H. (1991), Negative Sets have Euler Characteristic and Dimension, in Category theory (Como, 1990), (Lecture Notes in Math., 1488), Berlin, Springer, pp. 379–85.CrossRefGoogle Scholar
  32. 32.
    Shephard, E. H. (1968), Euler-type relations for convex polytopes, in “Proc. London Math. Soc.”, 18, pp. 597–606.Google Scholar
  33. 33.
    Stanley, R. P. (1997), Enumerative Combinatorics, Vol. 1, (Cambridge Studies in Advanced Mathematics, 49), Cambridge, Cambridge University Press.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Emanuele Munarini
    • 1
  1. 1.Politecnico di MilanoMilanoItaly

Personalised recommendations